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1. INTRODUCTION

The tests examined in McCormack et al. (2019) use a directional argument proposed in Fraser

& Massam (1985) and developed further, using higher order approximation theory, in Davison

et al. (2014) and Fraser, Reid & Sartori (2016). For completeness we provide a summary of

directional tests in §S.1, and provide the formulae needed for the examples in §S.2 - S.4.

S.2 Directional testing

S.2.1 A model on R
p

Suppose our model for y = (y1, . . . , yn) is a linear exponential family

f(y; θ) = exp[ϕT(θ)u(y)− κ{ϕ(θ)}]d(y), ϕ ∈ R
p (1)

with sufficient statistic u and canonical parameter ϕ. Inference for ϕ is based on the marginal

distribution of u, which is again an exponential family

f(u; θ) = exp[ϕT(θ)u − κ{ϕ(θ)}]d̃(u). (2)

The function d̃(·) is obtained by marginalizing (1) and may not be available explicitly, but the

saddlepoint approximation to the density of u has relative errorO(n−3/2) in continuous models:

fSP (u; θ) =
ek/n

(2π)p/2
|̂|−1/2 exp[ℓ{ϕ(θ);u} − ℓ{ϕ(θ̂);u}], (3)

where ℓ(ϕ;u) = ϕTu− κ(ϕ) is the log-likelihood function, ̂ = −∂2ℓ(ϕ̂)/∂ϕ∂ϕT is the ob-

served Fisher information, θ̂ is the maximum likelihood estimator, and exp(k/n)/(2π)p/2 is an

approximation to the normalizing constant.

Directional tests take as their starting point the approximation (3). If the originating model is

not in the exponential family, then an approximation to it, the tangent exponential model, is used

instead. The construction of the tangent exponential model and its saddlepoint approximation are

described in the Appendix of Fraser, Reid & Sartori(2016); see in particular Eq. (A2). Since the

examples in the current paper are all exponential family models, this step is not needed.

S.2.2 Nuisance parameters

Suppose that the parameter d-dimensional parameter θ in our original model can be partitioned

as θ = (ψ, λ), where ψ is a d-dimensional parameter of interest and λ is a p− d-dimensional
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nuisance parameter. Denote by λ̂ψ the constrained maximum likelihood estimator of λ when ψ
is fixed.

In the special case that θ = ϕ, so that the parameter of interest is a sub-vector of the canonical

parameter, and if the original model is a full exponential family, then

f(u1, u2;ψ, λ) ∝ exp{ψTu1 + λTu2 − κ(ψ, λ)}d̃(u), (4)

and the conditional distribution of u1 given u2 is free of λ. The saddlepoint approximation can

be used again to give an accurate approximation to the conditional density. Directional testing

for models of this form are developed and illustrated in Davison et al. (2014).

If the parameter of interest is not a linear function of the canonical parameter, in which case

we write ψ = ψ(ϕ), such a reduction by conditioning is not available. None-the-less, it can be

verified that there is a unique variable that measures ψ, and that this variable is obtained by

constraining the sufficient statistic u to the d-dimensional sample space obtained by fixing the

constrained maximum likelihood estimate of the nuisance parameter to its observed value. The

saddlepoint approximation to the density of this variable is

h(s;ψ) =
exp(k′/n)

(2π)d/2
exp{ℓ(ϕ̂ψ; s)− ℓ(ϕ̂(s)}|Ĵϕϕ|−1/2|J̃(λλ)|1/2, s ∈ Lψ, (5)

where Lψ is the plane in the sample space with λ̂ψ fixed, so that h above is a density on R
d.

In (5), s = u− u0 is a centred version of the sufficient statistic, and ℓ(ϕ; s) = ϕTs+ ℓ0(ϕ) is

an exponential tilt of the observed log-likelihood function ℓ(θ; y0) in the original model. The

centering is described in detail in Davison et al. (2014, §3.1) and assumed in Fraser, Reid &

Sartori (2016). The determinants in (5) are:

|Ĵϕϕ| = |Jϕϕ{ϕ̂(s)}| = | − ∂2ℓ(ϕ; s)/(∂ϕ∂ϕT)
∣

∣

ϕ=ϕ̂(s)
, (6)

and

|J̃(λλ)| = |J(λλ)(ϕ̂ψ)| =
∣

∣

∣

∣

−∂
2ℓ(ϕ̂ψ ; s)

∂λ∂λT

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ϕ(θ̂ψ)

∂λ

∣

∣

∣

∣

∣

−2

. (7)

The second determinant is not needed when the parameter of interest is linear in ϕ. However, it

turns out to be independent of t in the examples in §2.1, 2.3 and 3.2, even though the parameter

of interest is not linear in the canonical parameter. In these cases the canonical parameter is a

linear function of the nuisance parameter and so (7) does not depend on t.

