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Abstract: Directional testing of vector parameters, based on higher order approximations of likelihood
theory, can ensure extremely accurate inference, even in high-dimensional settings where standard first
order likelihood results can perform poorly. Here we explore examples of directional inference where the
calculations can be simplified, and prove that in several classical situations, the directional test reproduces
exact results based on F-tests. These findings give a new interpretation of some classical results and support
the use of directional testing in general models, where exact solutions are typically not available. The
Canadian Journal of Statistics 47: 619–627; 2019 © 2019 Statistical Society of Canada
Résumé: Les approximations d’ordre supérieur trouvées en théorie de la vraisemblance permettent de
s’assurer d’une inférence très précise pour les tests directionnels sur les paramètres vecteurs, même dans les
problèmes à haute dimension où la vraisemblance de premier ordre offre de mauvais résultats. Les auteurs
explorent des exemples d’inférence directionnelle dont les calculs peuvent être simplifiés. Dans plusieurs
cas classiques, ils prouvent que le test directionnel reproduit exactement les résultats de tests F, offrant
une nouvelle interprétation de certains résultats classiques, et supportant l’usage d’un test directionnel en
général, notamment lorsque aucune solution exacte n’est disponible. La revue canadienne de statistique
47: 619–627; 2019 © 2019 Société statistique du Canada

1. INTRODUCTION

In many statistical settings we are interested in hypotheses about vector parameters. Examples
include testing sets of dummy variables indexing levels of a factor in a regression model,
testing interactions in loglinear models for multi-way contingency tables, and tests in models for
multivariate responses, such as testing hypotheses for the mean vector or the covariance matrix
of a multivariate normal distribution.

To fix notation, we assume a model for a response yi with parametric density function
𝑓i(yi; 𝜃). We write 𝑓 (y; 𝜃) for the joint density for a sample y = (y1,… , yn); the maximum
likelihood estimator from this sample is �̂� = �̂�(y) = arg sup𝜃 𝑓 (y; 𝜃).

One general approach to testing a given 𝜃 value is to construct the quadratic form q(𝜃) =
(�̂� − 𝜃)TV−1(�̂� − 𝜃), where V is an estimate of the covariance matrix of �̂�. Under some regularity
conditions ensuring that �̂� is consistent and asymptotically normally distributed, and that V is a
consistent estimator of the covariance matrix of �̂�, q(𝜃) has a limiting 𝜒2

p distribution under the
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model 𝑓 (y; 𝜃), as n → ∞, where p is the dimension of 𝜃. An asymptotically equivalent test for 𝜃
is that based on the log-likelihood ratio

w(𝜃) = 2{log 𝑓 (y; �̂�) − log 𝑓 (y; 𝜃)}; (1)

this also has a limiting 𝜒2
p distribution, but the distributions of q and w will differ in finite

samples.
Tests about a subvector of 𝜃 are similarly constructed. Suppose 𝜃 = (𝜓, 𝜆), where 𝜓 , of

dimension d, is the parameter of interest. The analogous expressions for inference are

q(𝜓) = (�̂� − 𝜓)TV−1
1 (�̂� − 𝜓),

w(𝜓) = 2{log 𝑓 (y; �̂�) − log 𝑓 (y; �̂�𝜓 )}, (2)

where V1 is an estimate of the covariance matrix of �̂� , �̂�𝜓 = (𝜓, �̂�𝜓 ) and �̂�𝜓 is the constrained
maximum likelihood estimator obtained by maximizing 𝑓 (y; 𝜃) over 𝜆 with 𝜓 fixed; these have
limiting 𝜒2

d distributions.
In the context of linear regression, Fraser & Massam (1985) proposed tests that measure

departure of �̂� from 𝜃, or �̂� from 𝜓 , in a particular direction on the parameter space. Skovgaard
(1988) derived a saddlepoint-type expansion for directional tests in exponential family models.
Davison et al. (2014) and Fraser, Reid & Sartori (2016) showed how to calculate directional
P-values via one-dimensional integrals and illustrated this in a number of models. While the
theory was developed in a standard asymptotic scenario, with n increasing and p fixed, empirical
results have shown that the method is extremely accurate even in cases where the dimensions p
and d are rather large relative to n, when standard first order methods, and some higher order
improvements, generally fail.

