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Simplex regression models with measurement error
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ABSTRACT
This paper considers the simplex regression model when there is
measurement error in the covariate. We consider a structural
approach where the measurement error follows a normal or gamma
distribution. We apply a Monte Carlo EM algorithm to estimate the
parameters using a pseudo-likelihood function. A simulation study is
used to investigate the impact of ignoring the measurement error.
Finally, the results are illustrated with a data set.
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1. Introduction

Book-length treatments of measurement error and statistical analysis are given in, for
instance, Fuller (1987), Carroll et al. (2006) and Buonaccorsi (2010), among others.
Causes of measurement error include instrument imprecision, incomplete data and mis-
classification. The impact of ignoring measurement error varies from problem to problem,
and can sometimes be negligible and sometimes drastic. Measurement error models are
rapidly gaining importance in many fields, essentially in medical, health and epidemio-
logical studies. Medical variables, such as blood pressure, pulse rate, temperature, and blood
chemistries, are measured with non-negligible error; variables in agricultural studies such as
precipitation, soil nitrogen content, degree of pest infestation, farm crop acreage allocation,
and the like cannot be measured precisely. In management sciences, social sciences, and
many others fields some variables can only be measured with error.
If measurement error is ignored, parameter estimates and confidence intervals may

suffer serious biases. In addition, measurement error may cause a loss of power for
detecting evidence and connections among variables and may mask important features
of the data. A number of approaches for analysis of measurement error models have
been proposed: for example, correction of moments (Fuller 1987), simulation extrapola-
tion (Cook and Stefanski 1994), regression calibration (Carroll and Stefanski 1990),
Bayesian analyses (Gustafson 2004) and inference via maximum pseudo-likelihood
(Guolo 2011). Midthune et al. (2016) approached measurement error models using
interactions between unobserved and error-free variables. Cheng et al. (2016) studied a
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method for checking the goodness of fit of the restricted measurement error model and
Carrasco et al. (2014) proposed an errors-in-variables beta regression model. The
authors assumed a structural additive measurement error model that relates the unob-
servable covariate with its surrogate, and postulated a normal distribution for the unob-
servable covariate and the error term.
For proportional data, where the response variable is confined to the interval (0,1),

ignoring this may result in misleading conclusions. A review of models for proportional
data is given in Kieschnick and McCullough (2003) and they suggest beta or simplex
distributions for proportion data. The simplex distribution (Barndorff-Nielsen and
Jørgensen 1991), denoted S�ðl; r2Þ has density function

p y; l; r2
� � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pr2 y 1�yð Þ� �3q exp � 1
2r2

d y; lð Þ
� �

; (1)

where EðYÞ ¼ l 2 ð0; 1Þ is the mean parameter, r2 > 0 is the dispersion parameter,
dðy; lÞ is the deviance,

d y;lð Þ ¼
y�lð Þ2

y 1� yð Þl2 1�lð Þ2 ;

and the variance function is �ðlÞ ¼ l3ð1�lÞ3: The simplex distribution is more flexible
than the beta distribution, and can accommodate large left and right skewness. Figure 1
displays some possible shapes of the density function (1) which cannot be captured by
the beta density.
Assume we have n independent observations yi; i ¼ 1; 2; :::; n from a simplex distribu-

tion with parameters ðli; r2i Þ: The simplex regression model is defined by (1) with
gðliÞ ¼ z>i a and hðr2i Þ ¼ v>i d; where zi and vi; of dimension 1� p1 and 1� p2; respect-
ively, are covariates. We assume a 2 R

p1 and d 2 R
p2 ; p1 þ p2 < n; and gð�Þ and hð�Þ are

known monotonic link functions. The simplex regression model is used in Qiu et al.
(2008), Song et al. (2004) and in Zhang and Wei (2008). An R (R Core Team 2018) a
package simplexreg (Zhang et al. 2016) is available.
We approach the regression model for the simplex distribution under the structural

model for errors in variables: we assume a probability distribution for the mismeasure-
ment covariable. We consider both normal and gamma distributions for the error. We
discuss the Monte Carlo EM algorithm (Wei and Tanner 1990) to find a maximum
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Figure 1. The simplex density function.
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pseudo-likelihood estimate, as in Guolo (2011), Carrasco et al. (2014) and Skrondal and
Kuha (2012). These last author also showed which the calibration regression estimators
are little biased, so we does not used this method to find estimates.
This paper is organized as follows, Sec. 2 introduces the measurement error model

based on the simplex distribution and in Sec. 3 we describe inference methodology for
the structural errors-in-variables model in which the covariate x can be observed only
via a proxy w. Results for the normal and gamma model for x are presented in Sec. 4.
A simulation study is presented in Sec. 5 and the model is illustrated on a real data set
in Sec. 6. Several conclusions are presented in Sec. 7.