S.2.3 Directional testing

The directional test of the hypothesis ψ(ϕ) = ψ is carried out in Lψ by finding the line that joins

s0 with the value of s, call it sψ, that would give ϕ̂ψ as the maximum likelihood estimate of the

parameter. The observed value s0 gives ϕ̂ as the maximum likelihood estimate. The p-value is

computed as the probability of s being larger than the observed value s0, on the line between the

two values sψ and s0. Another way to describe it is that we measure the magnitude of the vector

s0 − sψ, in Lψ, conditional on its direction. This gives a one-dimensional measure of how much

“larger” the observed value s0 is than would be expected under the hypothesis. We parameterize

this line in the sample space by t, and because we center the sufficient statistic so that s0 = 0,
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the line is simply s(t) = sψ + t(s0 − sψ) = (1 − t)sψ. The directional p-value is then

p(ψ) =

∫

∞

1 td−1h(t;ψ)dt
∫

∞

0
td−1h(t;ψ)dt

, (8)

where h(t;ψ) = h{s(t);ψ} using (4), and the inflation factor td−1 comes from the Jacobian of

the transformation to polar coordinates.

S.3 Ratio of exponential rates

S.3.1 Finding the integrand of the directional p-value

We consider the directional test for the null hypothesisHψ that θ1/θ2 = ψ where yij ∼ exp(θj),
j = 1, 2 i = 1, ..., ni. Note that this test is slightly different than the test performed Davison et

al. (2014) as here we are testing the ratio of rates. Under Hψ the constrained MLE is

θ̂1ψ =
nψ

u1ψ + u2
,

θ̂2ψ =
n

u1ψ + u2
,

where n = n1 + n2 and uj = Σiyij . By solving the score equation it is found that the value of

uj that has θ̂ψ as its global MLE is ujψ = nj/θ̂jψ. The line between uψ and the observed value

of u, u0 = (u01, u
0
2) is

u1(t) =
n1

n
(u01 +

u02
ψ
) + t

{

u01 −
n1

n
(u01 +

u02
ψ
)
}

= u1ψ + t(u01 − u1ψ),

u2(t) =
n2

n
(u01ψ + u02) + t

{

u02 −
n2

n
(u01ψ + u02)

}

= u2ψ + t(u02 − u2ψ),

so that

exp[ℓ{ϕ̂ψ; s(t)} − ℓ{ϕ̂; s(t)}] ∝ exp

{

− n1u1(t)

u1ψ
− n2u2(t)

u2ψ

}

u1(t)
n1u2(t)

n2 .

The determinant of the Hessian of the negative log-likelihood with respect to ϕ = (θ1, θ2) is

the determinant of the Hessian of −n1 log(θ1)− n2 log(θ2). This is easily found to be |Jϕϕ| =
n1n2/(θ1θ2)

2. We have that θ̂i(t) = ni/ui(t) and thus

|Jϕϕ|−
1
2 exp[ℓ{ϕ̂ψ; s(t)} − ℓ{ϕ̂; s(t)}] ∝ exp

{

− n1u1(t)

u1ψ
− n2u2(t)

u2ψ

}

u1(t)
n1−1u2(t)

n2−1.

Next we check the nuisance parameter adjustment term. Formulating the log-likelihood in terms

of nuisance parameter θ2 = λ we get

ℓ(ψ, λ) = −u1(t)ψλ − u2(t)λ + ℓ0(ψ, λ).

It is clear that the second derivative of this function with respect to λ only contains terms that do

not involve t. The dimension of our parameter of interest in this case is d = 1 so that td−1 = 1.

The sufficient statistic u(t) is viable as long as it remains positive. As a result, tmax is the largest

t such that both u1(t) and u2(t) are non-negative. Notice that u01 − u1ψ > 0 if and only if ψȳ1 ≥
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ȳ2 and likewise u02 − u2ψ > 0 if and only if ψȳ1 ≤ ȳ2. so that

tmax =
u1ψ

u1ψ − u01
I(ψȳ1 ≤ ȳ2) +

u2ψ
u2ψ − u02

I(ψȳ1 ≥ ȳ2).

We let aj be equal to the quantity ujψ/(ujψ − u0j). It can be shown that (u1ψ − u01)/(u2ψ −
u02) = −1/ψ and u2ψ/u1ψ = ψn2/n1, which shows that n1a2 + n2a1 = 0. Now

exp

{

− n1u1(t)

u1ψ
− n2u2(t)

u2ψ

}

∝ exp

{

t
(n1

a1
+
n2

a2

)

}

= 1,

and thus the directional p-value is given by

p(ψ) =

∫ tmax
1

u1(t)
n1−1u2(t)

n2−1dt
∫ tmax
0

u1(t)n1−1u2(t)n2−1dt
=

∫ tmax
1 (1− t

a1
)n1−1(1− t

a2
)n2−1dt

∫ tmax
0

(1− t
a1
)n1−1(1− t

a2
)n2−1dt

. (9)

S.3.2 Making a change of variables

Assume that tmax = a1, so that ψȳ1/ȳ2 ≤ 1. The numerator of (9) can be written as

pnum =

∫ a1

1

(1 − t

a1
)n1+n2

(

1− t
a2

1− t
a1

)n2−1

(1− t

a1
)−2dt.

