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SUMMARY

We de�ne strong matching to be the equality of frequentist and Bayesian tail prob-

abilities for the testing of scalar interest parameters; for the special case of a location

model strong matching is obtained for any interest parameter linear in the location pa-

rameters. A brief survey of methods for choosing a prior, of principles relating to the

Bayesian paradigm, and of con�dence and related procedures leads to the development of

a general location reparameterization. This is followed by a brief survey of recent likelihood

asymptotics which provides a basis for examining strong matching with general continuous

statistical methods. It is then shown in a general context that a at prior with respect

to the general location parameterization gives strong matching for linear parameters. For

nonlinear parameters strong matching requires an adjustment to the at prior which is a

nuisance information determinant standardized by the corresponding nuisance information

determinant for a related linear parameterization. Pivotal quantities are then used to gen-

erate second order preferred priors for linear parameters. A concluding section describes a

con�dence, �ducial, or default Bayesian inversion relative to the location parameterization.

This gives a means to adjust con�dence or related intervals by means of a personal prior

taken relative to the at prior in the location parameterization.



1. INTRODUCTION

We examine the agreement between frequentist and Bayesian methods using recent

methods from higher order likelihood asymptotics. As part of this we present a de�nition

of strong matching of the two methods; this is recorded at the end of this section. Theory

then developed produces the appropriate prior for assessing the full parameter and also

the appropriate adjustment to this for assessing a component scalar parameter of interest

In Section 2 we examine location models and show that a at prior in terms of the

location parameter provides strong matching for the family of parameters that are linear

in the location parameterization. We also show that this natural at prior does not in

general give strong matching for other parameters that can be described as curved in the

location parameterization.

In Section 3 we review the familiar choices for a default prior density. In most cases

these do not provide strong matching for linear parameters: this is an issue beyond the need

to specially target the prior in the case of non linear component parameters of interest.

In Section 4 we examine the Bayesian paradigm and the closely related Strong Likeli-

hood Principle. This leads to the de�nition of a less restrictive and perhaps more realistic

Local Inference Principle.

In Section 5 we examine con�dence and �ducial methods and compare these with

the Bayesian inversion method. We note that con�dence and �ducial di�er with respect

to a minor procedural technicality and that the distinction in the present context is of

negligible importance. We also note that in the presence of an appropriate default prior,

the Bayesian method permits the modi�cation of con�dence or �ducial presentations to

accommodate relative reemphasis based on a personal or communal prior de�ned relative

to the default prior.

In Section 6 we show that a location reparameterization exists for continuous models

under wide generality. The reparameterization is straightforward for a scalar full parame-
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ter, but is computationally more di�cult for vector parameters.

Section 7 gives a brief summary of recent likelihood asymptotics. This builds on a long

succession of asymptotic results, from the simple case of a scalar parameter exponential

model to a general asymptotic model with �xed dimension parameter. The important

recent extension for this latter case is then from a �xed dimension variable to the truly

asymptotic case with an increasing dimension variable. These results lead to a general

p-value for testing a scalar parameter: the mechanics of this involves the reduction to

the �nite dimension case by conditioning; a marginalization from this to obtain a scalar

measure of departure from a hypothesized value for the interest parameter; and �nally

a third order accurate approximation for the resulting p-value. The accuracy for these

is typically high even for very small samples. A notion then of how a variable measures

a parameter leads to the uniqueness of the results as based on the full data. Somewhat

related asymptotic results lead to a posterior right tail value for the Bayesian context.

Section 8 examines strong matching for a scalar parameter in the context of a general

continuous model. It is seen that this matching is available immediately for parameters

that are linear in the location reparameterization of Section 7. Then for nonlinear param-

eters a modi�cation of the prior is typically needed, as anticipated from Section 2. The

modi�cation is by a weight function or relative prior given as the ratio of the nuisance in-

formation determinant for the curved parameter to the corresponding nuisance information

determinant for the linear parameter.

Section 9 examines to what degree these results can be obtained from pivotal quanti-

ties.

