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Vol. 36, No. 4, 2008, Pages 613-622 
La revue canadienne de statistique 

On probability matching priors 
Ana-Maria STAICU and Nancy M. REID 

Key words and phrases: Approximate Bayesian inference; Laplace approximation; orthogonal parameters; 

probability matching prior; tail probability approximation. 
MSC 2000: Primary 62F15; secondary 62E99. 

Abstract: First-order probability matching priors are priors for which Bayesian and frequentist inference, 
in the form of posterior quantiles, or confidence intervals, agree to a second order of approximation. The 

authors show that the matching priors developed by Peers (1965) and Tibshirani (1989) are readily and 
uniquely implemented in a third-order approximation to the posterior marginal density. The authors further 
show how strong orthogonality of parameters simplifies the arguments. Several examples illustrate their 
results. 

A propos des lois a priori appariees en probability 
Resume : On dit que des lois a priori sont appariees en probabilite au premier ordre lorsque les quantiles 
a posteriori ou les intervalles de confiance des approches bayesienne et frequentiste coincident au second 
ordre. Les auteures montrent que les lois a priori appariees de Peers (1965) et Tibshirani (1989) conduisent 
a une approximation de troisieme ordre simple et unique de la densite* marginale a posteriori. Les auteures 

montrent aussi en quoi l'orthogonalite forte des parametres simplifie les arguments. Plusieurs exemples 
illustrent leur propos. 

1. INTRODUCTION 
We consider parametric models for a response Y = 

(Yi,..., Yn)T with joint density f(y; 9), 
where the parameter 9T = (ip, AT) is assumed to be a d-dimensional vector with ^ the scalar 
component of interest. The log-likelihood function of the model is denoted by ?(9) 

= 
log f(y; 9). 

We write j(9) 
= 

?n~1?ere(9; y) 
= ? 

n_1d2^(0; y)/d9Td8 for the observed information ma 
trix and i(0) 

= n~1E {??qtq(6; Y);9} for the expected Fisher information matrix, per obser 
vation, and use subscript notation to indicate the partition of these matrices in accordance with 
the partition of the parameter; for example itjj\(9) 

= n-1E {?d2?(9)/dipd\; 9}. 
In the absence of subjective prior information about the parameter 9, it may be natural to use 

a prior which leads to posterior probability limits that are also frequentist limits in that 

prwty < ̂-a\Y) | Y} = 
pr^-^Y) > ^} + O^"1), 

where i/>(1_a)(Y) is the upper (1 
? 

a) quantile of the marginal posterior distribution function 
II(^ | Y), assumed to have density 7r(^ | Y). Following Datta & Mukerjee (2004), we call such 
priors first-order probability matching priors. 

In a model with a scalar parameter, Welch & Peers (1963) showed that tt(9) oc i1^2(0) is 
the unique first-order probability matching prior. In models with nuisance parameters, Peers 
(1965) derived a class of first-order matching priors for i/;, as solutions to a partial differential 
equation. See also Mukerjee & Ghosh (1997), who provided a simpler derivation. In general 
this differential equation is not easy to solve, unless the components tfj and A are orthogonal 
with respect to expected Fisher information, i.e., i7p\(9) 

= 0. In this case Tibshirani (1989) and 
Nicolau (1993) showed that a family of solutions is 

7r(^,A)cx^2(t/;,%(A), (1) 
where g(X) is an arbitrary function. Sometimes consideration of higher order matching enables 
restriction of the class of functions #(A), occasionally enabling a unique matching prior to be 
defined; see Mukerjee & Dey (1993). 
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614 STAICU&REID Vol. 36, No. 4 

Levine & Casella (2003) proposed solving the partial differential equation numerically in 
models with a single nuisance parameter. Sweeting (2005) considered vector nuisance parame 
ters and introduced data-dependent priors that locally approximate the matching priors. Both 

papers suggest implementing these priors using a Metropolis-Hastings algorithm, a rather com 

putationally intensive procedure. Our work is closely connected to DiCiccio & Martin (1993), 
who use matching priors in approximate Bayesian inference as an alternative to more compli 
cated frequentist formulas. 

