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1. Assumptions

A list of the Assumptions used in the main text, reproduced here for convenience. We
assume that p = O(n®) for some 0 < a < 1/2. Let Ny, 5 = {0 : |0 — 6|, < 6} for § > 0
denote a neighbourhood of radius ¢ centered around 6.

1.1. Assumptions in §3 R
ASSUMPTION 1. [|6 — 6oll2 = 0p(1) and supyea, [|0y — Ooll2 = op(1), where A, = {3 :

|9 — ol < ¥ — ol }-
ASSUMPTION 2. jyx, (0) = O,(n'/2) uniformly in r, for 6 € Ny, 5.

AssUMPTION 3. The eigenvalues of 5(8)/n and {j(8)/n}~t are bounded in probability,
f07’ VRS Ngm(g.

ASSUMPTION 4. The log-likelihood derivatives lg,,0,(0), lo.0.0,0,(0) and l, , 5 (6) are
continuous and uniformly Op(n) inr,s,t,0, for § € Ny, 5.

ASSUMPTION 5. The log-likelihood Toot, r D, Z, for some random wvariable Z, whose
distribution has no point mass at 0. The Wald statistic t = jll,/Q(l;)(l/AJ — ) Ny for some

random variable Z.

Assumptions in §5.1
ASSUMPTION 6. The eigenvalues of the Gram matriz satisfy 0 < ain < n;(XTX) <
asn < 0o, and Y xixiy = O(n) for each j k in (1,...,p).

b= O(1), and

-----

S K" (2] 0)x} = O(n) for 0 € Ny, .
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ASSUMPTION 8. The third log-likelihood derivative lyyy(0) = Op(n), for 0 € Ny, 5.

ASSUMPTION 9. The derivative of the observed Fisher information matriz under the

(1, T) parameterization with respect to 1 satisfies ||j¢TT(9)||op = Op(n), for 0 € Ny, 5.

1.2. Assumptions in §5.2
ASSUMPTION 10. maxj—1,.. p

70,20 (0) | Op(n), for 0 € N, 5.

op:

2. Preliminary Results

LEMMA 1. Under Assumptions 1-3,

0 pl/?
TP\ 12 )
2
PRrROOF. By differentiating the score equation for the constrained maximum likelihood
estimator, [)(6y) = 0, we obtain

Oy
D =i

jAA(éw)%);Z = —jyx(0), (1)

SO

From this we have

= i@ )@ < (|l @) [n@][)™",

-Jiaa s, - o (2)

where the inequality follows from an application of Rayleigh quotient, and we have used
Assumptions 1 and 3. The final equality follows from

@), = { 32 don 0} = Oty ™)
=2

which is the sum of p — 1 elements that are uniformly Op(nl/ 2) by Assumptions 1 and 2.

ProPOSITION 1. Under Assumptions 1-4,



Supplementary Material: Modified Likelihood Root in High Dimensions 3
.. . 1 /2
=02} ) 0] =00 (B),

(1) ||7ns)
(iii) |t @) = Oom). [100508)]|, = Ontom),

= Op(pn),

(i) || d5t,50,)]5. o (0)lg, |

() @), = 0t 2n),

‘lmp w(é )H = Op(pl/Qn)a

(i) |t @), |, = s,

| £:1560)15. || = 0ot 2n).

Note that since the Frobenius norm is an upper bound for the maximum singular value, the
rates above also apply to the maximum singular values.

PROOF. i) This result is obtained as an intermediate step in the proof of Lemma 1.
i1) By Assumptions 1 and 3,

o] e i), =0 (). @

iii) By Assumptions 1 and 4, the elements of these matrices are uniformly Op(n) giving

HZM;&(%)HF - {Ié%lx,xsnﬁ(%y}m = Op(pn).