Section 10 presents a third order location parameter pivotal quantity and discusses

how this can be used to determine a con�dence, �ducial, and default Bayesian posterior.

This posterior has direct con�dence type interpretation and yet can be adjusted by relative

prior to give subjective or communal posteriors.

If the frequentist context gives a p-value p( ) for assessing a value  for an interest
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parameter component  (�) and if the Bayesian posterior analysis gives a survivor type

assessment s( ) of the same interest parameter value  (�) =  , then the equality of p( )

and s( ) is called strong matching.

2. DEFAULT PRIOR FOR A LOCATION MODEL: AN OBVIOUS CHOICE

Consider a scalar y that directly measures a scalar � with error density f(e); the model

is f(y � �). To test a value � = �

0

with data y

0

, the basic frequency calculation gives the

probability position of the data under the hypothesis as the p value

p(�

0

) =

Z

y

0

�1

f(y � �

0

)dy ; (2:1)

this can be adjusted to present signi�cance in one or other direction or in either direction

from what is expected under �

0

. Alternatively in the Bayesian framework a natural choice

for default prior is the at or uniform prior �(�) = c. The corresponding posterior density

is then �(�jy

0

) = f(y

0

� �), and the corresponding survivor function recording posterior

probability greater than �

0

is

s(�

0

) =

Z

1

�

0

f(y

0

� �)d� : (2:2)

Clearly, we have strong matching p(�

0

) = s(�

0

), and each records P (e � e

0

) =

Z

e

0

�1

f(e)de

where e

0

= y

0

��

0

; for this, the frequentist variable is e = y��

0

and the Bayesian variable

is e = y

0

� � but the distribution for the e in each case is just the given f(e).

Now consider a vector variable y where each coordinate measures � with joint error

density f(e); the model is f(y � �1) and the error density can describe either indepen-

dency or dependence, without complication. To test a value � = �

0

the usual frequentist

calculation derived from Fisher is conditional along the line y

0

+L(1) parallel to the span

L(1) of the one vector 1; the p value is

p(�

0

) =

Z

^

�

0

�1

L(�

0

�

^

� +

^

�

0

)d

^

�
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where L(�) = cf(y

0

� �1) is the observed likelihood and the c in the integral is taken to

be the normalizing constant. For the Bayesian case the at default prior �(�) = c is again

a natural choice, giving the posterior density �(�jy

0

) = cL(�) with survivor function s(�

0

)

at � = �

0

,

s(�

0

) =

Z

1

�

0

L(�)d� :

Again we have strong matching p(�

0

) = s(�

0

), and note that the two probabilities each

record P (~e � ~e

0

) where ~e

0

=

^

�

0

� �

0

; for this the frequentist variable is ~e =

^

�� �

0

and the

Bayesian variable is ~e =

^

�

0

� � but the distribution for ~e in each case is the same, as given

by L(�~e+

^

�

0

).

Now consider a vector parameter � in the special context of a location model f(y �

�). For a scalar parameter component say �

1

, a corresponding variable is y

1

and it has

distribution free of �

2

; : : : ; �

p

. The corresponding p value is

p(�

0

1

) =

Z

y

1

�1

f

1

(y

1

� �

1

)dy

1

=

Z

^

�

0

1

�1

�

Z

1

�1

� � �

Z

1

�1

L(�

0

�

^

� +

^

�

0

)d

^

�

2

: : : d

^

�

p

�

d

^

�

1

=

Z

^

�

1

�

^

�

0

1

L(�

0

�

^

� +

^

�

0

)d

^

�

=

Z

e

1

�e

0

1

L(�e+

^

�

0

)de (2:3)

with e =

^

�� �

0

, �

0

= (�

0

1

; �

2

; : : : ; �

p

)

0

, and �rst coordinate value e

0

1

=

^

�

0

1

� �

0

1

; the constant

c is taken to be the normalizing constant. For the Bayesian case the at or uniform prior