In this paper we argue that as long as one is satisfied with an approximation to the marginal 
posterior accurate to 0(n~3/2), the choice g(X) 

= 1 in (1) is the simplest, and show that the 

marginal posterior approximation with this choice gives results that in simulations are verified 
to be very close to correct, from a frequentist point of view. The resulting marginal posterior is 

invariant to reparametrization, and is easily calculated with available software. 

The paper is organized as follows. Section 2 presents the third-order approximation to the 

marginal posterior. Section 3 justifies the choice g(X) 
= 1. Section 4 discusses models where the 

orthogonal components can be obtained without solving the differential equations. In Section 5 
some examples illustrate the results. Section 6 provides our conclusions. 

2. APPROXIMATE BAYESIAN INFERENCE 
The Laplace approximation to the marginal posterior density 7r(^ | y) is given by 

where is the constrained maximum likelihood estimate, ?p(i^) 
= 

A^) is the profile log 
likelihood for ip9 6T = (^>, AT) is the full maximum likelihood estimate, and jp($) 

= 
?tp$) 

is the observed information corresponding to the profile log-likelihood. In the independently and 

identically distributed sampling context Tierney & Kadane (1986) showed that this approxima 
tion has relative error 0(n~3/2). 

The corresponding 0(n~3/2) approximation to the marginal posterior tail probability is 

pr^tf >^\Y) = 1-U(^\y) = *(r) + (? 
- 
^)<K0 

(2) 

where </> and $ are the standard normal density and standard normal distribution function respec 

tively, and 

r ? sign ?-*)[2{f,(,?)-<,,? )}] "2, 

I Ijaa(^,A)| J 7r(^,A,/,) 

this was derived in DiCiccio & Martin (1991). An asymptotically equivalent approximation to 

(2), called Barndorff-Nielsen's approximation after Barndorff-Nielsen (1986), provides approx 
imate posterior quantiles for i\) 

IM* ^ = *('b)> 0) 

where r*B 
= r + r-1 log(^/r). 

When the model is given in an orthogonal parameterization 0T = (z/>, AT), another version 

of the Laplace approximation to the marginal posterior density for ip can be obtained by using the 

adjusted profile log-likelihood function ?a(i/>) = lp($) 
- 

\ log \jx\{^, <M| (Cox & Reid 1987), 

*W | y) = c\ja(W2exp{4?0 
" 
LW}^^, (4) 

This content downloaded from 142.150.190.39 on Tue, 29 Oct 2013 20:19:04 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


2008 PROBABILITY MATCHING PRIORS 615 

where ja(4>) 
= ? 

CWO- This approximation also has a relative error of 0(n-3/2), and was 

discussed in more detail in DiCiccio & Martin (1993). 

3. FIRST-ORDER PROBABILITY MATCHING PRIORS 

When the model is given in an orthogonal parameterization, the first-order matching prior for the 

parameter of interest ip, given by (1), enters approximation (2) as a ratio, so the relevant quantity 
is 

Although the function g(\) is an arbitrary factor in (1), for sufficiently smooth g the ratio 

g(\)/g(\il;) 
= 1 + Op(n_1), as a consequence of the result that A^, 

= A + Op(n_1) under pa 
rameter orthogonality. It follows that the approximation to U(ip | y) in (2) is unique to 0(n~l). 
An approximation to the marginal posterior probabilities to 0(n~l) leads to posterior quantiles 
for ip to Op(n~3/2), as can be verified by inversion of the relevant asymptotic series, as outlined 

in the Appendix. 
The first-order matching prior for ip, 

7Tu(lp, A) OC W>,A) (5) 

has the simplest analytical form under the class of Tibshirani's matching priors, and gives the 

same marginal posterior distribution for the parameter of interest as if any other matching prior 
of form (1) were used instead. Accordingly, we call this prior "the unique matching prior for 

the component ip" under the orthogonal parameterization ip and A. This uniqueness was noted 

in DiCiccio & Martin (1993) in a discussion of the relation between the Bayesian third-order 

approximation (2) and a frequentist version developed in Barndorff-Nielsen (1986). 
If an orthogonal parameterization is not explicitly available, the differential equations defin 

ing parameter orthogonality can be used in conjunction with (5) to give an expression for the 

prior in the original parameterization. We use the invariance argument presented in Mukerjee & 