=1

i@

The same argument applies to the other matrix [y».
iv) By the chain rule and the triangle inequality we have

d — oA
. ) o
Hdwl*iﬁ(gw)‘% ‘F_ lwA,i(91E>+leAJA,X(01L)(%JL; :
= F
p—1 R
j 5 10Ny
S lw/\’A(e’LE)H + ZZA])\/\(HJJ) 8w] w~
Jj=1 7

By Proposition 3 iii),

W;;\(%)‘ e Op(pn). We now obtain the order of the second

term by considering the order of each entry. The absolute value of the (r,s) entry of the
matrix is

p—1
8>\W ~
Z 31/} ‘w ,\,\MA(Q) S‘

Jj=1

0

Oy 5 H i 15)“2 — 0,(pn'/?) < 0,(n),
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where we have used the Cauchy-Schwartz inequality, Lemma 1, and HZM A (é ‘E)HF =

Op(pl/ 2n), since it is the Euclidean norm of a vector of length p — 1 whose elements are
uniformly Op,(n) by Assumptions 1 and 4. Therefore

-1

Z )‘%7

" )\ )\)\(é ) = Op(pn)7 (3)
F

which proves the result. The proof for the other matrix is similar.

v) This follows as we are computing the Euclidean norm of a vector of length p—1 whose
entries are uniformly O,(n) by Assumptions 1 and 4.

vi) This can be proved in the same manner as Proposition 3 iv); we simply need to note
that we are now taking the Euclidean norm of a vector of length p — 1, hence the factor of
p/? instead of p.

LEMMA 2. Under Assumptions 1-/

9%\
W;ﬁ‘wzi = 0p(p'?).

2

PrRoOOF. We obtain an expression for the second derivative of the constrained maximum
likelihood estimate by differentiating (1),

d . Oy 0%y 2
{@]A/\(e )}7+JM(9¢) 902 = Lyya(0) + Lppa (Bp) - o0

o @

Substituting in the expression for the first derivative and rearranging terms we obtain

2 ~ ~ ~ ~ ~ ~ ~ ~
%;;ﬁ o = Jxa (0) [lww(%) — Ly (Bp)dxx (Bp) g () + {dijk/\(@w”éw}jfxl(gw)jw(@w)}-
Thus
2/\ ~ ~ A~ ~ ~ ~ A~ ~
%125 2| = {lxw(%){jif (%)}2%/&(%)} v [wa ){Jﬁl (Ol (05)750 (%)}2%(%)} v
2
+ (jw(%) [-7)\)\ (6, ){;;jn(éw)llz}jif(%)] 2ij(9¢)) 1/2,

= A1 + Ay + A3,

The orders of Ay, As and A3 are obtained by combining the Rayleigh quotient with As-



Supplementary Material: Modified Likelihood Root in High Dimensions 5
sumptions 1 and 3, Proposition 1, and by noting that p/n'/? = o(1).

41 < |0, |5 07 = 00" *m)0y (n71) = 0p(6172).

2.2 @), it @it @}, < o], [ @), Jrom@s]
= 0,(m'10, () 0utom = 0, (25 ) < 05",
Az = ijé H NG ){ijxx(%ﬂ }JE(A ) o ijé H H]M 0;) 2p dcfpj»\(éw)muopy

P
3/2
= 0,{(pn) /230, (n=2) Oy (pn) = O, <pl/2> = 0,(p'/?),

LEMMA 3. Under Assumptions 1-5

t:r{1+0p (n_1/2>}.

(¢ — 1o)? (Y —o)® . - }
e A LU :

= 2{lp<¢> — 1) + (= v0)a () - G) + G(9)

where ¢t = ]p ( )(1]) — 1)), and 1) lies on the line segment between 1 and . We now show
that ¢3(1)) = O,(n). By differentiating the profile log-likelihood,

AR A W o am My W
‘ e p(iﬁ)‘ = lww(%H?lww(%)@m—Jw(9 )2 e T ( |¢> lwu(%)@m :
(5)

. A O\ 92\
< |lppy (6 ’+2lew (0;) w,w +H3w H 31#; (6)
o |

+le<%>Hap‘ 7ls =00+ 0, () %) £ Oyt 40,07 ()
< Op(n), (8)

from an application of Lemma 1 and Lemma 2, as well as Proposition 1. This implies that

]%;gg) =0y (n%).
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combining this with Assumption 5, we have

1/2
r:t{1+0p<n_1/2>} )
which further implies that,

. {1 10, (n—1/2)}_1/2 - {1 +0, (n‘1/2)},

by the following inequality for square roots,
1—z/2—22/2<(1—2)?<1—2/2,

and combining the above with

{1 +0, (n—l/Q)}fl = {1 +0, <n_1/2>} .

LEMMA 4. Under Assumption 5, 1~ = Op(1).