2. Simplex error-in-variables regression models

In practice, some explanatory variables may not be directly observed and could be
obtained with errors. We extend the simplex regression model of the introduction by

g lið Þ ¼ z>i aþ x>i b; h r2i
� � ¼ v>i dþm>

i c; (2)

where xi 2 R
q1 and mi 2 R

q2 are unobserved latent covariates and b 2 R
q1 and c 2 R

q2

are the unknown regression coefficients.
The structural model assumes a probability distribution for the unobserved covariates.

Let wi ¼ ðw1i; :::;wq1iÞ> and xi ¼ ðx1i; :::; xq1iÞ> be the observed and unobserved varia-
bles, respectively. The additive measurement error model is

wi ¼ s0 þ s1 � xi þ ei; i ¼ 1; :::; n; (3)

where ei is the vector of random errors, � is the Hadamard product, and s0 and s1 are
unknown parameters, called additive and multiplicative bias respectively, in Carrasco
et al. (2014). If s0 ¼ 0 and s1 ¼ 1; (3) is the classical structural model, wi ¼ xi þ ei:
The multiplicative error structural model is

wi ¼ xi � ei; i ¼ 1; :::; n; (4)

which is a classical additive error model after a logarithm transformation. Eckert et al.
(1997) consider a general transformed additive error model, i.e. pðwiÞ ¼ pðxiÞ þ ei;
where pð�Þ is a monotone transformation function.
An approach we do not consider is the Berkson error structural models (Berkson

1950), where xi ¼ wi þ ei; see for example, (Kerber et al. 1993; Rudemo et al. 1989). In
all these models ei is assumed to have independent components and to be independent
of the true covariate xi: The vector ei is also assumed to be independent of any other
covariates zi and of the response variable yi. This implies a non-differential measure-
ment error model, meaning that yi and wi are conditionally independent given zi
and xi:

3. Statistical inference

Suppose a random sample, ðy1;w1Þ; :::; ðyn;wnÞ; of size n is observed. We omit the vec-
tor of variables zi from the notation as they are known and fixed. The joint density of
ðyi;wiÞ; observed for the i-th individual, is obtained by integrating the joint density of
the complete data ðyi;wi; xiÞ; f ðyi;wi; xi; hÞ ¼ f ðyijwi; xi; h1Þf ðwijxi; h2Þf ðxi; h3Þ; with
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respect to xi; where the complete parameter vector h ¼ ðh1; h2; h3Þ>: Following Clayton
(1992) the function f ðyi;wi; xi; hÞ can be view as one function with three parts: (i) an
outcome function f ðyijwi; xi; h1Þ; (ii) a measurement function f ðwijxi; h2Þ and (iii) an
exposure function f ðxi; h3Þ: The logarithm of the likelihood function for the sample of
n observations is

‘ hð Þ ¼
Xn
i¼1

log
ð
v

f yijxi; h1
� �

f wijxi; h2ð Þf xi; h3ð Þdxi; (5)

where f ðyijxi; h1Þ will be the simplex distribution defined in (1), f ðwijxi; h2Þ is the con-
ditional distribution of wi given xi and f ðxi; h3Þ is the marginal density of xi:
Usually, the likelihood function in (5) is analytically intractable and it is necessary to

use approximations to the integral, for example, Monte Carlo, Gaussian quadrature, sto-
chastic approximation algorithm, etc.
We use the maximum pseudo-likelihood technique, as simulation studies in Carrasco

et al. (2014), Skrondal and Kuha (2012) and Guolo (2011) showed that the maximum
pseudo-likelihood estimation method provides good asymptotic properties for the esti-
mators. Moreover, the maximum pseudo-likelihood estimate is less computationally
intensive. Let h1 be the vector of parameters of interest and h23 ¼ ðh2; h3Þ the vector of
nuisance parameters, with h ¼ ðh1; h23Þ: The maximum pseudo-likelihood estimation
method replaces the vector of nuisance parameters with a consistent estimate in the ori-
ginal likelihood function, thereby generating a pseudo-likelihood function. Then, esti-
mates of the parameters of interest are obtained by using a reliable method such as
maximum likelihood (Carrasco et al. 2014; Gong and Samaniego 1981; Guolo 2011;
Skrondal and Kuha 2012).
Following Guolo (2011) and Skrondal and Kuha (2012), we estimate the nuisance

parameters h23 by maximizing

‘r h23ð Þ ¼
Xn
i¼1

log
ð
v

f wijxi; h2ð Þf xi; h3ð Þdxi ¼
Xn
i¼1

log f wi; h23ð Þ; (6)

the reduced log-likelihood function. The estimator ĥ23 that maximizes ‘rðh23Þ can be
obtained easily using some standard software. The estimate is consistent for n ! 1
under mild regularity conditions (Gourieroux and Monfort 1995a). Moreover, the esti-

mator ĥ23 is asymptotically distributed as a multivariate normal distribution with h23

mean and covariance matrix R�1
ð23;23Þ ¼ E�1½�@‘2r ðh23Þ=@h2@h>3 �: The second step con-

sists in inserting the estimate ĥ23 ¼ ðĥ2; ĥ3Þ> obtained in (6) into the log-likelihood
function (5)