�(�) = c is a natural choice giving the posterior �(

^

�jy

0

) = L(�). This leads to the posterior

survivor value for �

1

at �

0

1

:

s(�

0

1

) =

Z

�

1

��

0

1

L(�)

=

Z

e

1

�e

0

1

L(�e+

^

�

0

)de (2:4)

with derived variable e =

^

�

0

� � and �rst coordinate value e

0

1

=

^

�

0

1

� �

0

1

. Again we have

p(�

0

1

) = s(�

0

1

) with strong matching of frequentist and Bayesian results.
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The more general location model case with dim y > dim � can be put in the familiar

regression form f(y�X�). The frequentist analysis conditions on the residuals, y�X

^

� =

y

0

�X

^

�

0

, and derives the following conditional density for

^

�,

L(� �

^

� +

^

�

0

) = L(�e+

^

�

0

) ;

where L(�0 = cf(y�X�), e =

^

���, and the constant c is chosen to norm the distribution.

First consider a linear parameter  = �a

i

�

i

= a

0

�. The frequentist p-value for testing

 =  

0

has the form

p( 

0

) =

Z

~e�~e

0

L(�e+

^

�

0

)de

with derived variable ~e =

^

 � 

0

and value ~e

0

=

^

 

0

� 

0

. The Bayesian survivor value for

 =  

0

is

s( 

0

) =

Z

~e�~e

0

L(�e+

^

�

0

)de

with variable ~e =

^

 

0

� and value ~e

0

=

^

 

0

� 

0

. Again we have agreement, p( ) = s( ),

and thus strong matching of the frequentist and Bayesian calculations.

In summary: For any scalar-parameter location location model, the at prior �(�) = 1

gives strong matching for all parameters; and for any vector-parameter location model, the

at prior gives strong matching for any linear parameter, linear in the location parameters.

This leaves open the possibilities for nonlinear parameters. However a simple concluding

example shows that the at prior does not in general give strong matching for nonlinear

parameters.

Consider (y

1

; y

2

) with mean (�

1

; �

2

) and a standard normal error distribution. With

at prior the posterior distribution for (�

1

; �

2

) has mean (y

0

1

; y

0

2

) and standard normal

error. The scalar parameter  (�) = f(�

1

+R)

2

+ �

2

2

g

1=2

de�nes circles centered at (�R; 0).

Consider the hypothesis  (�) =  which de�nes a circle through ( � R; 0); then under

the hypothesis, the distribution has mean located on this circle. Suppose the data value

is (y

0

1

; 0), with say y

0

1

> ( � R) for easier visualization. The common frequentist p-value
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would record probability for a standard normal centered on the hypothesized circle and

calculated interior to the circle through the data; this is given as

p( ) = G

 

(R+ y

0

1

);

where G

�

(�) is the distribution function of the noncentral chi with 2 degrees of freedom

and noncentrality parameter �. From the Bayesian viewpoint the posterior is a standard

normal centered at the data (y

0

1

; 0); the resulting survivor function at  (�) =  records

probability for a standard normal centered at the data and calculated outside the circle

 (�) =  ; this is given as

s( ) = 1�G

R+y

0

1

( ) :

It is easy to see that p( ) 6= s( ). The geometry is more transparent: a normal density

is centered at a distance jy

0

1

�  + Rj from a circle and the calculation gives probability

bounded by the circle. In the frequentist case the point is inside the circle; in the Bayesian

case the point is outside: the �rst probability is less than the second.

As a partial converse for the scalar variable scalar parameter case suppose we have

strong matching for all y and � relative to a at prior in the parameterization �. Then

Z

y

�1

f(y; �)dy =

Z

1

�

f(y; �)d� ;

which gives f

;�

(y; �)+f

y

(y; �) = 0; where the subscripts denote di�erentiation with respect

to the indicated variable; this then in turn determines location model structure f(y; �) =

f(y � �; 0).