: D . : .
PROOF. Since r — Z for some random variable Z, the continuous mapping theorem

implies that 1 L, Z' for some random variable Z’ since P(Z = 0) = 0. Prokhorov’s
theorem then implies that sequence 7! is tight and therefore bounded in probability.
3. Proof of Theorem 1 and Corollary 1

LEMMA 5. Under Assumptions 1-5,

Z H] R1H J(k+2) = 0,(1),

where
t d

bl = ——t @)
(d} on)dw )\)\( )|9 ];/2(1[]) dw )\;)\( ¢)|01/-)

ProOOF. Note that
lm@m]| <[imi@

Bl = 00, = 0, (5) . )

nl/2

by Proposition 1, noting that by Assumptions 1 and 3, jp 1/2(1p) = Op(nfl/z) and by
Assumption 5, t = O,(1). Therefore for every fixed € > 0, there exists an M such that for
all n > ng

p(zon], < 2221 o

Therefore with probability greater than 1 — e,

I ECL MR Wt e 4
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By assumption p/n'/?

1/2 and

— 0, so that there exists an nq such that for all n > nq, M]D/nl/2 <

> rralan) <2

which implies that for arbitrary € > 0, there exists an n’ = max(ng,ny) such that for all

n>n
(ZH] RlH k+2)§2>21—e.

LEMMA 6. Under Assumptions 1-5,
3/2 .3
A P2 p?
log(|I + jyy (0)R1]) = O, {max <n1/2’ - ) } )
PROOF. We express log(| + j, L(0)R1|) as a trace,

e ) k
log(|1 +jxy (O)Bul) = Trllog{] + 3\ (D) Ru}] = Tr [Q 1>’“+1{‘7”(?Rl}}

o0 i\ po 1k
Trljyy (0)Ry] + Tr [Z( 1)k+1W]’

k=2

(11)

where the first equality follows from |A|] = exp(Tr[log A]) and the second equality from
log(I + A) = >3 (—=1)**1A*/k. This expansion is valid if the maximum singular value
of the matrix A is less than 1. Under our assumption that p = o(n'/?), and by (14) we

have that the maximal singular value of j;/\l(é)Rl is 0p(1), so the expansion is valid with
probability tending to 1.
We first examine the order of

t d
. B ]A)\( ) )\)\( dz)’é- )
s (4) O /
<t liv@ ~0, < 3/2) (13)

"R " v
by Proposition 1 and noting that by Assumptions 1 and 3, j, 1/2(1/)) = Op(n_l/Q) and by

Assumption 5, t = O,(1).
We now examine the magnitude of the second term in (11),

i ()R] <

d R
s (Op)lg,

)F @)\;)\

Tr[i(_ NEERE/S (i)Rﬂk} ki e U (Z)Rﬁ’“ |

op

<r3 || e
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by using the maximum singular value to bound the trace using von Neumann’s inequality

and the triangle inequality. X
The maximum singular value of j, L(0) R, satisfies

i om],, =0 (i)

by (9) in the proof of Lemma 5. Note that

pz HJ»‘ é Ry

/k pHJ»‘ Rl

k
S fton] koo

-10,(Z) 0,0 -0,(%).

by equation (14) and by Lemma 5. The result follows by combining (11), (13) and (1

(14)

(15)

(16)

6).

COROLLARY 1. Under a p-fized regime, Assumptions 1, 3—5 and the further assumption

Hdl/\;;\(éw)/deHz = op(n), for 0 in a neighbourhood of 6y

Tnp — 1log,o =r! log (|1 + 74 (é)R1|) =0y (n_1/2) .

PrROOF. We note that in the p-fixed regime Assumption 2 is always satisfied by using

an orthogonal parametrization at 6.

, = {Gn () R1}¥
log (|1 + jxx (0)Ri]) = [Z k+1%}
k=1

IRillop Y [7520)
r k=0

and by Assumption 3 and the additional assumption stated in Corollary 1,

<p|in®

| @) =05,
[ Rall,, = l/T() dwl)\ 4 w)\% o op(n’/*).