In this article we show that in some notable examples the directional tests simplify to very
well-known omnibus tests. This sheds light on directional testing and gives a new look at some
familiar test statistics, as well as provides additional support for the adoption of this approach in
general models.

In Section 2 we briefly review the directional testing approach. In Sections 3 and 4 we show
that directional tests coincide with exact well-known solutions in some examples where inference
is focused on scale parameters and location parameters, respectively. Technical details are given
in the Supplementary Material.

2. DIRECTIONAL TESTING

The theory and methods for directional tests are given in Davison et al. (2014) and Fraser, Reid &
Sartori (2016), and provided for completeness in the Supplementary Material. Here we introduce
the necessary notation and key concepts.

Suppose we have an exponential family model with sufficient statistic u = u(y) and canonical
parameter 𝜑, with density

𝑓 (y;𝜑) = exp{𝜑Tu − 𝜅(𝜑)}h(y), (3)

and we are interested in the hypothesis H𝜓 ∶ 𝜓(𝜑) = 𝜓 . We write �̂�𝜓 for the constrained
maximum likelihood estimate of 𝜑 under H𝜓 . The directional test of H𝜓 restricts attention to the
line in the sample space joining u𝜓 with u0, where u𝜓 is the value of the sufficient statistic for
which �̂�𝜓 is the maximum likelihood estimate, and u0 is the observed value of the sufficient
statistic for which �̂� is the maximum likelihood estimate. The directional P-value is the tail area
probability for the length ‖u𝜓 − u0‖t, conditional on the direction (u𝜓 − u0)∕‖u𝜓 − u0‖. It is
sometimes convenient to define s = u − u0, so that s0 = 0 and s𝜓 = u𝜓 − u0.
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The P-value for this directional approach is defined, as in Davison et al. (2014, Section 3.2),
by a ratio of two integrals,

p(𝜓) =
∫ tmax

1 td−1h(t;𝜓) dt

∫ tmax
0 td−1h(t;𝜓) dt

, (4)

where h(t;𝜓) is defined below, d is the dimension of 𝜓 , and t indexes points along the line, with
t = 0 corresponding to the value u𝜓 , and t = 1 corresponding to the observed value u0. The upper
bound, tmax, of these integrals is the largest value of t where the corresponding sufficient statistic
on the line between u𝜓 and u0 still lies in the support of its distribution. The two one-dimensional
integrals in (4) can be easily and accurately computed numerically. The factor td−1 comes from
the Jacobian computed in transforming the joint density to the conditional density of the length,
given the direction, which is essentially a transformation to spherical coordinates.

The ingredients needed for the calculation of h(t;𝜓) in (4) are the log-likelihood function,
the maximum likelihood estimate, the observed Fisher information, as functions of t, as well as
the observed value of the constrained maximum likelihood estimate. An expression for h(t;𝜓)
is given in Davison et al. ( 2014, Eq. (8)) when the hypothesis is linear in 𝜑 and in Fraser, Reid
& Sartori (2016, Eq. (4)) when the hypothesis is nonlinear in 𝜑. For completeness, the general
expression for h(t;𝜓) is presented here and described in detail in the Supplementary Material:

h(t;𝜓) ∝ exp
[
𝓁{�̂�𝜓 ; s(t)} − 𝓁{�̂�; s(t)}

] |Ĵ𝜑𝜑|−1∕2|J̃(𝜆𝜆)|1∕2, (5)

where 𝓁(𝜑; s) = 𝜑T(𝜃)s + 𝓁0{𝜃(𝜑)}, 𝓁0(𝜃) = 𝓁(𝜃; y0) is the observed value of the log-likelihood
function from (3), and the score variable s is constrained to the line s(t), t > 0. When the
hypothesis is linear in the canonical parameter, the factor |J̃(𝜆𝜆)| does not depend on t and
therefore is not needed in (4). It may also be independent of t in other cases, such as that in
Section 4.2.