Ghosh (1997) to express the matching prior in terms of the original parameterization. 
More precisely, if our model is given in a parameterization (pT 

= 
(ip, r/T) not necessarily 

orthogonal, let 6T = (ip, AT) be an orthogonal reparameterization. Such an orthogonal repara 
meterization always exists when ip is scalar; it is a solution of the partial differential equation 

d\(<j>) (dX(ct>)\-\ 

(Cox & Reid 1987). The unique first-order matching prior nu (tp, A) can be written in the original 
parameterization as 

*u(il>,v) <* fc^faMyfaM), (7) 

where i^.r)(ip, rj) = i^(ip, rj) 
? 

i^ip, rj){im(ip, rf)}"1^^, rj) is the (ip, ip) component of 
the expected Fisher information in the orthogonal parameterization, and J(^, rj) 

= 
\dX/drjT\^. 

is the Jacobian of the transformation. In accordance with calling prior (5) a unique matching 
prior in the orthogonal parameterization A), the prior (7) shall be referred to as the unique 
matching prior in the rj) parameterization. 

The analogy between (5) and (7) can also be justified by noting that in the orthogonal para 
meterization 0T ? (ip, AT), the unique matching prior for ̂ is proportional to the square root 

of the inverse of the asymptotic variance for ̂. For a general parameterization 0T 
= 

rjT), 
the variance of ip is the inverse of the partial information for ̂, i.e., i^(<f>) 

= 
{v^.r/(0)}_1 
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(Severini 2000, ch. 3.6), so the matching prior (7) in parameterization 0 is a natural extension of 
the unique matching prior (5). 

The unique matching prior (7) is similar to the local probability matching prior proposed 
by Sweeting (2005). The two priors share the term involving the partial information 1^.^(9)', 
the extra factor in Sweeting's local prior is proportional to a local approximation of the Jaco 
bian J^^rj), based only on the parameter of interest and on the overall maximum likelihood 

estimate, see Sweeting (2005, equation (8)). An advantage of the unique matching prior is in 

variance to reparameterization. 

4. STRONG ORTHOGONALITY 

We examine in some detail models for which the orthogonal reparameterization has the property 
that X^ 

= A holds for all ip, which we call strong orthogonality. Barndorff-Nielsen & Cox (1994, 
ch. 3.6) pointed out that if X^ 

= A holds for all i/;, then the components i\) and A must be orthog 
onal. For models which admit strong orthogonality, the difficulty of obtaining matching priors 
can be reduced significantly, and the Bayesian posterior quantiles derived using (3) approximate 
the exact Bayesian posterior quantiles to 0(n~2). 

For simplicity consider tj to be a scalar nuisance parameter. If the score function correspond 

ing to the nuisance parameter rj has the form 

Vj y) <x MM^> vY y}> (g) 

for some functions h(-\y) and A( , ) with |9A(^, rj)/dr)\ ̂ 0, where the proportionality refers 

to non-zero functions which depend on the parameter only, then A and are strongly orthogonal. 
This follows from the equivariance of the constrained maximum likelihood estimator f)^. 

A simple form of (8) frequently encountered is h{X(^,rj)]y} 
= 

X^^rf) 
? 

p{y), where 

we assume \dX(ij), rj)/dr)\ =^ 0. Such is the case for the mean value reparameterization in the 

exponential family model. Another class of models giving strong orthogonality of parameters are 

those with likelihood orthogonality: i.e., L(^,rj) 
= 

Z/i(^)L2{A(t/>,r?)}. The one-way random 

effects model in Section 5.3 belongs to this class. 