Make the change of variables x = (1− t/a2)/(1− t/a1), we then get that

pnum =k1

∫

∞

1−1/a2
1−1/a1

xn2−1

(

a1 − a2
a1 − a2x

)

−n1−n2

dx = k2

∫

∞

1−1/a2
1−1/a1

xn2−1
(

1− a2x

a1

)

−n1−n2
dx.

We know from a previous calculation that a2/a1 = −n2/n1. Furthermore,

1− 1/a1
1− 1/a2

=
(a2 − 1)a1
(a1 − 1)a2

= −u
0
2(u1ψ − u01)n1

u01(u2ψ − u02)n2
=

ȳ2
ȳ1ψ

.

Therefore we see that

pnum = k2

∫

∞

ȳ2
ȳ1ψ

xn2−1
(

1 +
n2

n1
x
)

−n1−n2
dx. (10)

Now if we perform the same change of variables on the integral in the denominator of the di-

rectional p-value the same normalizing constant k2 will be produced. The bounds of the integral

will change as follows

∫ a1

0

⇒
∫

∞

1

.

The integrand in (10) is the density of a F (2n2, 2n1) random variable up to a normalizing con-

stant. Thus if W ∼ F (2n2, 2n1)

p(ψ) =
PW (W > ȳ2

ȳ1ψ
)

PW (W > 1)
.
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Similarly when ȳ1ψ/ȳ2 ≥ 1 we get

p(ψ) =
PW (W < ȳ1ψ

ȳ2
)

PW (W < 1)
.

Consequently, the directional test is identical to that of the appropriate F-test. In summary, the

directional p-value is

p(ψ) = I
(

ȳ1ψ < ȳ2
)

PW (W > ȳ2
ȳ1ψ

)

PW (W > 1)
+ I

(

ȳ1ψ > ȳ2
)

PW (W < ȳ1ψ
ȳ2

)

PW (W < 1)
.

S.4 Ratio of normal variances

Suppose that yij ∼ N(µi, σ
2
i ) are independent random variables for i = 1, 2 and j = 1 . . . , ni,

and we wish to test Hψ : σ2
1/σ

2
2 = ψ. A computation very similar to that given in the previous

section shows that the integrand of the directional p-value for testing Hψ is

(1− tb1)
(n1−3)/2(1− tb2)

(n2−3)/2, (11)

with bi = (σ̂2
iψ − v2i )/σ̂

2
iψ . The biased within-group sample variances are v2i while σ̂2

iψ is the

constrained maximum likelihood estimator for σ2
i . There is a clear resemblance between the

integrands of (9) and (11). The same change of variables used for the exponential rates example

can be used here with the only minor difference being that we set ai = 1/bi so that (11) equals

(1− t/a1)
(n1−3)/2(1− t/a2)

(n2−3)/2. All the bounds of the integrals will change in the same

way as in the previous example. In particular, we find that

1− 1/a2
1− 1/a1

=
1− b2
1− b1

=
σ̂2
1ψv

2
2

σ̂2
2ψv

2
1

=
ψv22
v21

.

If v21 ≤ ψv22 so that tmax = 1/a1 we get that

pnum =

∫

∞

ψv22/v
2
1

x
n2−1

2 −1
(

1 +
n2

n1
x
)

−
(n1−1)+(n2−1)

2 dt.

This integrand is not quite the density of a F-distribution due to the factor of n2/n1 appearing

instead of (n2 − 1)/(n1 − 1). To fix this we make the additional change of variables in both

pnum and pden from x to

{n1(n2 − 1)}/{n2(n1 − 1)}x. If W ∼ F (n2 − 1, n1 − 1) and s2i are the unbiased sample vari-

ances we get the desired result that

p(ψ) =
PW

(

W >
ψs22
s21

)

PW
(

W > n2(n1−1)
n1(n2−1)

)
.

The case where v21 > ψv22 is handled similarly.

S.5 Linear regression with linear constraints

S.5.1 Calculating exp[ℓ{ϕ̂(0); s(t)} − ℓ{ϕ̂(t); s(t)}]
Let yi ∼ N(xT

i β, σ
2), i = 1, . . . , n, where y0i are realizations of yi and all of the yi’s are inde-

pendent. Both xi and β are p× 1 vectors and σ2 is an unknown nuisance parameter. We form the
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n× p matrix X by taking i’th row of X to be xi. Here we wish to test Hψ : Aβ = ψ using the

directional test. The matrix A has dimension d× p and is of rank d which ensures that the linear

constraint is not redundant. The constrained maximum likelihood estimator for β under Hψ can

be found using Lagrange multipliers and is given by

β̂ψ = β̂ − (XTX)−1AT{A(XTX)−1AT}−1(Aβ̂ − ψ)

= β̂ − 1

2
(XTX)−1ATλ̂.