If the underlying model is not an exponential family model, an initial approximation to that
model, called the tangent exponential model, is constructed first, and the arguments apply again
within this model (Fraser, Reid & Sartori, 2016, Ex. 4.3).

We show in this article that the ratio of integrals in (4) can be calculated explicitly in
some simple models, which helps to explain the accuracy of the approximation as evidenced in
Davison et al. ( 2014) and Fraser, Reid & Sartori (2016). We present the calculation for simple
examples first in Section 3 and then use similar techniques in Section 4 to provide a new view
of classical tests in multivariate normal models.

3. INFERENCE IN SCALE MODELS

3.1. Scalar Parameter of Interest
In a one-dimensional sub-model, the directional test gives two-sided P-values as it reduces to
the probability of the right (or left) tail, conditional on being in that tail. In the two examples
in this section we demonstrate this, as the calculations can be carried out analytically, and the
arguments motivate exact calculations in the regression setting of Section 4.

3.2. Comparison of Exponential Rates
We consider first the example of Davison et al. (2014, Section 5.2) in the case of just two groups
(g = 2). Suppose that yi𝑗 are independent random variables following an exponential distribution
with rates 𝜃i for i = 1, 2 and 𝑗 = 1,… , ni and the null hypothesis is H𝜓 ∶ 𝜃1∕𝜃2 = 𝜓 for some
𝜓 ∈ (0,∞). An exact test is available, since W𝜓 = 𝜓 ȳ1∕ȳ2 follows an F(2n1, 2n2) distribution
under H𝜓 .
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The log-likelihood of the full model is

𝓁(𝜃; y) =
2∑

i=1

ni∑
𝑗=1

(log 𝜃i − 𝜃iyi𝑗).

The canonical parameter is𝜑(𝜃) = (−𝜃1,−𝜃2), the sufficient statistic is u = (u1, u2) = (Σ𝑗y1𝑗 ,Σ𝑗y2𝑗),
the maximum likelihood estimate of 𝜃 is �̂� = (n1∕u1, n2∕u2) and the constrained maximum
likelihood estimate is

�̂�𝜓 =
(

n𝜓
𝜓u1 + u2

,
n

𝜓u1,+u2

)
,

giving

u𝜓 = (u1𝜓 , u2𝜓 ) =
1
n

(
u1n1 +

u2n1

𝜓
,𝜓u1n2 + u2n2

)
.

By a standard property of exponential families, u𝜓 is the expected value of u under H𝜓 .
With s𝜓 = u𝜓 − u0, the line s(t), t ≥ 0, is (1 − t)s𝜓 . At t = 1, s(t) = s0 = 0. The saddlepoint
approximation to the density of s on s(t) is

td−1h(t;𝜓) = (1 − t∕a1)n1−1(1 − t∕a2)n2−1,

with ai = ui𝜓∕(ui𝜓 − ui) for i = 1, 2. The support of the density is s(t) > −u0, or equivalently
�̂�{s(t)} ≥ 0, so tmax = max(a1, a2). Although the hypothesis is not linear in the canonical
parameter, the nuisance parameter adjustment term |J̃(𝜆𝜆)| is independent of t because 𝜑(𝜃) is
linear in the nuisance parameter 𝜃2.

If tmax = a2, 𝜓 ȳ1 ≥ ȳ2 and the directional P-value is

p(𝜓) =
∫ a2

1 (1 − t∕a1)n1−1(1 − t∕a2)n2−1 dt

∫ a2
0 (1 − t∕a1)n1−1(1 − t∕a2)n2−1 dt

. (6)

Let pnum and pden be the numerator and denominator of (6), respectively. Taking x = (1 −
t∕a1)∕(1 − t∕a2) gives

pnum = c ∫
∞

𝜓 ȳ1∕ȳ2

xn1−1
(

1 +
n1

n2
x
)−(n1+n2)

dx, pden = c ∫
∞

1
xn1−1

(
1 +

n1

n2
x
)−(n1+n2)

dx.