‘p h1ð Þ ¼
Xn
i¼1

log
ð
v

f yijxi; h1
� �

f wijxi; ĥ2
	 


f xi; ĥ3
� �

dxi: (7)

The estimator of h1; ĥ1; that maximizes ‘pðh1Þ is consistent and asymptotically nor-
mally distributed (Gong and Samaniego 1981; Gourieroux and Monfort 1995b; Parke

1986). Let UðhÞ ¼ @‘ðhÞ=@h be the score function, partitioned as UðhÞ ¼
ðUh1ðhÞ>;Uh23ðhÞ>Þ>; and define the mean score �U ðhÞ ¼ n�1UðhÞ: Let the true param-

eter value h� ¼ ðh�>1 ; h�>23 Þ>: The Fisher information matrix is
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I h�ð Þ ¼ lim
n!1Eh� � @ �U hð Þ

@h>

����
h¼h�

" #
¼ I 1;1ð Þ h�ð Þ I 1;23ð Þ h�ð Þ

I 23;1ð Þ h�ð Þ I 23;23ð Þ h�ð Þ

" #
;

with partitions corresponding to h1 and h23: It is further assumed that

ffiffiffi
n

p �U h1 h�1; h
�
23

� �
ĥ23�h�23
	 


2
4

3
5! N 0;

I 1;1ð Þ R 1;23ð Þ
R 23;1ð Þ R 23;23ð Þ

� � �
:

It follow that, the distribution of
ffiffiffi
n

p ðĥ1�h�1Þ is normal with mean zero and variance
matrix R ¼ I�1

ð1;1Þ þ I�1
ð1;1ÞI

>
ð23;1ÞR

�1
ð23;23ÞIð23;1ÞI

�1
ð1;1Þ; where I�1

ð1;1Þ is the asymptotic covariance
matrix of ĥ1 when h23 is known. The matrix Ið23;1Þ can be estimated by

I 23;1ð Þ ¼ n�1
Xn
i¼1

Uh23;i ĥ
� �

Uh1;i ĥ
� �>

;

where Uh23;iðĥÞ and Uh1;iðĥÞ are the gradients of the reduced and pseudo log-likelihood
function for subject i, evaluated at the parameter estimates, respectively. An estimate of
R�1
ð23;23Þ can be obtained from the hessian of ‘rðh23Þ: For the estimation of h1 in (7) we

use the Monte Carlo EM algorithm as in Booth and Hobert (1999) and Guolo (2011).
As Guolo (2011), we propose an EM-type algorithm by defining the Monte Carlo

estimate, in which

Q̂p h1jh rð Þ
1

	 

¼ M�1

XM
m¼1

Xn
i¼1

j rð Þ
mi log f yijwi; x

� rð Þ
mi ; h1

	 

;

where x�ðrÞ1i ; :::; x�ðrÞMi are M random samples from f ðxijyi;wi; h
ðrÞ
1 ; ĥ23Þ and h

ðrÞ
1 denotes

the value of h from the rth iteration. The specification of f ðxijyi;wi; h
ðrÞ
1 ; ĥ23Þ is usually

difficult or even impractical in measurement error problems. Guolo (2011) proposed
importance sampling, where random samples x�m;m ¼ 1; :::;M are generated from the
importance density f ðxi; �Þ or f ðxijwi; �Þ; assumed known. Then the weight for the ith
observation is

j rð Þ
mi ¼

f x� rð Þ
mi jyi;wi; h

rð Þ
1

	 

f x� rð Þ

mi ; h
rð Þ
1

	 
 ;

¼
f yijwi; x

� rð Þ
mi ; h

rð Þ
1

	 

f wijx� rð Þ

mi ; h
rð Þ
1

	 

Ð
f yijwi; x

� rð Þ
mi ; h

rð Þ
1

	 

f wijx� rð Þ

mi ; h
rð Þ
1

	 

f x� rð Þ

mi ; h
rð Þ
1

	 

dx� rð Þ

mi

;

�
f yijwi; x

� rð Þ
mi ; h

rð Þ
1

	 

M�1

PM
m¼1 f yijwi; x

� rð Þ
mi ; h

rð Þ
1

	 
 :
To simplify the description of the M-step, in the simplex regression model with

measurement error, we assume that mi ¼ xi in (2). We need to maximize

Q̂p h1jh rð Þ
1

	 

¼ M�1

XM
m¼1

Xn
i¼1

j rð Þ
mi‘i l rð Þ

i ; r2 rð Þ
i

	 

; (8)
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where

‘i l rð Þ
i ; r2 rð Þ

i

	 

¼ � 1

2
log 2pð Þ� 1

2
log r2 rð Þ

i

	 

� 3
2
log yi 1�yið Þð Þ� 1

2r2 rð Þ
i

d yi; l
rð Þ
i

	 