The Lagrange multiplier equation used to find this constrained MLE also yields

β̂T

ψX
T(y −Xβ̂ψ) =

1

2
ψTλ̂

= ψT{A(XTX)−1AT}−1(Aβ̂ − ψ).

The constrained MLE for σ2 is just the average sum of squared error under β̂ψ. The log-likelihood

in this situation is

ℓ(β, σ2) = −y
Ty

2σ2
+
yTXβ

σ2
− βTXTXβ

2σ2
− n

2
log(σ2)

=
[

yTy yTX
]

[

− 1
2σ2

β
σ2

]

− κ(β, σ2)

= uT(y)ϕ− κ(ϕ).

The sufficient statistics here are yTy and yTX . These sufficient statistics have unconstrained

MLEs that are equal to the constrained MLE when they solve the following equations:

(XTX)β̂ψ = XTy

and

1

n
(y −Xβ̂ψ)

T(y −Xβ̂ψ) = σ̂2
ψ

=⇒ 1

n
(yTy − β̂T

ψX
TXβ̂ψ) = σ̂2

ψ

yTy = nσ̂2
ψ + β̂T

ψX
TXβ̂ψ.

Thus

sψ =

[

nσ̂2
ψ + β̂T

ψX
TXβ̂ψ − (y0)Ty0

(XTX)β̂ψ −XTy0

]

.

We define s(t) = (1 − t)sψ. Then let u(t) = u0 + s(t) so that

ℓ(ϕ; t) = uT(t)ϕ− κ(ϕ). We let u1(t) be the first entry of u(t) and u2(t) be the remaining
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entries of u(t). We see that

∂

∂σ2
ℓ(ϕ; t) =

1

σ4

{u1(t)

2
− uT

2 (t)β +
βTXTXβ

2

}

− n

2σ2
= 0

=⇒ σ̂2(t) =
1

n

{

u1(t)− 2uT

2 (t)β̂(t) + β̂(t)TXTXβ̂(t)
}

.

∂

∂β
ℓ(ϕ; t) =

1

σ2

{

u2(t)−XTXβ
}

= 0

=⇒ β̂(t) = (XTX)−1u2(t).

We now find formulas for the log-likelihood terms appearing in the exponent density used for the

directional p-value calculation. As the directional p-value takes a ratio of such densities we can

ignore all multiplicative factors not involving t in the subsequent calculations:

ℓ{ϕ̂(0); s(t)} ∝ 1

σ̂2(0)

{

− 1

2
u1(t) + uT

2 (t)β̂(0)
}

∝ 1

σ̂2(0)

[

t

2

{

nσ̂2
ψ + β̂T

ψX
TXβ̂ψ − (y0)Ty0

}

+ t
{

(y0)TX − β̂ψX
TX

}

β̂ψ

]

∝ 1

σ̂2(0)

(

nt

2

[

σ̂2
ψ − {(y0)Ty0 − 2(y0)TXβ̂ψ + β̂T

ψX
TXβ̂ψ}

]

)

= 0.

Similarly,

ℓ{ϕ̂(t); s(t)} =
1

σ̂2(t)

{

− 1

2
u1(t) + uT

2 (t)β̂(t)
}

− β̂T(t)XTXβ̂(t)

2σ̂2(t)
− n

2
log{σ̂2(t)}

=
1

σ̂2(t)

{

− 1

2
u1(t) +

1

2
uT

2 (t)β̂(t)
}

− n

2
log{σ̂2(t)}

= −1− n

2
log{σ̂2(t)}.

Consequently, exp
[

ℓ{ϕ̂(0); s(t)} − ℓ{ϕ̂(t); s(t)}
]

= {σ̂2(t)}n2 .

S.5.2 Finding |Jϕϕ{ϕ̂(t); s(t)}| and the nuisance parameter adjustment

To start we find all of the second order derivatives of κ(ϕ) yielding

∂2κ

∂ϕ2
1

=
n

2ϕ2
1

+
1

ϕ3
1

n
∑

i=1

(

p+1
∑

j=2

Xijϕj)
2,

∂2κ

∂ϕ1∂ϕk
= − 1

ϕ2
1

n
∑

i=1

Xik

p+1
∑

j=2

Xijϕj ,

∂2κ

∂ϕk∂ϕl
=

1

ϕ1

n
∑

i=1

XikXil.

Define ϕ̄ to be the vector containing the last p entries of ϕ. From the second order derivatives

above we find that the Hessian of the negative log-likelihood function has the form

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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Jϕϕ{ϕ; s(t)} =
1

ϕ1

[

( n
2ϕ1

+ 1
ϕ2

1
ϕ̄TXTXϕ̄) − 1

ϕ1
ϕ̄TXTX

− 1
ϕ1
XTXϕ̄ XTX

]

.