In conclusion: With location models, the commonly preferred at prior gives strong

probability matching for the broad class of linear parameter, but typically does not give

strong matching for nonlinear parameters. The pragmatic solution then for nonlinear

parameters is to target the choice of prior on the particular nonlinear parameter of interest.

3. ON CHOOSING THE PRIOR
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Consider a scalar or vector continuous parameter �. Perhaps the oldest choice for

a default prior is the uniform prior �(�)d� = cd� dating from Bayes (1763) and Laplace

(1814), and subsequently referred to as the prior that expresses insu�cient reason to prefer

one � value over another. This can have particular appeal if the parameterization has some

natural physical interpretation. However, in the restricted context of a model and data

only it lacks parameterization invariance: a uniform prior for � di�ers from a uniform prior

for say ' = �

3

.

In part to address this nonuniqueness Je�reys (1946) proposed a constant information

prior

�(�)d� = cji(�)j

1=2

d� (3:1)

where i(�) = Ef�`

��

(�; y) : �g is the information matrix and `

��

(�) = (@=@�)(@=@�

0

)`(�)

is the Hessian of the likelihood function. This prior is invariant under reparameterization

and as such has some special properties. In particular in the scalar parameter case the

reparameterization

�(�) =

Z

�

i

1=2

(�)d� (3:2)

yields an information function i(') that is constant in value. This leads to the prior d�(�),

which is the uniform prior in the parameterization �.

Consider the special case of a general location model say ffy�X�(�)g: the Je�reys'

prior ji(�)j

1=2

d� = cd� extracts the uniform prior calculated in the location parameteriza-

tions �(�); this is the preferred prior of the discussions in Section 2.

Now consider a general model f(y; �) but restricted initially to say the scalar parameter

case. Then as explained in Cakmak et al (1995, 1998) the model is location to the second

order in the information parameterization (3.2) and as noted above the Je�rey's prior (3.1)

gives a at prior for that parameterization. Thus for the scalar parameter case the Je�reys'

prior has to the second order the preferred properties discussed in Section 2.

Now consider the general model f(y; �) but with vector parameter �. It is widely

noted that the Je�reys' prior (3.1) does not treat component parameters in a satisfactory
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manner. For example, with the location model y

i

= �+�z

i

using standard normal error, the

information determinant ji(�; �

2

)j = n=2�

6

give the Je�reys' prior d�d�

2

=�

3

= d�d�=�

2

.

This leads to a posterior for �

2

that in e�ect derives from a �

2

�

2

distribution for �(y

i

��y)

2

,

on n degrees of freedom rather that on the natural n � 1 degrees; and for � it gives

a relocated and rescaled Student distribution again with an inappropriate n degree of

freedom. For this example an alternative preferred prior is d�d�=�. These two priors

correspond in this transformation model context to left and right invariant measures on

the location scale group. What is not widely noted, however, is that the right prior is

invariant under change of origin on the group parameter space and also has some other

natural properties (Fraser, 1972).

For the special case of location models we have seen in Section 2 that strong matching

is available for the wide class of linear parameters but is typically not available more

generally. This phenomenon has stimulated the development of default priors that are

speci�c to component parameters of interest. Thus Peers (1965) and Tibshirani (1993)

recommend a prior for � = (�;  ) with interest parameter  of the form

i

1=2

  

(�)g(�)d d�

where � is chosen orthogonal to the parameter  with i

 �

(�) = 0. The arbitrariness in the

choice of g(�) for the nuisance parameter can cause anomalies but the use of i

1=2

  

for the

interest parameter is a natural extension from the scalar Je�reys' case based on (3.2).