;

with dðyi; lðrÞi Þ as defined in (1), lðrÞi ¼ g�1ðz>i aþ x>�ðrÞ
mi bÞ and r2ðrÞi ¼ h�1ðv>i dþ

x>�ðrÞ
mi cÞ: We can obtain the score vector for the parameters of interest from
Q̂pðh1jhðrÞ1 Þ : for j ¼ 1; :::; p1 and j0 ¼ 1; :::; q1;

Uaj h1ð Þ ¼
@Q̂p h1jh rð Þ

1

	 

@aj

¼ M�1

r2
Xn
i¼1

XM
m¼1

j rð Þ
miu

rð Þ
i

1

g0 l rð Þ
i

	 
 zij;

Ubj0 h1ð Þ ¼
@Q̂p h1jh rð Þ

1

	 

@bj0

¼ M�1

r2
Xn
i¼1

XM
m¼1

j rð Þ
miu

rð Þ
i

1

g0 l rð Þ
i

	 
 x� rð Þ
m;ið Þj0 ;

where uðrÞi ¼ �d0ðyi; lðrÞi Þ=2; d0ðyi; lðrÞi Þ ¼ @dðyi; liÞ=@li with

d0 yi; l
rð Þ
i

	 

¼ �

2 yi�l rð Þ
i

	 

yi 1� yið Þl2 rð Þ

i 1� l2 rð Þ
i

	 
 1þ
yi�l rð Þ

i

	 

1�2l2 rð Þ

i

	 

l rð Þ
i 1� l2 rð Þ

i

	 

0
B@

1
CA:

For t ¼ 1; :::; p2 and t0 ¼ 1; :::; q2;

Udt h1ð Þ ¼
@Q̂p h1jh rð Þ

1

	 

@dj

¼ 1
M

Xn
i¼1

XM
m¼1

�
j rð Þ

m;ið Þ
2r2 rð Þ

i

1�
d yi; l

rð Þ
i

	 

r2 rð Þ
i

0
@

1
A 1

h0 r2 rð Þ
i

	 
 !
vit;

Uct0 h1ð Þ ¼
@Q̂p h1jh rð Þ

1

	 

@cj0

¼ 1
M

Xn
i¼1

XM
m¼1

�
j rð Þ

m;ið Þ
2r2 rð Þ

i

1�
d yi; l

rð Þ
i

	 

r2 rð Þ
i

0
@

1
A 1

h0 r2 rð Þ
i

	 
 !
x� rð Þ

m;ið Þt0:

Solving simultaneously the equations Uaðh1Þ ¼ 0;Ubðh1Þ ¼ 0 and Urðh1Þ ¼ 0 we obtain
the pseudo-maximum likelihood estimator for a; b and r: If r21 ¼ ::: ¼ r2n ¼ r2; then

Ur h1ð Þ ¼
@Q̂p h1jh rð Þ

1

	 

@r2

¼ 1
M

Xn
i¼1

XM
m¼1

�j rð Þ
mi

2r2
1�

d yi; l
rð Þ
i

	 

r2

 !
:

An estimator of the dispersion parameter is

r̂2 ¼
PM

m¼1

Pn
i¼1 j

rð Þ
mid yi; l̂

rð Þ
i

	 

M
PM

m¼1 j
rð Þ
mi

:

The variance - covariance matrix R defined in Sec. 3 is calculated using the approach
of Louis (1982). The matrix Ið1;1Þ can be estimated using the expressions

I11;1ð Þ ¼ � @2

@h1@h
>
1

Q h1jĥ1
	 


;

¼ � 1
M

Xn
i¼1

XM
m¼1

j�mi
@2

@h1@h
>
1

‘p h1; yi;wi; x
�
mi; ĥ23

	 

;
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I21;1ð Þ ¼
Xn
i¼1

1
M

XM
m¼1

j�mi
@

@h1
‘p h1; yi;wi; x

�
mi; ĥ23

	 
���
h1¼ĥ1

( )

� 1
M

XM
m¼1

j�mi
@

@h1
‘p h1; yi;wi; x

�
mi; ĥ23

	 
���
h1¼ĥ1

( )>
;

I31;1ð Þ ¼� 1
M

Xn
i¼1

XM
m¼1

j�mi
@

@h1
‘p h1; yi;wi; x

�
mi; ĥ23

	 
� �

� @

@h1
‘p h1; yi;wi; x

�
mi; ĥ23

	 
� �>�����
h1¼ĥ1

;

where x�mi and j�mi are the random importance sample and importance weight of the
Monte Carlo EM algorithm for the ith subject when the algorithm has converged. The
matrix Ið23;1Þ ¼ Ið1;23Þ can be approximated similarly. We used the Package numDeriv1

in R software to calculate the first and second partial derivatives.

4. Normal and gamma measurement error models

In this section, we consider normal and gamma distributions for a single covariate
measured with error. We assume f ðei; �Þ known to avoid nonidentifiability problems.