We multiply the above matrix on the left by the matrix

[

1 0T

0 (XTX)−1

]

.

In doing this the determinant of the resulting matrix only changes by the constant

det{(XTX)−1}. We then find that find that:

|Jϕϕ{ϕ; s(t)}| ∝ (
1

ϕ1
)p+1 det

(

[

( n
2ϕ1

+ 1
ϕ2

1
ϕ̄TXTXϕ̄) − 1

ϕ1
ϕ̄TXTX

− 1
ϕ1
ϕ̄ Ip

]

)

.

The determinant above can be found by performing a cofactor expansion along the first column

of the matrix and then performing a cofactor expansion along first row of the resulting minor.

Fortunately, performing this cofactor expansion twice on the i’th entry of the first column and

the j’th entry of the first row will produce a minor that has a row of zeros if i 6= j. As a result, we

only have to be concerned about when i = j, but this case is simple as it is just minus one times

the i’th entry of the last column times the i’th entry of the last row multiplied by the determinant

of the identity. The bottom right entry has to be treated separately, but it clearly just returns itself

in the cofactor expansion. In short

|J{ϕ; s(t)}| ∝(
1

ϕ1
)p+1

{

− 1

ϕ2
1

ϕ̄TXTXϕ̄+ (
n

2ϕ1
+

1

ϕ2
1

ϕ̄TXTXϕ̄)

}

∝(
1

ϕ1
)p+2.

At this point we are able to construct the integrand for the directional test:

td−1|J{ϕ̂(t); s(t)}|− 1
2 exp

[

ℓ{ϕ̂(0); s(t)} − ℓ{ϕ̂(t); s(t)}
]

∝ td−1σ̂2(t)
n−p−2

2 .

This hypothesis is a linear hypothesis, meaning that the canonical parameter can be partitioned

into the parameter of interest and a nuisance parameter. To see this, we note that Aβ = ψ is

equivalent to Aβ/σ2 = ψ/σ2. Consequently,Hψ holds if and only if

[

A 2ψ
]

ϕ(θ) =Mϕ(θ) = 0. (12)

The dimension of M is d× p+ 1. We define M̃ to be a matrix formed by adding p+ 1− d
rows to M in a manner so that all of the rows of M̃ are linearly independent. We then see that

uT(y)ϕ(θ) = uT(y)M̃−1M̃ϕ(θ) since M̃ is invertible, and we can redefine our canonical param-

eter to be M̃ϕ(θ). By (12) this new canonical parameter can be partitioned into the parameter of

interest and a nuisance parameter. Thus we are in the scenario covered in Davison et al. (2014).

No nuisance parameter adjustment term is required in this case.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:
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S.5.3 Making a change of variables

As a reminder

σ̂2(t) =
1

n
{u1(t)− uT

2 (t)β̂(t)}

=
1

n
{u1(t)− uT

2 (t)(X
TX)−1u2(t)}.

After some algebra the terms involving t disappear from the above expression and we are left

with an expression that only involves t2.

σ̂2(t) = {σ̂2
ψ − t2

n
(y0 −Xβ̂ψ)

TX(XTX)−1XT(y0 −Xβ̂ψ)}

= (a− t2b).

Thus tmax = (ab )
1
2 . We find the integral in the numerator to be

∫

√
a
b

1

td−1(a− bt2)
n−p−2

2 dt = k

∫

√
a
b

1

(

2
b

a
t
)( b

a
t2
)

d−2
2
(

1− b

a
t2
)

n−p−2
2 dt.

Make the change of variables x = b
a t

2:

= k

∫ 1

b
a

x
d−2
2 (1− x)

n−p−2
2 dx.

Make the change of variables x = 1
z :

= k

∫ 1

a
b

− 1

z2
(1

z

)

d−2
2
(

1− 1

z

)

n−p−2
2 dz

= k

∫ a
b

1

(1

z

)
d+2
2
(

1− 1

z

)

n−p−2
2 dz

= k

∫ a
b

1

(1

z

)

n+d−p
2 (z − 1)

n−p−2
2 dz.

Make the change of variables t = z − 1:

= k

∫ a
b−1

0

( 1

t+ 1

)

n+d−p
2 t

n−p−2
2 dt

= k

∫
a−b
b

0

( 1

t+ 1

)(n−p
2 + d

2 )t
n−p

2 −1dt.

Make the final change of variables t = n−p
d x:
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= k′
∫

(a−b)d
b(n−p)

0

( 1
n−p
d x+ 1

)(n−p
2 + d

2 )
(n− p

d
x
)

n−p
2 −1

dx

= k′′
∫

(a−b)d
b(n−p)

0

Γ(n−p2 + d
2 )

Γ(n−p2 )Γ(d2 )

n− p

d− 1

( 1
n−p
d x+ 1

)(n−p
2 + d

2 )
(n− p

d
x
)

n−p
2 −1

dx

= k′′PW

(

W >
b
d
a−b
n−p

)

.

where W ∼ F (d, n− p). The above sequence of changes of variables is equivalent to making

the single change x = {(n− p)a− dbt2}/(dbt2). Now performing the exact same sequence of

changes of variables on the integral in the denominator will result in a similar expression, how-

ever the bounds of the integral over the F-distribution will be different. The bounds of the integral

will change as follows:

∫

√
a
b

0

⇒
∫ 1

0

⇒
∫

∞

1

⇒
∫

∞

0

.