This result is readily extended to the case where the nuisance parameter is a vector and h is 

then a vector of functions. More specifically, for rjT 
= 

(r/i,..., rjd-i) if the score function for 

the parametric model f(y; ip, 77) has the form 

tr,Ail>,V'>y) ? h1{\i(^7)1);y}i 
(0;y) <* hk{\k{$>m> Vk),M )> >^-i( )fk,k-i{-Yy}> 

k = 2,...,d- 1 

then X^ 
= A and strong orthogonality holds. In these expressions we assume for each 1 < k < 

d ? 1 mat /ifc(Afc, 0,..., 0; y) 
= 0 has a unique solution. For details of the proof, we refer the 

reader to Staicu (2007). We use strong orthogonality in the example of Section 5.5. 

5. EXAMPLES 

5.1. Linear exponential family. 

Consider a sample of independently and identically distributed observations Y = 
(Yi,..., Yn)T 

from the model 

f(yt; = 
exp{ ̂ s(yi) + f]Tt(yi) 

- 
c(<?) 

- 
<%)}, 

where 4>T 
= 

(ip,VT) *s me foU parameter and ip the component of interest. An orthogonal 

reparameterization is given by 9T = (ip, AT) with A = Eo{t+(y)}, where t+(y) 
= 

t(yi). 
This can be obtained from the orthogonality equation (6), but more directly by noting that the 

arguments of the previous section ensure that X^ 
= X. 
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2008 PROBABILITY MATCHING PRIORS 617 

The unique first-order matching prior is 

1 /2 
^u((t>) oc V^(^)lc^(^)l+ 

It provides a unique marginal posterior distribution function for ip to 0(n~3/2), as approximated 
by either (2) or (3). In these approximations, the expression for qB simplifies to 

where i^.^) 
= 

c^((p) 
- 

{^{c^(</>)}" 1cV4;(<t>), 4> = W>,^) and </> = (^,r)). The 
example is considered in DiCiccio & Martin (1993) as well. 

5.2. Logistic regression. 

We analyze the urine data of Davison & Hinkley (1997, Example 7.8). The presence or absence 
of calcium oxalate crystals in urine as well as specific gravity, pH, osmolality, conductivity, urea 
concentration and calcium concentration are measured for 77 complete cases. The relationship 
between calcium oxalate crystals and the 6 explanatory variables is investigated under the logistic 
regression model. Matching priors for logistic regression are obtained numerically in Levine & 
Casella (2003) and Sweeting (2005); here we give a simple analytical solution. 

The logistic regression model for a vector of independent random variables Yi ~ 

Binomial(rai,pj) has log-likelihood function 

n n 

m = 
!>(/*> + PlXU + + fa*) 

- 
^ TUi log{l + e0o+01xu+-+0Pxpiy 

i=l i=l 

Assume the parameter of interest is ip = /3P, and take rj = (/?0,.. ,/?p-i)T to be the 
nuisance parameter. Since the model is in the exponential family, A = 

Ep{t(y)} 
= 

Ep(J2?=i Vi^""> Y^i=\ Vixp-i,i) is orthogonal to ip. Therefore, the unique matching prior has 
the form 

^(/?)oc^277(/?)|z7?r?(/?)|+, (9) 

with iw.r)(/3) = i^(P) 
- 
W^MV?^)}-1 iriAP) 

The block matrices which partition the expected Fisher information function have a simple 
form: = 

xjv((3)xp, i^{f3) 
= 

xJV(f3)X-p and im((3) = XlpV(f3)X.p, where 
V((3) 

= 
diag {rriiPi(l 

? 
p*)}, X is the n x (p + 1) model matrix and X-p 

= X ? 
{xp} is the 

n x p matrix obtained by removing the column vector xp. For p = 2 this example is discussed 
in Sweeting (2005), where comparison with his equation (18) shows that the factor \im(f3)\^. 
in (9) is approximated by exp{?2/3pT(/3)}, a function that is log-linear in ip = /3P; the function 