4.1. Normal measurement error models

This additive measurement error model, wi ¼ xi þ ei with ei 	Nð0; r2eÞ; follows the
hierarchical specification

yijzi;wi; xi 	 S� li; r
2
i

� �
;

wijxi 	 N xi; r
2
e

� �
;

xi 	 N lx; r
2
x

� �
;

(9)

where gðliÞ and hðr2i Þ are defined above. The reduced log-likelihood function (6) is

‘r h23ð Þ ¼
Xn
i¼1

log f wijxi; r2e
� �

f xi; lx; r
2
x

� �
;

¼ � n
2
log 2p r2x þ r2e

� �� �� 1
2 r2x þ r2e
� �Xn

i¼1

wi�lxð Þ2;

where h23 ¼ ðh2; h3Þ>; with h2 ¼ r2e and h3 ¼ ðlx; r2xÞ>; r2e is assumed known, or esti-
mated from supplementary information, such as replicate measurements or partial
observation of the error-free covariate (Carroll et al. 2006). The maximum likelihood
estimate ĥ3 of the nuisance parameters solves @‘rðh23Þ=@lx ¼ 0 and @‘rðh23Þ=@r2x ¼ 0:
Thereby, l̂x ¼ �w and r̂2

x ¼ n�1Pn
i¼1 ðwi��wÞ2�r̂2

e with �w ¼ n�1Pn
i¼1 wi: We substitute

ĥ3 into the log-likelihood function (5), giving the pseudo-log-likelihood function (7)

1https://cran.r-project.org/web/packages/numDeriv/index.html
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that depends on the parameters of interest only. We use the Monte Carlo EM algo-
rithm, described in (3), to estimate h1:

4.2. Gamma measurement error models

We consider using a gamma distribution for the true covariate, appropriate for example
for skewed data on R

þ: Following Sen et al. (2014), we defined a simplex regression
model with gamma distribution for a single exposure variable. We suppose the follow-
ing hierarchical specification

yijzi;wi; xi 	 S� li;r
2
i

� �
;

wijxi 	 Ga xi;/eð Þ;
xi 	 Ga lx;/xð Þ;

(10)

where Ga(a, b) represents a gamma distribution with mean a> 0 and coefficient of vari-
ation b> 0. If b ! 1; them the random variable y follows a normal distribution. To
obtain the model (10), we assumed that ei 	indGað1;/eÞ in (4). The joint distribution
f ðwi; xi; h23Þ ¼ f ðwijxi; h2Þf ðxi; h3Þ is

f wi; xi; h23ð Þ ¼ //e
e

C /eð ÞC /xð Þ
/x

lx

� �/x

x/x�/e�1
i w/e�1

i

� exp �/e
wi

xi
�/x

lx
xi

� �
;

(11)

where Cð�Þ is the gamma function, h23 ¼ ðh2; h3Þ>; with h2 ¼ /e and h3 ¼ ðlx;/xÞ>:
The marginal distribution is

f wi; h23ð Þ ¼
ð1
0
f wi; xi; h23ð Þdxi ¼

ð1
0
f wijxi; h2ð Þf xi; h3ð Þdxi:

Using the transformation ti ¼ /xxi=lx and assuming d ¼ /e/x=lx;

f wi; h23ð Þ ¼ /x/e

lx

� �/e 1
C /xð ÞC /eð Þw

/e�1
i

ð1
0
t/x�/e�1
i exp �ti� dwi

tt

� �
dti;

¼ 2
C /eð ÞC /xð Þ

/x/e

lx

� �1
2 /xþ/eð Þ

w
1
2 /xþ/eð Þ�1
i

� K/x�/e
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/x/e

lx
wi

s0
@

1
A;

(12)

where wi > 0 and KbðaÞ is the modified Bessel function of the third kind (Abramowitz
and Stegun 1972).

Proposition 1. Let x and e be independent random variables such that x	Gaðlx;/xÞ
and e	Gað1;/eÞ, with lx > 0;/x > 0 and /e > 0. Let w¼ xe. Then

(i) EðwÞ ¼ lx;
(ii) VarðwÞ ¼ ð1�/x þ /eÞl2x=/x/e;

(iii) CovðwÞ ¼ l2x=/x:
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From Proposition 1, to avoid nonidentifiability problems, we can easily calculate an
estimate of /e; say /̂e; as

/̂e ¼ s2w/̂x=�w
2

	 

�1

h i
= 1þ /̂x

	 

; (13)

where �w ¼Pn
i¼1 wi=n and s2w ¼Pi¼1

n ðwi��wÞ2=ðn�1Þ:
As in Sec. 4.1, assuming /e known or estimating by (13), the reduced log-likelihood

function

‘r h23ð Þ ¼
Xn
i¼1

(
log 2ð Þ þ 1

2
log /xð Þ þ 1

2
log /eð Þ� 1

2
log lxð Þ

� logC /xð Þ� logC /eð Þ þ 1
2

/x þ /eð Þ�1

� �
log wið Þ

þ log K/x�/e
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/x/e

lx
wi

s0
@

1
A

0
@

1
A
9=
;:

(14)