Thus the integral in the denominator of the directional p-value equals

∫

√
a
b

1

tq−1(a− bt2)
n−p−2

2 dt = k′′PW (W > 0) = k′′.

We find n(a− b) to be

(y0)Ty0 − (y0)TX(XTX)−1XTy0 + 2(Xβ̂ − y0)TXβ̂ψ.

We know that (y0 −Xβ̂)TXβ̂ = 0. Thus

(Xβ̂ − y0)TXβ̂ψ =
1

n
(y0)T

{

In −X(XTX)−1XT
}

X(XTX)−1AT{A(XTX)−1AT}−1(Aβ̂ − ψ)

= 0

=⇒ (a− b) = (y0)T{In −X(XTX)−1XT}y0.
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This is simply the mean squared error under β̂. Now we simplify nb as

(y0 −Xβ̂ψ)
TX(XTX)−1XT(y0 −Xβ̂ψ) = (y0)TX(XTX)−1XTy0 − 2(y0)TXβ̂ψ + β̂T

ψX
TXβ̂ψ

= (y0)T(Xβ̂ −Xβ̂ψ)− (y0)TXβ̂ψ + β̂T

ψX
TXβ̂ψ

=
1

2
(y0)TX(XTX)−1ATλ̂− (y0)TXβ̂ +

1

2
(y0)TX(XTX)−1ATλ̂+ β̂T

ψX
TXβ̂ψ

= (y0)TX(XTX)−1ATλ̂− (y0)TXβ̂ + β̂XTXβ̂ − β̂TXTX(XTX)−1ATλ̂+
1

4
λ̂TA(XTX)−1ATλ̂

=
1

4
λ̂TA(XTX)−1ATλ̂

= (Aβ̂ − ψ)T
{

A(XTX)−1AT
}

−1
(Aβ̂ − ψ).

Finally we find that the directional p-value equals the desired quantity:

p(ψ) = PW

{

W ≥ (Aβ̂ − ψ)T{A(XTX)−1AT}−1(Aβ̂ − ψ)/d

(y0)T{I −X(XTX)X}y0/(n− p)

}

.

S.6 Multivariate normal mean

S.6.1 Calculating exp[ℓ{ϕ̂(0); s(t)} − ℓ{ϕ̂(t); s(t)}]
Let yi ∼ Np(µ,Λ

−1) be n observations from a multivariate Gaussian distribution with unknown

concentration matrixΛ. Here we wish to testHψ : µ = ψ using directional testing. The parameter

of interest is µ, while the nuisance parameter is Λ. The log-likelihood of these observations is

given by

ℓ(µ,Λ) = −n
2
log(|Λ−1|)− 1

2

n
∑

i=1

(yi − µ)TΛ(yi − µ)

=
n

2
log(|Λ|)− 1

2

n
∑

i=1

yT

i Λyi +
1

2
µTΛnȳ +

1

2
nȳTΛµ− n

2
µTΛµ.

By using the fact that the trace of a product of matrices is invariant under cyclic permutations

and the trace of the product of two square matrices is the dot product of the vectorization of these

matrices we can rewrite the log-likelihood as

ℓ(µ,Λ) =

[

Λµ

vec(Λ)

]T [

nȳ

vec(− 1
2

∑n
i=1 yiy

T

i )

]

+
n

2
log(|Λ|)− n

2
µTΛΛ−1Λµ (13)
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We can rewrite the above log-likelihood in terms of the canonical parameter, ϕ, and sufficient

statistic u:

ℓ{ϕ;u(y)} =ϕTu+
n

2
log(|ϕ2|)−

n

2
ϕT

1ϕ
−1
2 ϕ1,

ϕ =

[

ϕ1

ϕ2

]

=

[

Λµ

Λ

]

=

[

λψ

λ

]

,

θ =

[

ψ

λ

]

=

[

µ

Λ

]

.

Throughout, we will be treat ϕ2 as both a matrix and the vectorization of a matrix depending

upon the context it is used in. The constrained MLE under Hψ is found by simply maximizing

ℓ(µ,Λ) with respect to Λ while setting µ = ψ. This yields the standard covariance matrix

estimate

Λ̂−1
ψ = 1

n

∑n
i=1(yi − ψ)(yi − ψ)T. This matrix as well as ψ will be used to find s(t).