The constant c is the same in pnum and pden, because the same change of variables is used in
both integrals. Recognizing these integrands as the density of a F(2n1, 2n2) random variable with
cumulative distribution function G2n1,2n2

(x), (6) becomes

p(𝜓) =
1 − G2n1,2n2

(W𝜓 )
1 − G2n1,2n2

(1)
,

showing how the directional P-value is related to that based on the F-test of W𝜓 = 𝜓 ȳ1∕ȳ2.
Similarly, when 𝜓 ȳ1 < ȳ2, the directional P-value is p(𝜓) = G2n1,2n2

(W𝜓 )∕G2n1,2n2
(1), so that

p(𝜓) = I(W𝜓 ≥ 1)
1 − G2n1,2n2

(W𝜓 )
1 − G2n1,2n2

(1)
+ I(W𝜓 < 1)

G2n1,2n2
(W𝜓 )

G2n1,2n2
(1)

. (7)
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The terms that are multiplied by the indicator functions in (7) are uniformly distributed over [0, 1]
when conditioned on W𝜓 being in the appropriate region. It follows directly that the directional
P-value is also uniformly distributed on [0, 1].

A two-tailed F-test has P-value 2 min{G2n1,2n2
(W𝜓 ), 1 − G2n1,2n2

(W𝜓 )}, which can be
expressed as

I(W𝜓 ≥ 1∕2)
1 − G2n1,2n2

(W𝜓 )
1 − G2n1,2n2

(1∕2)
+ I(W𝜓 < 1∕2)

G2n1,2n2
(W𝜓 )

G2n1,2n2
(1∕2)

,

where 1∕2 is the median. The tail region here is slightly different from that in (7), although for
practical purposes, the difference is slight. Even in a highly asymmetric setting where n1 = 5
and n2 = 10, 000, G10,20,000(1) = 0.559.

3.3. Comparison of Normal Variances
Suppose that yi𝑗 ∼ N(𝜇i, 𝜎

2
i ) are independent random variables for i = 1, 2 and 𝑗 = 1… , ni and

the null hypothesis is H𝜓 ∶ 𝜎2
1∕𝜎

2
2 = 𝜓 . Under the hypothesis H𝜓 , W𝜓 = 𝜓s2

2∕s2
1 follows an

F(𝜈2, 𝜈1) distribution, where s2
i = ni(𝜈i)−1v2

i is the unbiased sample variance estimate for group
i, with v2

i = n−1
i Σni

𝑗=1(yi𝑗 − ȳi)2 and 𝜈i = ni − 1.
Following a derivation like that in Davison et al. (2014, Section 5.1), the directional P-value is

p(𝜓) =
∫ 1∕a1

1 (1 − ta1)(n1−3)∕2(1 − ta2)(n2−3)∕2 dt

∫ 1∕a1
0 (1 − ta1)(n1−3)∕2(1 − ta2)(n2−3)∕2 dt

,

where ai = (�̂�2
i𝜓 − v2

i )∕�̂�
2
i𝜓 , i = 1, 2 and �̂�2

i𝜓 is the constrained maximum likelihood estimator for
𝜎2

i . The same change of variable as in (6) gives

p(𝜓) = {1 − G𝜈2,𝜈1
(W𝜓 )}∕[1 − G𝜈2,𝜈1

{n2𝜈1∕(n1𝜈2)}],

when v2
1 ≤ 𝜓v2

2, or equivalently, 𝜈1n2∕(𝜈2n1) ≤ 𝜓s2
2∕s2

1. Combining this with the case v2
1 > 𝜓v2

2
gives

p(𝜓) = I
{

W𝜓 ≥ n2𝜈1

n1𝜈2

} 1 − G𝜈2,𝜈1
(W𝜓 )

1 − G𝜈2,𝜈1
{n2𝜈1∕(n1𝜈2)}

+ I
{

W𝜓 <
n2𝜈1

n1𝜈2

} G𝜈2,𝜈1
(W𝜓 )

G𝜈2,𝜈1
{n2𝜈1∕(n1𝜈2)}

.