We then substitute ĥ2 and /̂e into the log-likelihood function to obtain the pseudo-
likelihood, and use the Monte Carlo EM algorithm to estimate h1: The importance
density in this case can be f ðxi; h2Þ or f ðxijwi; h3Þ: The conditional density f ðxijwi; h23Þ
can be derived from (11) and (12):

f xijwi; h23ð Þ ¼ 1
2

/x

/elx

� �1
2 /x�/eð Þ

x/x�/e�1
i w

�1
2 /x�/eð Þ

i

� exp �/e
wi

xi
�/x

lx
xi

� �
K�1
/x�/e

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/x/e

lx
wi

s0
@

1
A:

An alternative approach to inference uses (7) directly, approximating the integral
numerically, for instance, by Laguerre-Gauss quadrature. The Laguerre-Gauss quadra-
ture approximation is ð1

0
e�xf xð Þdx�

XQ
q¼1

�qf �xqð Þ;

where �q and �xq represent the q-th weight and zero, respectively, of the orthogonal
Laguerre polynomial of order Q, where Q is number of quadrature points; see, for
example, Abramowitz and Stegun (1972). We can write the pseudo-likelihood in (7) as

‘p h1ð Þ ¼
Xn
i¼1

log
ð1
0
f yi;wi; xi; h1; ĥ23
	 


dxi

¼
Xn
i¼1

log
ð1
0
f yijxi; h1
� �

f xijwi; ĥ23

	 

f wi; ĥ23
� �

dxi

�
Xn
i¼1

log f wi; ĥ23
� �

þ
Xn
i¼1

log
XQ
q¼1

xq

f yij�xq; h1
� �

f �xqjwi; ĥ23

	 

exp �xqð Þ

8<
:

9=
;;
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where ĥ23 is find maximized (14). The approximate pseudo-likelihood estimator of
h1; ĥ1; is obtained by maximizing the approximate pseudo-log-likelihood function given
above. We leave this alternative approach for future studies.

5. Numerical studies

The simulation study presented in this section is carried out to understand the asymp-
totic behavior of the estimators obtained by using the maximum pseudo-likelihood
method. We consider two scenarios with the systematic part of the model given by
gðliÞ ¼ a0 þ a1zi þ bxi; hðr2i Þ ¼ dxi; where gð�Þ and hð�Þ are the logistic and log-link
functions, respectively. In the first scenario, we assume that the variable xi follows a
normal distribution with mean lx and variance r2x and it is structured as shown in §4.1;
the true values for the parameters are a0 ¼ �0:5; a1 ¼ 1:0; b ¼ 0:5; d ¼ 3:0; lx ¼
0:5; r2x ¼ 0:1: We also study a case where the dispersion parameter is constant, i.e.
hðr2Þ ¼ d: In the second scenario, we consider xi 	Gaðlx;/xÞ as in §4.2, with true val-
ues a0 ¼ �2:0; a1 ¼ 0:0; b ¼ 0:05; d ¼ 5:0; lx ¼ 3:0; and /x ¼ 2:0: The parameters of
the measurement error mechanism are known, and we set r2e ¼ 0:0333; 0.0052 which
corresponds moderate measurement error and low measurement error and /e ¼ 0:1;
1.0 in the first and second scenario, respectively. The sample sizes are n¼ 25, 50, 75
and 100, and for the Monte Carlo EM algorithm M¼ 120. All simulation results are
based on 1000 (Monte Carlo) replications. We determine the bias, and root mean
square error (RMSE) of the estimators. Maximization was performed using the quasi-
Newton BFGS method implemented in the function optim the software R. The results
are compared with the naïve analysis, ignoring the presence of measurement error.
Tables 1 and 2 provide the results obtained for the first scenario. These tables show the
superiority of the pseudo-likelihood method compared to the naïve method. In this situ-
ation, the estimator of the naïve methods are biased, specifically for parameter b which
is associated with the variable measured with error. In addition, these tables show that
as the sample size increases, the maximum pseudo-likelihood estimator become closer
to the true values. Table 3 give the results obtained for the second scenario. As
expected, the naïve estimator is biased, particularly for small sample size for the param-
eters d and b, the latter of which is associated with the variable measured with error.
However, the root mean square error (RMSE) for parameter b it is a little bigger than
naïve estimator, the RMSE of the maximum pseudo-likelihood estimator decreases as
the sample size increases. Overall, we conclude that ignoring the measurement error
produces misleading inference. Inference based on the pseudo-likelihood methods
presents good performance.