Finally

S [
k=0

k
IR |I%, /(% + 1) = Op(1),
op

k k
[ R1llg, /(K + 1),
op

by the argument used in the proof of Lemma 5. Combining the above with Lemma 4 we

have,
rMog (I + 5 (0) Ra ) = o (n712)



Supplementary Material: Modified Likelihood Root in High Dimensions 9

4. Proof of Theorem 2 and Corollary 2

LEMMA 7. Under Assumptions 1-5,

1 22 0A P
R 2 : T/JJ H O
2 . n ‘ .7/\31/)(0) I
]p(w) s P p <n1/2)

t N i W N W
Ry = —7—|l .A(9~)+27’J| l>\ (9)“‘2
2j§/2(7/)){ww7¢ v =1 g W j=1 oy
—1p-—1
a/\w] 8)\¢Z A P
ZZ |’¢1 Aj )\,w(eqzj)] :Op (n1/2>a
i=1 j=1

Proor. We begin with Ro,

1 2 oa . 1
|Ro| = )Z w’J\WAJw(e)s

jp(@z) = ]p(&)
:op(n—l)op(iii) Op{(np)'/?} = O( 1/2)

by Proposition 1 and Lemma 1. Now for R3

t N ! 82)\1;,7] A — 85‘111,]
|R3| = M{%ﬂ,,ﬁ@) ]z; )2 | ]ﬂ/J(e) ; oY
R0y, Oy j
Z;Z; w’]w 15 o0 )}‘
1 J
1 et ‘M’
M{”W;&(%”* G2 i @),
2
O A
+ w|w H I (05 )HF}’
pl/2

=0, (n—f””) {00(m) + 0,00, 0"/%n) + 0, (555
2

~0,() <0, 2) < 0u(2) £ 0u( ) =0 52)

by Lemma 1 and 2, Proposition 1 and the fact that p/n'/2 = o(1).

1/2

THEOREM 2. Under Assumptions 1-5, i, 5 = Op(p/nl/z).

7j
|¢ Aj ww(

¢ lww(

Q>>

)0u(p ) + 0, (L5

0;

1/2
1/2

(17)
;)

(18)
) Op(p”)}a
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PRrROOF. Recall the definition of r;,¢ in Equation (6) of the main text

L5(0s) ~ 150) b0 {300 {13 00) — 130) |
g W) g W)

say.

Order of C: By a second order Taylor expansion,

C= {T‘Jéﬂ(d})}_ [jl/zt(w)ww 0) + 1/2 Z a)\w’]l a0 (0) (19)
%t?w){ . Z 31/,27] [ 1,00 me‘w Ly (0) (20)

ZZ %’J\wmwrw b)) (21)
_ t {;pw w?%;;@m(é) ), (22)
_ f« {14 m(é)j;%(f))m(@) AN (23)
:{1+op (n—1/2 }{1+0p (%)}:Hop (ﬁ) (24)

where (22) uses jp(q/;) = j¢¢(é) —jw(é)j;\l(é)jw(é). The final rate on line (24) is obtained
by Lemmas 3 and 7, and by noting that the ratio

G (03 (0)dxp(0) 11—y, 4
RO L

i) =0, (L), (25)

9)
o 20 .

using Rayleigh’s quotient on the numerator and Assumptions 1-3.

Order of D:

DL < {32 1} (s o) 3 B, [140) ~ 1560
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We first expand

. . ~1
- l)\;q/}(elﬂo){l)\;j\(el/fo)}
. A d 5 1,4 o~ 5 1
= ~{h(0) + o = D) g 5B, Fim O T+ Wo =) 51300l IO
. . -1
= —{j)ﬂ/)(e) + R4}j;)}(9){f + R5} ,
= 1w (0) + Ry pi (031 + > (—1)F'RE
Ixp 4 ¢ I 5 ("
k=1
The final equality above uses (I —A)~* = 3°7° | A¥. Under our assumption that p = o(n'/2)
and (26), we have that the maximal singular value of R5 is 0p(1), so expansion is valid with
probability tending to 1. Recalling that the Euclidean norm and maximum singular value of

a vector coincide and using the sub-additivity of the induced matrix norm and the triangle
inequality we obtain

0 0u) T3 @)y 7|, = [ O3 0™

op

<{|e®|, + 1R, } |55 0)

{1 IRl S DM RS,
k=0

Rates of growth can be obtained for the maximum singular values for the above matrices
by using the Frobenius norm as an upper bound for the maximum singular value,

x|, = 0ptrp) 2},
< N4y G| o 1/2
| Rally < ,1/2(1&) v )\;qp( 1/1)|917) = Op{(np) /" },
Jp F
t] d j —1/h p
< — 1, s 5 = — 2
851l < 25 | apaa @l | @), =0 (-15) (26)

by Proposition 1 and Assumptions 1, 3, and 5. Finally,

(e 9]

Y (DR Rs |5, = Op(1),
k=0

by the same arguments as in Lemma 5. Combining the above, we obtain
. S pl/2 p3/2
[tns Ou) {3 Bs )y = Op{ max (B, ) ). (27)
Now consider
B
2 ()
= [t|0p{(np)"/?}.

