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Mathematical Theoretical statistics Cox,R 2015

• Statistics needs a healthy interplay between theory and applications
• theory meaning foundations, rather than theoretical analysis of specific techniques

• Foundations?
• “A solid base, on which rests a large structure” OED

• must be continually tested against new applications

• “the practical application of general theorems is a different art
from their establishment by mathematical proof” F 1958 SMRW 13th ed
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Fisher 1922 1925 1934

• 1922: On the mathematical foundations of theoretical statistics:
statistic/parameter, estimation, consistent, sufficient, efficient, likelihood, maximum
likelihood estimate, information, intrinsic accuracy

• 1925: Theory of statistical estimation:
all of the above, scoring algorithm, loss of information, ancillary

• 1934: Two new properties of mathematical likelihood:
conditional inference, location model, ancillary configuration, recovery of information,
exponential family, distribution of sufficient estimate, uniformly most powerful tests
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Likelihood Inference

• Model: Y ∼ f (y; θ), θ ∈ Rp, y ∈ Rn

• Likelihood function: L(θ; y) ∝ f (y; θ)

• Maximum likelihood estimator θ̂ = θ̂(y) = arg supθ L(θ; y)= arg supθ log{L(θ; y)}

• Observed and expected Fisher information ℓ(θ; y) = log L(θ; y)
j(θ) = −∂2ℓ(θ; y)/∂θ2, i(θ) = E{−∂2ℓ(θ; Y)/∂θ2}

• in “large samples” θ̂ .∼ Np{θ, j−1(θ̂)} equivalently Np{θ, i−1(θ)}

• in “large samples” ℓ′(θ) .∼ Np{0, i−1(θ)}
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...Likelihood inference

• in “large samples” θ̂ .∼ Np{θ, j−1(θ̂)}
• in “large samples” ℓ′(θ) .∼ Np{0, i−1(θ)}
• in “large samples” 2{ℓ(θ̂)− ℓ(θ)} .∼ χ2p

• y = (y1, . . . , yn); yi ∼ Gamma(θ, 1)
• L(θ) =

!n
i=1 y

θ−1
i e−yi/Γ(θ)

• ψ(θ̂) = 1
n
"

log(yi) ψ = log Γ′

• j(θ̂) = nψ′(θ̂)
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Small samples

• can we find the exact distribution of the maximum likelihood estimator?

• special case 1: location model Yi ∼ f (yi − θ), i = 1, . . . ,n; θ ∈ R Fisher 1934

• ancillary statistic a = (y1 − θ̂, . . . , yn − θ̂)
!

(∂/∂θ) log{f (yi; θ̂)} = 0

• special case 2: exponential family model Yi ∼ exp
#
s(y)Tθ − nc(θ)

$
h(y) Fisher 1925

• sufficient statistic s = s(y) is ‘matched’ to θ same dimension

• maximum likelihood estimate is sufficient likelihood map is sufficient
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... Small samples Bka August 1980

• can we find the exact distribution of the maximum likelihood estimator?

• special case 1: y → (θ̂,a) Fisher 1934

f (θ̂ | a; θ) = L(θ; θ̂,a)
%
L(θ; θ̂,a)dθ

=
exp{ℓ(θ; θ̂,a)}

%
exp{ℓ(θ; θ̂,a)}dθ

• special case 2: y → s

f (s; θ) = exp{sTθ − nc(θ)}h̃(s) s = nc′(θ̂), h̃(s) =
&

...dy

• general case 1+ O(n−3/2)

f (θ̂; θ | a) .
= c|j(θ̂)|1/2 exp{ℓ(θ; θ̂,a)− ℓ(θ̂; θ̂,a)}
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... Small samples

• we know the distribution of the maximum likelihood estimator
to a high order of approximation

• how do we use this for inference?