6. Data analysis

In this section, we apply the proposed methods to a data set studied by Silva et al.
(2018), who investigated 200 individual from a financial institution in Brazil. We will
focus on the analysis of proportion of spending (y) used by the customer on his author-
ized overdraft limit over a fixed period of time. Two measures are observed, w1 and w2,
which represent the customer’s presumed income, obtained from models available on
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the market. These are treated as replicates with w ¼ ðw1 þ w2Þ=2 being the observed
mean customer’s presumed income. It is reasonable to assume that the customer’s pre-
sumed income is measured with error. A binary observed covariate which represent the
customer’s gender also is consider. Our goal is to model the proportion of spending (y)
using the real income of a new costumer (x) as a (latent) covariate measured with error.
The Figure 2a shows the histogram of the proportion of spending with fit using sim-

plex distribution defined in 1, we can observe that the possible shape of the fit cannot
be captured by the beta distribution. The Figure 2b and c show the histogram of the
customer’s presumed income mean and the scatter plot between proportion of spending
and customer’s presumed income mean classify by gender. We consider the model

yijzi;wi; xi 	 S� li; r
2
i

� �
;

log li= 1�lið Þ� � ¼ a0 þ a1zi þ bxi;

log r2i
� � ¼ dþ cxi;

wijxi;r2e 	N xi; r
2
e

� �
;

(15)

xijlx; r2x 	N lx; r
2
x

� �
; for i ¼ 1; :::; 200: (16)

We calculated r̂2
e ¼ 0:2263 following Buonaccorsi and Tosteson (1993, p.231)

when have replicate to w. The maximum pseudo-likelihood estimates of the vector

Table 1. The Bias and RMSE for a simplex regression model with additive measurement error mod-
els, in which xi 	Nðlx; r2xÞ: Constant precision model.
r2e Method n Measure a0 a1 b log ðdÞ
0.0333 ‘p 25 Bias 0.026 0.010 �0.065 �0.047

RMSE 0.191 0.188 0.113 0.307
50 Bias 0.024 0.008 �0.064 �0.039

RMSE 0.157 0.129 0.099 0.272
75 Bias 0.018 0.004 �0.063 �0.020

RMSE 0.127 0.103 0.090 0.190
100 Bias 0.011 0.002 �0.060 �0.020

RMSE 0.104 0.089 0.091 0.176
‘naive 25 Bias �0.311 0.001 0.135 0.285

RMSE 0.453 0.235 0.171 1.644
50 Bias �0.304 0.004 0.137 0.794

RMSE 0.376 0.144 0.153 1.483
75 Bias �0.298 0.003 0.137 0.967

RMSE 0.349 0.103 0.148 1.420
100 Bias �0.300 0.000 0.137 1.051

RMSE 0.338 0.091 0.145 1.381
0.0052 ‘p 25 Bias 0.025 �0.002 �0.029 �0.030

RMSE 0.207 0.131 0.086 0.141
50 Bias 0.014 0.002 �0.024 �0.023

RMSE 0.126 0.098 0.060 0.140
75 Bias 0.010 0.001 �0.020 �0.015

RMSE 0.108 0.080 0.049 0.134
100 Bias 0.010 0.000 �0.020 �0.011

RMSE 0.092 0.064 0.046 0.122
‘naive 25 Bias �0.075 0.001 0.017 �0.359

RMSE 0.434 0.167 0.102 1.469
50 Bias �0.063 0.003 0.023 �0.172

RMSE 0.222 0.113 0.071 1.001
75 Bias �0.053 0.006 0.025 0.119

RMSE 0.182 0.108 0.060 0.880
100 Bias �0.049 �0.004 0.023 0.099

RMSE 0.152 0.078 0.050 0.759
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of parameters ða0; a1;b;r2Þ> is show in Table 4. The Monte Carlo sample size M
was 8000. We also show the naïve estimates that can obtained using the
simplexreg packages implemented in R (Zhang et al. 2016). We can see in the Figure
2b, some evidence of nonormality for the variable w. Thereby, Table 5 gives some
descriptive measures, indicating that the variable w has an asymmetric distribution,
so a non-normal distribution seems appropriate. Thus, we can replace (15) and
(16) by

wijxi;/e	indGa xi;/eð Þ and

xijlx;/x 	indGa lx;/xð Þ:
Under this model the maximum pseudo-likelihood of a0; a1; b; d and c are showing

in Table 6. Here, we calculate using the Eq. (13), /̂e ¼ 0:1664: To interpret the esti-
mates in Tables 4 and 6, we use the odds ratios, exp ðcb̂Þ; where c is the increase in
units of the continuous variable. For an increase of c¼ 1.0 meters of w, the odds ratios,
when assuming normal measurement error, gamma measurement error and no meas-
urement error naïve method are exp ð1:0��0:5133Þ ¼ 0:5985; exp ð1:0��0:5247Þ ¼
0:5917; exp ð1:0��0:5653Þ ¼ 0:5682; respectively. In other words, the proportion of

Table 2. The Bias and RMSE for a simplex regression model with additive measurement error mod-
els, in which xi 	Nðlx; r2xÞ: Variable precision model.
r2e Method n Mearure a0 a1 b d