T depends only on x and the fitted probabilities. 
To illustrate, we take ip = Pq, the coefficient of the effect of calcium concentration on the 

presence of calcium oxalate crystals in urine. The 95% posterior probability intervals using the 
Bayesian approach with matching prior (9) are given in Table 1. The frequentist calculations 
were carried out using the COND package in the HOA library bundle for R (Brazzale 2000). Al 
though this package does not provide the Bayesian solution explicitly, the components needed 
are readily derived from the workspace. Also shown is the standard output from COND: two 
(first-order) normal approximations, and the frequentist version of the r J approximation. The 
second normal approximation is based on the adjusted log-likelihood function ia(ip\ described 
above (4). While both approximations have relative error 0(n_1/2), the normal approximation 
based on ?a(ip) often seems to provide more accurate inferences in the presence of nuisance pa 
rameters, although this is not the case here. The third-order frequentist approximation is the sad 
dlepoint approximation to the conditional distribution of Y%=i xGiUi given t = A. The matching 
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prior version is indeed equivalent to the frequentist solution, giving essentially the same con 
fidence limits and P-values. A plot of the P-value function for 0$ (not shown) confirms that 
the survivor function for 06 based on the matching prior accurately approximates the frequentist 
P-value function for all relevant values of 0q. We might expect that with 7 covariates and a 

sample size as large as 77, the data might swamp the prior, and first-order asymptotics would 
suffice. However, this is not the case; there is actually much less information in binary data than 
in continuous data. This point is expanded on in Brazzale, Davison & Reid (2007, pp. 58-9). 
Chapter 2 of the same book gives an overview of higher order frequentist approximations of the 

type presented here. 

Table 1: Comparison of the 95% confidence intervals for 06 and of the P-values for testing Ho: 06 ? 0 . 

95% CI for 06 P-value 

Normal approximation to MLE 06 (0.3169 1.250) 4.9887e-004 

Normal approximation to conditional MLE 0% (0.2631 1.160) 9.3724e-004 

Third-order frequentist approximation (0.3224 1.208) 6.6893e-006 

Laplace approximation with prior (9) (0.3213 1.211) 5.3555e-006 

5.3. Random effects model. 

Consider the one-way random effects model Yij 
? /x + + for i = 1,..., k and j = 

1,...,ni, where and Sij are mutually independent with Ti ~ N(0, cr2) and Sij 
~ 

N(0, o2). 
For each i, the log-likelihood component is 

^(/i, cr2, cr2; y{) = 
-^(ni 

~ 
X) ̂g^2 

~ 
\ 

log(^2 + ni?V) 
~ 
^^(o2 

+ HiO2)'1 

- - 

^riiy2(o2 
-{-niO2)-1 +niyi.fi(o2 + nia2)-1, 

where = 
n^1 Y^Li Uij and s2 = 

Y^LiiVij 
? 

Vi-)2- Note this has the form of an exponential 

family log-likelihood, with some canonical parameters depending on the sample size. 

If tp = /x is the parameter of interest, rjT 
= 

(cr2, cr2) is orthogonal to /x and a unique matching 

prior is obtained from (5). However the (^, tp) component of the expected Fisher information 

matrix is a function only of the nuisance parameter 

k 

i^($,o2T,o2) oc y^rtijo2 +nicr2)~1, 
i=l 

so we can further simplify the unique matching prior for i\) = /x to the flat prior 

7r[/(^,77) oc 1. 

When i/> 
= o2 is the parameter of interest with rj = (a2, /x) being the nuisance component, 

we take A2 = /x, since A2^ 
= y.., where y.. = N^Y^^^iVi and N = 

Yli=ini' The 

differential equation (6) can then be used to obtain Ai. In the balanced design with n\ = = 

rik = n, the score functions corresponding to the nuisance parameter rj have the form 

f Tlk Tl2 
^ 
1 

^^M) 
= nfc(V> + m?i)-1{j/-. -%}. 
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and we can use the result described in Section 4 to identify Ai = ip + nrji and A2 = rj2 as being 
orthogonal to the interest parameter ip. Moreover for this reparameterization we have strong 
orthogonality: 

k 

Ai,,/, 
= Ai = 

- 
Y^iVi- 

~ 
y .)2 and X2^ 

= X2 = y.. for all ip. 
i=l 

Regardless of the method used, we find the partial information for ip, 2^.7777) oc ip~2, 
and the Jacobian of the transformation \dX/drjT\ 

= n. Then by using (7) we obtain the prior 

7ru(ip,rj) oc ip'1, 

which gives unique approximate matching inference based on matching priors in the orthogonal 
parameterization (ip, AT). 