Finding s(t) amounts to first finding a vector sψ which when added to the observed value

of the sufficient statistic has the constrained MLE, ϕ̂ψ , as its MLE. Once this is found s(t) is

given by s(t) = (1− t)sψ . The partial derivatives of ℓ(ϕ, s) with respect to ϕ are

∂ℓ

∂ϕ1
= (u1 + s1)− nϕ−1

2 ϕ1

=⇒ s1 = nψ − u1,

∂ℓ

∂ϕ2
= (u2 + s2) +

n

2
ϕ−1
2 +

n

2
ϕ−1
2 ϕ1ϕ

T
1 ϕ

−1
2

=⇒ s2 = −u2 −
n

2
Λ̂−1
ψ − n

2
ψψT.

In much the same way that sψ was found we find the maximum likelihood estimate for ϕ as we

vary t in s(t). The partial derivatives of ℓ{ϕ, s(t)} with respect to ϕ are

∂ℓ

∂ϕ1
= {u1 + s1(t)} − nϕ−1

2 ϕ1,

=⇒ ϕ̂−1
2 (t)ϕ̂1(t) =

1

n
{u1 + s1(t)}

=
1

n
{nψ + t(u1 − nψ)}

= ψ + t(ȳ − ψ).
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Notice that the above MLE agrees with what one might reasonably expect since ϕ−1
2 ϕ1 is the

mean vector. We use the above formula to solve for ϕ̂−1
2 (t):

∂ℓ

∂ϕ2
={u2 + s2(t)}+

n

2
ϕ−1
2 +

n

2
ϕ−1
2 ϕ1ϕ

T

1ϕ
−1
2 ,

=⇒ ϕ̂−1
2 (t) =

2

n
[−u2 − s2(t)−

n

2
{ϕ̂−1

2 (t)ϕ̂1(t)}{ϕ̂−1
2 (t)ϕ̂1(t)}T]

=
2

n
{−u2 + (1− t)(u2 +

n

2
Λ̂−1
ψ +

n

2
ψψT)} − 1

n2
{u1 + s1(t)}{u1 + s1(t)}T

=(1− t)(Λ̂−1
ψ + ψψT)− 2

n
tu2 − {ψ + t(ȳ − ψ)}{ψ + t(ȳ − ψ)}T

=(1− t)Λ̂−1
ψ + t(ψψT − ȳψT − ψȳT)− 2

n
tu2 − t2(ȳ − ψ)(ȳ − ψ)T

=Λ̂−1
ψ − t2(ȳ − ψ)(ȳ − ψ)T.

As a check on our work we see that ϕ̂(0) provides the constrained MLE while ϕ̂(1) gives the

unconstrained MLE. We see that ϕ̂−1
2 (t) is symmetric and thus ϕ̂2(t) is symmetric meaning that

any transpositions of these terms may be ignored in future calculations. Throughout we will use

µ̂(t) to represent ϕ̂−1
2 (t)ϕ̂1(t). Remembering that any terms not involving t can be dropped from

our calculations we find ℓ{ϕ̂(t); s(t)} to be

ℓ{ϕ̂(t); s(t)} =ϕ̂T(t){u+ s(t)} + n

2
log(|ϕ̂2(t)|)−

n

2
ϕ̂T

1 (t)ϕ̂
−1
2 (t)ϕ̂1(t)

=nϕ̂T

1 (t)µ̂(t) + Tr
[

ϕ̂T

2 (t){u2 + s2(t)}
]

− n

2
µ̂T(t)ϕ̂2(t)µ̂(t)−

n

2
log(|ϕ̂−1

2 (t)|)

=Tr
[

ϕ̂2(t)
{n

2
µ̂(t)µ̂T(t)− n

2
Λ−1
ψ − n

2
ψψT + t(u2 +

n

2
Λ−1
ψ +

n

2
ψψT)

}]

− n

2
log(|ϕ̂−1

2 (t)|)

=Tr
[

ϕ̂2(t)
{

− n

2
Λ−1
ψ +

n

2
t2(ȳ − ψ)(ȳ − ψ)T

}]

− n

2
log(|ϕ̂−1

2 (t)|)

=Tr(−n
2
Ip)−

n

2
log(|ϕ̂−1

2 (t)|)

≡− n

2
log(|ϕ̂−1

2 (t)|).
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Similarly we find ℓ{ϕ̂(0); s(t)} as

ℓ{ϕ̂(0); s(t)} =ϕ̂T(0){u+ s(t)}
=nµ̂T(0)ϕ̂2(0)µ̂(t) + Tr[ϕ̂2(0){u2 + s2(t)}]

=Tr
[

ϕ̂2(0)
{

nµ̂(t)ψT + u2 + s2(t)
}]

=Tr
[

ϕ̂2(0)
{

nµ̂(t)ψT − n

2
Λ−1
ψ − n

2
ψψT + t(u2 +

n

2
Λ−1
ψ +

n

2
ψψT)

}]

≡Tr
[

ϕ̂2(0)
{

tn(ȳ − ψ)ψT + t(u2 +
n

2
Λ−1
ψ +

n

2
ψψT)

}]

=Tr
[

ϕ̂2(0)
{

tn(ȳ − ψ)ψT + t(nψψT − n

2
ȳψT − n

2
ψȳT)

}]

=0.