(8)

As noted in Davison et al. (2014, Ex. 5.1), this expression simplifies to the two-sided F-test
if n1 = n2, since v2

1∕v2
2 = s2

1∕s2
2 in this case. When n1 ≠ n2, (8) is the P-value for the exact F-test

based on the tail probabilities of 𝜓 times the ratio of the biased maximum likelihood estimators
v2

i . With more than two groups there is no exact test for comparison, but simulations in Davison
et al. (2014) show that the directional test is very accurate, even with a very large number of
groups, and hence large numbers of nuisance parameters and a large dimension of 𝜓 , whereas
the usual likelihood ratio test (2) breaks down, as does the modified likelihood ratio version
proposed in Skovgaard (2001).

4. INFERENCE FOR LOCATION PARAMETERS

4.1. Linear Regression
We now consider testing the the null hypothesis H𝜓 ∶ A𝛽 = 𝜓 in a linear regression model,
yi = xT

i 𝛽 + 𝜖i, i = 1,… , n, where both xi and 𝛽 are vectors of length p, and 𝜖i are independently
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distributed as N(0, 𝜎2) with an unknown variance. We assume A is a given d × p matrix with
maximal rank, so the dimension of the parameter of interest is d and that of the implicit nuisance
parameter is p + 1 − d. This null hypothesis encompasses many other hypotheses of interest,
such as testing for the equality of group means when the group variances are equal. If X is taken
to be the matrix with rows xT

i , the log-likelihood function for 𝜃T = (𝛽T, 𝜎2) is

𝓁(𝜃; y) = −n
2

log 𝜎2 − 1
2𝜎2

(
yTy − 2yTX𝛽 + 𝛽TXTX𝛽

)
.

This can be re-expressed in exponential family form with canonical parameter 𝜑(𝜃)T =
𝜎−2(𝛽T,−1∕2) and sufficient statistic uT = (yTX, yTy) = (uT

1, u2). The unconstrained and con-
strained maximum likelihood estimates for 𝛽 are

𝛽 = (XTX)−1XTy, 𝛽𝜓 = 𝛽 − (XTX)−1AT
{

A(XTX)−1AT
}−1(A𝛽 − 𝜓),

and those of 𝜎2 are �̂�2 = n−1Σ(yi − xT
i 𝛽)

2 and �̂�2
𝜓 = n−1Σ(yi − xT

i 𝛽𝜓 )
2. The value of s that has �̂�𝜓

as the maximum likelihood estimate of 𝜃 is

sT
𝜓 = (𝛽T

𝜓XTX − yTX, n�̂�2
𝜓 + 𝛽T

𝜓XTX𝛽𝜓 − yTy).

On the line s(t), t ≥ 0, the log-likelihood function for 𝜑(𝜃) is

𝓁{𝜑(𝜃); s(t)} = −n
2

log 𝜎2 − 1
2𝜎2

{
u2(t) − 2u1(t)𝛽 + 𝛽TXTX𝛽

}
, (9)

with {u1(t), u2(t)} = u(t) = u0 + s(t). From (9) we obtain the maximum likelihood estimates as
functions of t: 𝛽(t) = (XTX)−1u1(t) and �̂�2(t) = n−1

{
u2(t) − 2u1(t)𝛽(t) + 𝛽T(t)XTX𝛽(t)

}
.

Evaluating (5) gives

h(t;𝜓) = {�̂�2(t)}(n−p−2)∕2 =
{
�̂�2
𝜓 − t2

n
(y − X𝛽𝜓 )TX(XTX)−1XT(y − XT𝛽𝜓 )

}(n−p−2)∕2
.