0.0333 ‘p 25 Bias �0.033 �0.014 0.024 �0.049
RMSE 0.274 0.346 0.373 0.347

50 Bias �0.028 �0.011 0.024 �0.043
RMSE 0.165 0.214 0.217 0.217

75 Bias �0.025 �0.010 0.020 �0.019
RMSE 0.128 0.157 0.181 0.163

100 Bias �0.019 �0.010 0.016 �0.008
RMSE 0.108 0.126 0.143 0.103

‘naive 25 Bias 0.049 0.046 �0.105 �0.270
RMSE 0.435 0.682 0.508 0.665

50 Bias 0.059 0.027 �0.109 �0.172
RMSE 0.260 0.409 0.326 0.446

75 Bias 0.065 0.001 �0.109 �0.122
RMSE 0.210 0.316 0.270 0.339

100 Bias 0.075 �0.009 �0.103 �0.113
RMSE 0.180 0.256 0.237 0.307

0.0052 ‘p 25 Bias �0.018 �0.007 0.026 �0.052
RMSE 0.206 0.316 0.308 0.329

50 Bias �0.016 �0.006 0.015 �0.034
RMSE 0.186 0.190 0.236 0.216

75 Bias �0.015 0.004 0.012 �0.027
RMSE 0.115 0.153 0.168 0.170

100 Bias �0.013 0.000 0.011 �0.024
RMSE 0.087 0.134 0.139 0.145

‘naive 25 Bias �0.011 0.030 0.009 �0.238
RMSE 0.386 0.617 0.550 0.604

50 Bias 0.004 0.012 0.006 �0.107
RMSE 0.216 0.318 0.315 0.383

75 Bias 0.001 0.020 �0.008 �0.081
RMSE 0.184 0.303 0.255 0.310

100 Bias 0.009 0.000 �0.007 �0.055
RMSE 0.154 0.253 0.215 0.262
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spending (y), decreasing on average by 40.15%, 40.83% and 43.18%. In summary, when
we assumes a normal distribution for an unobserved asymmetric variable or ignore
measurement error, the interpretation of the odds ratios may change.

Table 3. The Bias and RMSE for a simplex regression model with multiplicative measurement error
models, in which /e¼ 0.10 and xi 	Gaðlx;/xÞ: Constant precision model.
/e Method n Measure a0 a1 b log ðdÞ
0.10 ‘p 25 Bias �0.086 �0.010 �0.024 �0.082

RMSE 0.566 0.554 0.370 0.309
50 Bias �0.056 �0.004 0.010 �0.046

RMSE 0.470 0.420 0.285 0.213
75 Bias �0.031 �0.003 0.003 �0.033

RMSE 0.388 0.306 0.196 0.176
100 Bias �0.022 �0.001 0.002 �0.030

RMSE 0.222 0.107 0.190 0.158
‘naive 25 Bias �0.039 �0.020 �0.100 �0.168

RMSE 0.833 1.544 0.245 0.352
50 Bias 0.070 �0.020 �0.071 �0.080

RMSE 0.517 0.882 0.100 0.222
75 Bias 0.118 �0.029 �0.064 �0.046

RMSE 0.366 0.704 0.075 0.174
100 Bias 0.120 �0.035 �0.059 �0.037

RMSE 0.371 0.620 0.067 0.149
1.0 ‘p 25 Bias �0.079 �0.032 0.020 �0.055

RMSE 0.457 0.437 0.242 0.266
50 Bias �0.067 �0.025 0.018 �0.038

RMSE 0.319 0.316 0.142 0.208
75 Bias �0.055 �0.010 0.016 �0.037

RMSE 0.275 0.270 0.108 0.149
100 Bias �0.043 �0.009 0.011 �0.021

RMSE 0.256 0.247 0.066 0.117
‘naive 25 Bias 0.011 �0.112 �0.064 �0.152

RMSE 0.811 1.357 0.170 0.332
50 Bias 0.049 0.020 �0.059 �0.072

RMSE 0.630 1.004 0.106 0.214
75 Bias 0.096 0.020 �0.053 �0.045

RMSE 0.440 0.696 0.084 0.167
100 Bias 0.118 �0.036 �0.049 �0.023

RMSE 0.388 0.649 0.074 0.138
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Figure 2. (a) Histogram the proportion of spending with fit simplex distribution, (b) histogram the
mean customer’s presumed income and (c) Plot of dispersion proportion of spending versus values of
mean customer’s presumed income by gender (star represent male gender and triangle
female gender).
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7. Concluding remarks

In this paper we proposed and studied the simplex regression models with measurement
error in the covariates. We used a pseudo-likelihood function to estimate the parameter.
A Monte Carlo simulation study compared the performance of the estimators in terms
of bias and root-mean-square errors and concluding that pseudo-likelihood estimator
has good behavior. We considered two distributions for the measurement error model,
the normal and the gamma distribution. The gamma distribution is appropriate for a
multiplicative error structure. The approach in this paper is easily applied to different
distributions for the response variable or different distributions for the covariates with
measurement error. For instance, we can consider the skew normal distribution
(Azzalini 1985) for the unobserved variable x.
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