From here we can find the first piece of the conditional density:

exp[ℓ{ϕ̂(0); s(t)} − ℓ{ϕ̂(t); s(t)}] ≡ |ϕ̂−1
2 (t)|n2 .

S.6.2 Finding |Jϕϕ{ϕ̂(t); s(t)}| and the nuisance parameter adjustment

The likelihood in this scenario is the same as that in Example 5.3 of Fraser et. al. (2014). The

canonical parameterization is also unchanged and so we can borrow the result that

|Jϕϕ{ϕ̂(t); s(t)}| = |ϕ̂−1
2 (t)|p+2.

The only term involving t in the nuisance parameter adjustment is |ℓλλ{ϕ̂(0); s(t)}| which in

turn only involves t through ∂2/∂λ2{sT(t)ϕ}. Now Λµ is linear in λ = Λ and of course so is

Λ. As a result, all second order derivatives of ϕ with respect to λ disappear, meaning that the

nuisance parameter adjustment is constant.

S.6.3 Making a change of variables

Let’s call A = Λ̂−1
ψ , v = (ȳ − ψ) and B = 1

n

∑n
i=1(yi − ȳ)(yi − ȳ)T. By definition |Λ−1(t)| =

|A− t2vvT|. Using the matrix determinant lemma we see that

|Λ−1(t)| = det(A)(1 − t2vTA−1v)

By the constraint that Λ̂−1(t) must be a valid covariance matrix, tmax is the largest value of t
such that |Λ̂−1(t)| is positive definite. Λ̂−1(t) stops being positive definite as soon as one of its

eigenvalues becomes 0. Thus, tmax is the solution to |Λ̂−1(t)| = 0:

=⇒ tmax = (vTA−1v)−1/2.

Next we derive a formula that will be useful later on. It is easily seen that A = B + vvT. Using

the Sherman-Morrison formula on (B + vvT)−1 we see that

vTA−1v = vT

(

B−1 − B−1vvTB−1

1 + vTB−1v

)

v

=
vTB−1v

1 + vTB−1v
.
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Therefore, (vTA−1v)/(1− vTA−1v) = vTB−1v.

The directional p-value is given by

p(ψ) =

∫ (vTA−1v)−1/2

1 tp−1(1− t2vTA−1v)
n−p−2

2 dt
∫ (vTA−1v)−1/2

0 tp−1(1− t2vTA−1v)
n−p−2

2 dt
.

For simplicity let C = vTA−1v. The changes of variables made here are essentially identical to

that in the normal linear regression example in Section 3. Make the change of variables x = Ct2

in the integral in the numerator:

∫ C−1/2

1

tp−1(1 − t2C)
n−p−2

2 dt = k

∫ 1

C

x
p−2
2 (1− x)

n−p−2
2 dx.

Make the change of variables to x = 1/z:

= k

∫ 1

C−1

− 1

z2
(1

z

)

p−2
2
(

1− 1

z

)

n−p−2
2 dz

= k

∫ C−1

1

(1

z

)

p+2
2
(

1− 1

z

)

n−p−2
2 dz

= k

∫ C−1

1

(1

z

)
n
2 (z − 1)

n−p−2
2 dz.

Make the change of variables t = z − 1:

= k

∫ C−1
−1

0

( 1

t+ 1

)
n
2 t

n−p−2
2 dt

= k

∫
1−C
C

0

( 1

t+ 1

)(n−p
2 + p

2 )t
n−p

2 −1dt.

Make the final change of variables t = n−p
p x:

= k′
∫

(1−C)p
C(n−p)

0

(

1
n−p
p x+ 1

)(n−p
2 + p

2 )
(n− p

p
x
)

n−p
2 −1

dx

= k′′
∫

(1−C)p
C(n−p)

0

Γ(n−p2 + p
2 )

Γ(n−p2 )Γ(p2 )

n− p

p− 1

( 1
n−p
p x+ 1

)(n−p
2 +p

2 )
(n− p

p
x
)

n−p
2 −1

dx

= k′′PW

(

W >
n− p

p

C

1− C

)

= k′′PW

(

W >
n− p

p
vTB−1v

)

,
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where W ∼ F (p, n− p). Now performing the exact same sequence of changes of variables on

the integral in the denominator will result in a similar expression. The bounds of the integral will

change as follows:

∫ C−1/2

0

⇒
∫ 1

0

⇒
∫

∞

1

⇒
∫

∞

0

.

Thus the integral in the denominator of the directional p-value will equal

k′′PW (W > 0) = k′′. Hotelling’s T 2 statistic is given by

T 2 = (n− 1)vTB−1v and since n−p
p(n−1)T

2 ∼ Fp,n−p, the directional test is identical to the p-

value obtained from Hotelling’s T 2 test.
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