• find values of θ that are consistent with our observed data confidence intervals

• find the probability for a given θ0 of observing a result
“as or more extreme than our observed data” (F 1925) p-values

• computationally feasible? f (θ̂; θ | a) .
= c|j(θ̂)|1/2 exp{ℓ(θ; θ̂, a)− ℓ(θ̂; θ̂, a)}

• models with many parameters: θ = (ψ,λ), ℓp(ψ) = ℓ(ψ, λ̂ψ)

profile log-likelihood
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Models with many parameters

• statistical models with many parameters θ = (ψ,λ) parameter of interest
nuisance parameter(s)

• profile or concentrated log-likelihood function ℓprof(ψ) ≡ ℓ(ψ, λ̂ψ; y) λ̂ψ = arg supλ L(ψ,λ)

• now use “large samples” theory on ℓprof (ψ) approximation can be very poor

• can sometimes isolate parameters in a marginal or conditional distribution

e.g. f (y;ψ,λ) ∝ fc(s | t;ψ) f (t;ψ,λ)

Fisher’s exact test
• can approximate this conditional likelihood with relatively simple adjustments

B-N 1983; Cox R 1987

ℓmod(ψ) = ℓprof(ψ)' () *
O(n)

− 1
2 log |jλλ(ψ, λ̂ψ)|
' () *

O(1)

+ M(ψ)' () *
O(1/

√
n)
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The 21st century

“you are not thinking in the right way”
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... the 21st century STA4508

• “investigate the use of the marginal likelihood function for model specification”
Fong & Holmes 2020

• “maximum likelihood estimates are obtained from a multivariate
Poisson regression model” Muñoz-Pichardo et al. 2021

• “a penalized likelihood approach to integrate high-dimension subject-level
information along low-dimensional aggregate information” Sheng, Huang & Kim 2021

• “explores retrospective and prospective likelihood in terms of power
of the score tests” Liu et al. 2020

• “likelihood ratio test for sequential change-point detection” Dette & Gössman 2020
• “proposed a modified profile likelihood method” for genetic association studies

Zhang et al. 2020
• “a variant of the maximum likelihood estimator using a subset of the data

...resulting estimator is still consistent” Ekvall & Jones 2021
• “small-sample bias correction for [the variance of] the maximum likelihood estimator”

Ozenne et al. 2020
• ...
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Data is complex

• spatial dependence, nested sampling designs, high-dimensional parametrization

• pseudo-likelihood builds distribution from local characteristics

Lpseudo(θ) =
+

j∈N (yi)

f (yi | yj; θ)

• example spatial modelling Besag 74

• example Boltzmann machine Zhu
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... Data is complex

• spatial dependence, nested sampling designs, high-dimensional parametrization

• composite likelihood combines lower-dimensional marginal densities
•

Lcomposite(θ) =
n+

i=1

+

j<k

f2(yij, yik; θ)

• example longitudinal data – each subject measured at several time points
Renard 04; Kuk& Nott 03

• latent variable: wir = x′irβ + z′irbi + εir, εir ∼ N(0, 1)
• binary observations: yir = 1(wir > 0); r = 1, . . .m; i = 1, . . .n dependent binary vector yi
• probit model: Pr(yir = 1 | bi) = Φ(x′irβ + bi); bi ∼ Nq(0,Σb) regression

Lcomposite(β,Σb; y)=
n!

i=1

!

j<k

Pyiryis11,i P
yir(1−yis)
10,i P(1−yir)yis

01,i P(1−yir)(1−yis)
00,i

P11,i, P10,i, etc. evaluated using Φ2(·, ·; ρirs)Cambridge April 21 2022 16/33



... Data is complex

• spatial dependence, nested sampling designs, high-dimensional parametrization

Andrade, Wikipedia Buhlmann et al 14
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High-dimensional parameters

• new limit results, e.g. θ̂ d→ N(θ + bias,σ2 × adjustment) Sur & Candès, Fan et al.

• higher order approximations allows p = O(nα),α < 1/2 Tang 22

• sparsity – S ≡ {j; θj ∕= 0}; |S| = s < n

• enforce sparsity, e.g. Lasso

• discover sparsity, e.g. Battey 22

• isolate parameter(s) of interest Battey & R 22; McCormack et al 19
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Various types of ‘likelihood’

• likelihood, marginal likelihood, conditional likelihood, profile likelihood
adjusted profile likelihood

• pseudo-likelihood, composite likelihood

• semi-parametric likelihood, partial likelihood

• empirical likelihood, penalized likelihood

• bootstrap likelihood, h-likelihood, weighted likelihood, quasi-likelihood, local
likelihood, sieve likelihood, simulated likelihood
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Those pesky p-values

• ANDROMEDA Trial: randomized clinical trial to compare two treatments for septic shock
Hernandez et al 2019

• estimated hazard ratio 0.75 [0.55, 1.02] after adjusting for confounders

• 2-sided p-value 0.06 34.9% vs 43.4% unadjusted

• Discussion: “ a peripheral perfusion-targeted resuscitation strategy
did not result in a significantly lower 28-day mortality
when compared with a lactate level-targeted strategy”