[1500) — 150)

d A
—I < 6 5
‘dw ,)\( w)‘ow )
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We combine this with (27) to get

TP} o) s Gy 1560 1,0
" 1/2

32010, max (2. 22=) 0,72} = 0, max (2. 2)} = 0, (-25)

by Lemmas 1 and 3 and noting that jp 1/2(1[1) = Op(n_l/Q) under Assumptions 1 and 3.
Therefore we may express 7, as

rmf:%bg{1+0 ( ?/2>}:Op<%>,

using Lemma 4 and log{1 + O,(p/n'/?)} = O,(p/n'/?), as 2/(1 + z) < log(1 + z) < =.

i

COROLLARY 2. Under a p-fized regime and Assumptions 1, 5-5, and if L, +(0) = op(n)

i a neighbourhood of 6,
1 t
Tinf — flog (T> Op (n_l/Q) .

PRrROOF. We note that Assumption 2 is always satisfied in the p-fixed regime, as we may
without loss of generality assume that the parametrization is orthogonal at 6y. We use the
same decomposition of r;,; as given in Theorem 2.

1 1
Ting = —log(C) + —log(D).
r r
First,

1

~log(C) = ~log ~ + —log (1+JW( i (0)ix (9)
T r r r

Jp(@z))

the first term is the leading term, we now bound the second term. Using the Rayleigh
quotient and Assumptions 1 to 3

]zp/\(é)h)\ (?)]Aw(é) _
Jp(@b)

+R2+R3>;

As for Rs,

1 ) - _
Z wj‘wjz\ﬂbe) Op (n7),

by Assumptions 1 and 2 and noting that in the p-fixed case, the derivative of the constrained
maximum likelihood estimator is Op(nfl/ 2) under the orthogonal paramterization, as follows
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from Lemma 1 with p fixed. We examine the components of Rs:

R3:7.3/t2 n [ ¢¢¢ +Za;)‘1/;,3 |¢ A ¢(é )
2]p (¢) (a) L g
(b)
— 1p—1
20y, - aAW axw .
Sy 505 i 0) + 22 D2 551575515 i B) |
Jj=1 =1 j=1

(c)

By the assumption in the statement (a) = o,(n). That (c) = O,(n'/?) follows by noting
that the derivative of the constrained maximum likelihood estimator is Op(nfl/ 2) combined
with Assumptions 1 and 4 since,

S / SL S / / /
c) = nfl 2 n nfl 2 nfl 2 n) = nl 2 .
(¢) ;%( )%U+;;PA ) 0p (n™Y/2) Oy(n) = Op(n!1?)

Finally for (b),

2 0%y, A A
> Turtle [1:905) — 150} +ru(@)] = Op(n?), (28)

J=1

using Lemma 2, Assumption 1, noting that the second derivative of the constrained maxi-
mum likelihood estimate is Op(1) in a p-fixed asymptotic regime, and noting that

L05) — Lo 0) =1y 5 0)(0; — 8) = O,(n"?), (29)

for some 0’ lying on a line segment between 6 and 6 - by a first-order Taylor expansion.
Result (29) follows from [, . 12)(0’ ) = Op(n) by Assumptions 1 and 4 and the fact that

(% —6) = 0,(n~'/?) in p-fixed asymptotic regime. Therefore,

1 jw(é)] (é)JAw(é) _ -1/
Pl (LR R ) = (7).
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We now show that 7~!log(D) = O,(n~1), which completes the proof.

D= \{ 20} 1) 0y {1500) - wé)}‘,

= {a o}

-1 R

. 8>\
i O {3 )}~ (00 = )1 +le e

)

o]

P A
O

R / 2]

2 Z;lA“’\(e) o

IN

NG INFCARTON ) Sl I [T R  (WNCD
=0p (”_1) ,

where 6’ lies on the line segment between éwo and . Noting that (¢ — ) = 0,(n=1/2),
that lw_j\(ﬂ’) = Op(n'/?) by the same argument as for C, and that

8)\
Z l}\“/\ 7/’7]

J=1

o4

2

P = Op(n1/2)7

with (27) shows D = Op,(n™1).