Computing the posterior using (2) or (3) involves very elementary calculations on the model; 
the main computational work involved is evaluating the constrained maximum likelihood esti 

mator for a grid of 200 values for ip. 
We performed the same simulation study as Levine & Casella (2003). We randomly gener 

ated 100,000 data sets from the random effects model with n ? 10 and k = 3, for p = 10 and 
ar = a = 1, and calculated the 95% posterior intervals for the parameter of interest ip = a2. The 

posterior interval was easily obtained by spline smoothing. The simulated coverage of the 95% 
posterior intervals was 94.991%; the coverage obtained by Levine & Casella using a Metropolis 
Hastings algorithm with the prior n(ip, rj) oc ip~l(ip + nr)i)~l was 92.3%. 

5.4. Inverse gaussian model. 

Suppose that Yi ~ lG(/i, a2) with probability density function 

f{v^2) = 
Sexp{_w?}' 

y>0' 
where p > 0 and i = 1,..., n. This parameterization is orthogonal and the expected informa 
tion matrix is i(p,a2) 

= 
diag (p~3a~2, a~4/2). When ip = a2 and A = /i we have strong 

orthogonality: X^ 
= X = y, where y = n~l X^ILi Vi- Hence all the first-order matching priprs 

lead to unique approximation to the marginal posterior distribution as given by (2); the unique 
first-order matching prior is ttu(ct2, p) oc a~2. When the interest parameter is ip = p, we no 

longer have strong orthogonality: X,p 
= rT1 Y17=i Vi^ + V^'2 

~ 
2^_1. The unique matching 

prior (5) is 7Tu(p, &2) oc p~3^2a~1. Datta & Ghosh (1995) propose the reverse reference prior 
ttrr(/^ er2) oc /x~3/2<7~2, as it is a matching prior for each parameter in turn. This prior is of 
the form (1) with g(X) 

= A~1/2, so both priors nRR(p, a2) and 7ru(p, a2) result in the same 

approximate Bayesian inference to order 0(n_1). 

5.5. Multivariate normal mean. 

Suppose that Y{ ~ 
N(/i*, 1) with //* e R for i = 1,... ,p, and take the parameter of interest to 

be ip = (p\ H-h Mp)1/2. Datta & Ghosh (1995) use the reparameterization (ip, \u..., Ap_i) 
with pi = ip cos Ai, p2 = ^sinAiCOsA2 pp-\ 

= 
^nf=i2sm^cos^p-i> ^ lastlv 

pP = ip nf=i2 sin sm - V-i;tne information in this reparameterization is 

i(iP, X) 
= 

diag f 1,1P2,1P2 sin2 
X1,...,iP2H 

sin2 A< 
). ^ z=l / 

This reparameterization also gives strong orthogonality, as we now show. The constrained max 
imum likelihood estimate Ap_i^ is the solution of ?\p_1 (ip, X) 

= 0, where 

t\P-i(tpA) oc 2/p_isinAp_i -2/pcosAp_i, 
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yielding Xp-i^ 
= A = arctan^p/s/p-i). 

Next, we note that the score function corresponding to coordinate Ap_2, ?\p-2 W>> A) has the 

form 

^ap_2('0?A) 
oc yi?_2sinAp_2 

- 
(yp-i cos Ap_i + 2/psinAp_i)cos Ap_2, 

and therefore the solution \p-2,^ of the score equation ?\p_2{iIj, A) 
= 0 is Ap_2^ 

= 
Ap_2 

= 

arctan(yp_i/?/p_2)cosAp_i + (yp/yp-2) sin Ap_i; we continue with this backward procedure 
to obtain = A. Having strong orthogonality, the unique matching prior is 7T[/(^, A) oc 1. 