• Abstract: “Among patients with septic shock, a resuscitation strategy targeting
normalization of capillary refill time, compared with a strategy targeting serum lactate
levels, did not reduce all-cause 28-day mortality.”
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A p-value function Fraser 1991

ANDROMEDA trial

Died Lived

New 74 138 212
Old 92 120 212

Total 166 258 424

2-sided p-value = 0.07

likelihood ratio test
no adjustment for covariates 90% confidence interval: [−0.688,−0.030 ]

95% confidence interval: [ −0.751, 0.034 ]
99% confidence interval: [ −0.825, 0.107 ]
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Fiducial Probability Fisher 1930

df = − ∂

∂θ
F(Y, θ)dθ

fiducial probability density for θ, given statistic Y

“It is not to be lightly supposed that men of the mental calibre of Laplace and Gauss ... could fall into error on
a question of prime theoretical importance, without an uncommonly good reason”

Cambridge April 21 2022 22/33



Fast forward
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BFF 1 – 6

Distributions for parameters

• posterior distribution Bayes 1763

• fiducial probability Fisher 1930

• confidence distribution Cox 1958

• structural probability Fraser 1964

• belief functions Dempster 1967

• objective Bayes

• generalized fiducial inference, fiducial
prediction, functional models,
“slice-and-dice”, ...

• confidence distributions / curves

• approximate significance functions

• inferential models

Cambridge April 21 2022 24/33



Fiducial inference 21st c.

• study the structure of models which give ‘valid’ fiducial inference Dawid 22

• change the modelling framework so fiducial arguments can be developed
more cohesively Lang 22

• generalized fiducial density Hannig 09 ff

r(θ; y0) ∝ f (y0; θ)' () *
likelihood

J(y0, θ)' () *
“prior”

• these methods all founder in models with many parameters

• unless each parameter of interest can be “measured separately” Fisher
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Why do we want distributions on parameters?

• inference is intuitive
• combines easily with decision theory
• de-emphasizes point estimation and arbitrary cut-offs

• “it’s tempting to conclude that µ is more likely to be near the middle of this interval,
and if outside, not very far outside” Cox 2006

• “assigns probability 0.05 to θ lying between the upper endpoints of the 0.90 and 0.95
confidence intervals, etc.” Efron 1993

• all inference statements become probability statements about unknowns hmm...
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Nature of Probability Cox 2006; R & Cox 2015

• probability to describe physical haphazard variability aleatory/empirical
• probabilities represent features of the “real” world
in somewhat idealized form

• subject to empirical test and improvement
• conclusions of statistical analysis expressed in terms of interpretable parameters
• enhanced understanding of the data generating process

• probability to describe the uncertainty of knowledge epistemic
• measures rational, supposedly impersonal, degree of belief,
given relevant information Jeffreys

• measures a particular person’s degree of belief, subject typically to
some constraints of self-consistency Ramsey, de Finetti, Savage
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Role of Foundations Cox & R, 2015

• avoid apparent discoveries based on spurious patterns

• shed light on the structure of the problem

• obtain calibrated inferences about interpretable parameters

• provide a realistic assessment of precision

• understand when/why methods work/fail
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Needs in applications

• something that works

• gives ‘sensible’ answers

• not too sensitive to model assumptions

• computable in reasonable time

• provides interpretable parameters
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BWAS Marek et al. Nature 16 Mar
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BWAS Marek et al. Nature 16 Mar

Reproducible brain-wide association studies require thousands of individuals

• “relate population variability in brain features” eg functional connectivity

• “and behavioural phenotypes” eg cognitive ability

• “across all univariate brain-wide associations, the largest correlation that replicated
out-of-sample was |r| = 0.16”

• “at n = 25, the 99% confidence interval for univariate associations was r ± 0.52.”

• “Bias in favour of significant, larger BWAS effects has limited the publication of null
results, perpetuating inflated effect sizes ... ”
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On re-reading R A Fisher Savage 76

Savage: “there is a world of R.A. Fisher at once very near to and very far from the world
of modern statisticians ... research for the fun of it is abundant and beautiful in Fisher’s
writings”

Fraser: “One important characteristic of Fisher was his ability to move into new areas of
statistics, suggesting concepts and methods ... left the theory open to modification and
development”

Efron: “This paper makes me happy to be a statistician”
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THANK YOU
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