The density along the line s(t), passing through s𝜓 and s0, is then

td−1h(t;𝜓) = td−1{�̂�2
𝜓 − t2

n
(y − X𝛽𝜓 )TX(XTX)−1XT(y − XT𝛽𝜓 )

}(n−p−2)∕2

= td−1(a − bt2)(n−p−2)∕2. (10)

As the hypothesis can be expressed as a linear function of the canonical parameter, there is no
need for the nuisance parameter adjustment term |J̃(𝜆𝜆)|.

To compute the directional P-value (4) we need tmax, which here is the largest value of t for
which �̂�2(t) ≥ 0,

tmax =
[
n�̂�2

𝜓∕{(y − X𝛽𝜓 )TX(XTX)−1XT(y − X𝛽𝜓 )}
]1∕2

= (a∕b)−1∕2.

With the change of variable x = {(n − p)∕d}{a∕(bt2) − 1}, a computation detailed in the
Supplementary Material verifies that (4) simplifies to

p(𝜓) = 1 − Gd,n−p

[
(A𝛽 − 𝜓)T{A(XTX)−1AT}−1(A𝛽 − 𝜓)∕d

(y − X𝛽)T(y − X𝛽)∕(n − p)

]
,

which is the P-value based on the usual Fd,n−p distribution (Rencher & Schaalje, 2008, Ch. 8).
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This result gives a new interpretation of the F-statistic: it measures the magnitude of the
sufficient statistic for A𝛽 = 𝜓 , conditional on the direction indicated by the observed data. As
the normal distribution is spherically symmetric, the magnitude is distributed independently of
the direction.

4.2. Hotelling’s T 2

The result in Section 4.1 suggests comparing the directional test for a multivariate normal
mean with Hotelling’s T2 statistic. Suppose yi, i = 1,… , n are independent observations from
the multivariate normal distribution, Nd(𝜇,Λ−1), with unknown covariance matrix Λ−1. The
full parameter is 𝜃 = {𝜇, vec(Λ)}, where vec gives a vectorization of the columns of a matrix.
Strictly speaking, we need only d(d + 1)∕2 entries of Λ; the correction for dimension is made
when determining the Hessian. We consider the hypothesis H𝜓 ∶ 𝜇 = 𝜓 . The distribution for y =
(y1,… , yn) is an exponential family model, with canonical parameter𝜑T(𝜃) = {𝜇TΛ, vecT(Λ)} and
sufficient statistic uT = {nȳT, vecT(Σiyiy

T
i )}. The unconstrained maximum likelihood estimates

are �̂� = ȳ and Λ̂ = n{Σi(yi − ȳ)(yi − ȳ)T}−1, while the constrained maximum likelihood estimate
for Λ is Λ̂𝜓 = n{Σi(yi − 𝜓)(yi − 𝜓)T}−1. Under H𝜓 , the expected value of the centred sufficient
statistic s is

sT
𝜓 =

[
n𝜓 − nȳ, vecT

{n
2
(𝜓 ȳT + ȳ𝜓T − 2𝜓𝜓T)

}]
.

The maximum likelihood estimators on the ray s(t) are

�̂�T(t) =
[
{𝜓 + t(ȳ − 𝜓)}TΛ̂(t), vecT{Λ̂(t)}

]
,

Λ̂−1(t) =

{
1
n

n∑
i=1

(yi − 𝜓)(yi − 𝜓)T

}
− t2(ȳ − 𝜓)(ȳ − 𝜓)T = Λ̂−1

𝜓 − t2vvT,

where v = ȳ − 𝜓 . These maximum likelihood estimators are valid if Λ̂−1(t) is positive definite
and the largest t such that this is the case, tmax, is found by solving for t in the equation|Λ̂−1(t)| = 0, where |Λ̂−1(t)| = det(Λ̂−1

𝜓 )(1 − t2vTΛ̂𝜓v). The components of (5) needed to compute
the directional P-value are

exp
[
𝓁{�̂�(0); s(t)} − 𝓁{�̂�(t); s(t)}

]
= |Λ̂−1(t)|n∕2,

|J𝜑𝜑{�̂�(t); s(t)}|−1∕2 = |Λ̂−1(t)|−(q+1)∕2.