Datta & Ghosh (1995) and Tibshirani (1989) obtained 7rR(i;, A) cx l\pkZ\ sin?-1-*1 \k as a first 

order matching prior for ip; this prior is also a reference prior. Both priors give the same posterior 

quantiles to third-order. 

6. DISCUSSION 

We have illustrated the use of ttu(0), a particular choice of the Tibshirani-Peers matching 

prior, in two practical and two theoretical examples. Several further examples are discussed 

in Staicu (2007). The use of this prior in third-order approximations is quite straightforward, and 

avoids any simulation or numerical integration. There is no need to choose among the family of 

matching priors, in particular to search for a matching prior to higher order: in fact when A^ 
= A, 

the unique first-order matching prior is second-order matching if and only if the model has the 

following property (R. Mukerjee, personal communication): 

^[ui/2mi%v)}]=<> 
A reviewer has pointed out that with improper priors there is no guarantee that the posterior 

is proper, and this needs to be checked on a case-by-case basis. For the examples of Section 5, 

the posterior is indeed proper, and it seems possible that the matching argument could be used in 

conjunction with the third-order approximation to show that the unique prior will, under regular 

ity conditions on the model, lead to proper posteriors. 
The reference approach to noninformative priors, based on maximizing the Kullback-Liebler 

distance between the prior and the posterior, often gives posterior inferences which are frequen 
tist matching, although they are not derived from this point of view. Kass & Wasserman (1996) 

provide an introduction to this literature, and show that under parameter orthogonality, and sub 

ject to rather strong regularity conditions, the reference prior is proportional to \i\\{0)\l^2g(^), 

exactly opposite to (1). 
The approximation used for the logistic regression example is to a conditional distribution, 

given a sufficient statistic for the nuisance parameter. The normal approximation to r J has fre 

quentist matching conditionally on this statistic, and hence unconditionally. It is also an approx 

imation to a discrete distribution, whereas the theory of quantile matching implicitly assumes 

underlying continuity. The approximation is best viewed as matching a continuous (smoothed) 

version of the discrete distribution, as in Davison & Wang (2002), but the theoretical details to 

verify this have not yet been established. Rousseau (2000) provides the most detailed results on 

this aspect. 
Severini (2007) has considered the construction of conditional priors 7r(A | ̂), using a notion 

of parameter orthogonality which he calls strongly unrelated. Although this work was not directly 

focussed on frequentist matching, a referee has suggested that it may be possible to use Severini's 

approach to extend the notion of matching priors. 
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APPENDIX 

Lemma 1. For 0 < a < 1, denote by ̂1~OL\,K,y) the posterior quantile corresponding to 

prior 7r(6) oc *J5(%(A), which is defined by n{^(1-a)(7r, y) | y) = 1 - a. We assume that 
g(X) ^ 0 a continuous first derivative for all A. 77ien 

^""W) = ^(1-a)(7ri;,?) + Op(n-3/2); 

that is, the posterior quantile is unique to Op(n~3/2) under the class of matching priors 7r(0). 

Proof Let za denote the 100(1 
? 

a) percentile of a standard normal variate and let j^(ip, A) 
stand for the (ip, ip) component of the inverse of the observed information matrix. The Cornish 
Fisher inversion of the Edgeworth expansion for the marginal posterior distribution of ip leads 
to 

^-"W) = iP + n-^ij^fyy^Za 
+ n-1{i^(0)}VV(za,7r,2/) + Op(n-3/2), 

where ux(za, tt, y) = An(7r, y) + A12(y) + (z2a + 2)A3(y) with 

An(^y) = 0^(^}"1/a{^i^(tf) + ^i^(^} I 7T(0) 7T(0) ) 

7Tip(6) 
= 

3^(6)1dip, 7T\(0) 
= 

d7r(6)/d\ and the expressions for A\2 and As are given in Muk 

erjee & Reid (1999). It suffices to show An (n, y) does not depend on g(X) to order Op(n~1/2). 
By the assumptions on g and the consistency of the maximum likelihood estimator we have 

g\(X)/g(X) = Op(l) and the result follows. 
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