5. Proof of Proposition 1

LEMMA 8. Under the orthogonal parameterization of a linear exponential family, and

Assumptions 1, 5-9,
t= r{1+0p (n_l/Q)},

JW)(@ ) =0p (n_l),

and

Proor. We first show that

We begin by considering the information matrix under the canonical parameterization for
generalized linear models, which can be written as

in() = X DX,

where D is a diagonal matrix with ith entry K" (miTH), and X is the design matrix with
the column of covariates associated with v removed. Then

< max K”( T4 )HXIXA

i=1,...,n

= Op(n),

HJNAA(%) "
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by Assumptions 1, 6 and 7, and noting the relationship between the observed information
functions under the two parameterizations,

e (1, %)

=0p (”71) ;

1 ~ 4
= — 1|7 A
n2 HJ,\AWJ; qp) op

op

gives us the desired result. .
We now show that j;qi (0) = Op(n~1). Since jd}w(G) = j, 1(0), it is sufficient to show that

the eigenvalues of 71(f) are O,(n~") since Jp 1(9) is an element on the diagonal of j=1(4).
By positive definiteness of the observed Fisher information matrix,

< np{J0)} < max {K"(x5)1 n (X(XN) =0, (n7Y),
~ 1 ) 1 1

=1,...,

op

by Assumptions 1 and 7.
Lastly,

t:r{l-l-Op (n*l/Q)}, (30)
follows as in the orthogonal parameterization of the linear exponential family
19 () = jypu(b) = Op(n),
by Assumption 8. We can then use the same argument as in Lemma 3 to show (30).

PROOF OF PROPOSITION 1. Under Assumptions 1 and 5-9, for the linear exponential

model,
Tnp = Op (#) y Ting = Op (n_1/2> :

PROOF.

_ L @) )
Tnp = 7“1 g{‘j)\)\(0¢0)|1/2} (TZ) Q;Z)O)’Yl(w) : /

and by Neumann’s inequality we have

1) = Tl O 0] <03 0p)] |[furr (7)) = 205 (n7") Op(m) = 0,0,

by Lemma 8 and Assumptions 1 and 9. Combining this with Assumption 5 we obtain

Tnp = Op (ﬁ) .

As for 74, ¢, note that jp(121) (é)

Fing =+ log [{7“.71/2( N~ o] = g (1),

therefore by Lemma 8, 7,5 = Op(nfl/z).
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6. Proof of Proposition 2

LEMMA 9. Under Assumptions 1-5 and 10,

—in(0;)]| = 0p(n), (31)
Hd(/J ¢ op
PrROOF. The maximum singular value of
-1
L = ;) 6
Hd@ﬁ]M( ) . JFan( +Z ddf Lixa(0p)|
op
. A . A d)\qj)j
< sz,\A(%)H 1, e 1HJ,\j,\A(9¢3 Z
. - dA
< |junn @) +p2 i@ [[52
< [Jwan( w) op p = ffla?; L7 a( ) op || 4

= Op(n) + Op(pn1/2) < Op(n),

where the last inequality follows from »7_, [a;| < {3°4_; a?}l/ 2. The result is obtained by
using Lemma 1 and Assumptions 1 and 10.

LEMMA 10. Under Assumptions 1-5 and 10,
c= {150, ()},
G1(¢0)

= - 1/2(@{@@) AICET

~dfre =)

PROOF.

G3 (¢)

(6 — o)},

for some 1 lying on the line segment between w and . The result follows by using proof
of Lemma 3 to show that x3(¢)) = O,(n=/2).

PROOF OF PROPOSITION 2. Under Assumptions 1-5 and 10, for a location-scale model,

Ting = Op (n_l/Q), Tnp = Op(ﬁ)

Proor. By Lemmas 3 and 10,

= r{l + 0, (n_1/2)},
which implies that

= b (3) =10, ()} =0, (7).
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As for 7y, the proof is similar to that of Proposition 1, although more terms are obtained
from the differentiation of the constrained maximum likelihood estimate:

_}log{ |j/\)\(é)‘1/2 }

1
r lian(0,) 172 r

= 2*(1/3 — o) (),

Tnp =

where ~1(v) is now,

op

by Lemma 9. Combining this with Assumptions 3 and 5 shows that r,, = O,(p/n'/?).
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