As the canonical parameter is linear in Λ, the nuisance parameter information term does not
depend on t and can be ignored. The directional P-value is

∫ (vTΛ̂𝜓 v)−1∕2

1 tp−1(1 − t2vTΛ̂𝜓v)(n−p−2)∕2 dt

∫ (vTΛ̂𝜓 v)−1∕2

0 tp−1(1 − t2vTΛ̂𝜓v)(n−p−2)∕2 dt
.

There is a striking similarity between this and the directional P-value (6), and the same change
of variables can be applied here. By the Sherman–Morrison formula,

1 − vTΛ̂𝜓v

vTΛ̂𝜓v
= (ȳ − 𝜓)T

{
1
n

n∑
i=1

(yi − ȳ)(yi − ȳ)T

}−1

(ȳ − 𝜓) = vTΛ̂v. (11)
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After the appropriate change of variables, (11) appears in the bound of the integrals in the
directional P-value. After further simplification, we have

p(𝜓) = 1 − G{(n − p)(vTΛ̂v)∕p},

where G is the cumulative distribution function of an F(p, n − p) random variable. As Hotelling’s
T2 statistic is equal to (n − 1)vTΛ̂v and (n − p)∕{p(n − 1)}T2 ∼ F(p, n − p), this shows that the
directional test is identical to Hotelling’s T2 test.

5. DISCUSSION

Directional tests for a vector parameter create a one-dimensional sub-model by restricting
attention to the line on the parameter space that is dictated by the observed data. The computation
of these tests has recently been simplified by relying on saddlepoint approximations to the
distributions, rather than computing them exactly.

This work concentrates on models for which saddlepoint approximations are exact or nearly
exact and shows that conventional F-tests emerge from the directional approach. This helps to
explain the accuracy of the tests demonstrated in Davison et al. (2014) and Fraser, Reid & Sartori
(2016).

All the directional P-value integrands appearing in this work share a common structure.
Each integrand of the directional P-values has the form td−1�̂�2(t)𝛼∕2, where �̂�2(t) is a measure
of variability under H𝜓 and 𝛼 depends on n, d and p. Small directional P-values correspond to
observed data that have a relatively high weighted variability estimate under H𝜓 .

The hypotheses considered in Section 4 constrain the mean vector to a linear subspace of the
parameter space and they are also invariant under affine transformations of the parameter. The
F-tests in Section 4 are derived as most powerful invariant tests in Lehmann & Romano (2005,
Ch. 7), and shown there to effectively test a scalar parameter, the noncentrality parameter of the
related F distribution.

With discrete probability functions, such as the binomial and Poisson, saddlepoint methods
are not exact because they are implicitly continuous, but simulation results in Davison et al. (2014,
Section 4.2) and in work in progress indicate that the directional P-values continue to be very
accurate.

It is also straightforward to develop a directional test for normal theory non-linear regression
models of the form yi ∼ N{𝜂i(𝛽), 𝜎2}, i = 1,… , n, but we have been unable to verify that these
are the same as the conventional F-test based on the tangent model approximation to the mean
surface.

By their nature, directional tests might be expected to have low power in regions of the
parameter space that are not suggested by the data. This point was raised in work as yet
unpublished by Jens Ledet Jensen. However, for at least some settings, the work here shows
that the tests are the same as conventional F-tests for multivariate hypotheses and so share their
power properties.

Additional information about the saddlepoint approximation and directional tests of Section
2, as well as detailed calculations to support the analytical results in Section 3 and Section 4, are
provided in the Supplementary Material available online.
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