As noted above the appropriate handling of component parameters of interest seems to

require that the prior be targeted on the parameter of interest. Reference priors initiated by

Bernardo (1979) and then generalized (see Bernardo & Smith, 1994) can target a succession

of scalar parameter components. The prior is chosen to maximize the possible information

that can be contributed by the statistical model; it can be organized in terms of utility and

requires various limiting operations. For some cases the reference prior avoids di�culties

commonly associated with the Je�reys prior.
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4. BAYESIAN PARADIGM AND RELATED PRINCIPLES

The analysis of a statistical model f(y; �) with data y

0

in the context of an assumed

prior density �(�) is a standard conditional calculation yielding the posterior density

�(�jy

0

),

�(�jy

0

) / �(�)f(y

0

; �) : (4:1)

If there are doubts concerning the prior or if it is excluded on legal or other grounds, the

analysis would default to other statistical methodologies. Our interest in this paper centers

on default procedures that derive from the Bayesian paradigm (4.1).

In (4.1) the model information enters as the y

0

section of the full model, recorded as

cf(y

0

; �) = L(�; y

0

) = L

0

(�) : (4:2)

As such the analysis is said to conform to the Strong Likelihood Principle: that inference

should use only model information that is available from the observed likelihood function.

The Je�reys prior and the reference priors discussed in Section 4 both use sample

space averages for each � examined and thus do not conform to the Strong Likelihood

Principle.

At issue in a general sense is whether we should care about model information other

than at or near the observed data. A strong argument that we shouldn't care has been

given by John Pratt (1962) in his discussion of Birnbaum's (1962) analysis of su�ciency,

conditionality, and likelihood. Two instruments are available to measure a scalar �: the

�rst has a full range while the second has an upper limit on the reading. A measurement is

obtained which is within the reporting range of the second instrument; does it matter which

instrument made the measurement? To most Bayesians and a few frequentists the answer

is that it doesn't matter. Variations on the example argue that only model information in

a neighbourhood of the data point is relevant for inference.

Pratt (ibid) views these arguments as \a justi�cation of the (strong) likelihood prin-

ciple". This may be an overstatement as it seems to require an instrument or sequence of
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instruments that ultimately register only for the mathematical point, the observed data

point. Accordingly we focus on a more moderate principle that focuses on a neighbourhood

of the data point.

Consider an instrument that has an interval range, producing the measurement when

it is in range and producing e�ectively the relevant end point when out of range: the

distribution function on the range fully records the behaviour of the instrument. Now

consider this restrained instrument in comparison with a regular instrument whose distri-

bution function coincides on the particular interval. For a data value that falls within the

interval of the restrained instrument, the information available concerning the parameter

would seemingly be equivalent to that available from the same data with the unrestrained

instrument. We summarize this as a principle:

Local Inference Principle: Inference from a statistical model and data should use only

the distribution function at and near the data value together with the data value.

For a vector variable with independent coordinates, this would extend to the vector of

distribution functions. For the case with dependent coordinates some further framework

is needed that speci�es how the coordinates measure the parameters involved; pivotal

quantities can provide this extra framework.

The Local Inference Principle provides background for a notion of the sensitivity of a

measurement y to a change in the parameter �: the sensitivity concerning � at the data

point y

0

0

is de�ned as

v

0

(�) =

dy

d�

�

�

y

0

= �

F

;�

(y

0

; �)

F

y

(y

0

; �)

; (4:3)

where the dy=d� is calculated for �xed pivotal F and the subscripts in the third expression

denote di�erentiation. The sensitivity v

0

(�) can be viewed as the velocity of y at y

0

under

� change calculated for �xed p-value, that is, for �xed probability position F (y; �). This

velocity v

0

(�) at y

0

can be viewed as describing how y at y

0

measures the parameter �.

With a vector y = (y

1

; : : : ; y

n

)

0

of independent coordinates the sensitivity becomes a

velocity vector v

0

(�) that records the velocity of y at y

0

under change in the parameter
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value �:

v

0

(�) = (v

1

(�); : : : ; v

n

(�))

0

=

dy

d�

�

�

y

0

(4:4)

where v

i

(�) is given by (4.3) applied to the coordinate y

i

and the third expression is

calculated for �xed coordinate by coordinate p-values. Again in this vector context the

velocity v

0

(�) describes how y near y

0

measures the parameter �; a generalized de�nition

is available in Fraser & Reid(1999). Further discussion of this is presented in Section 7.

The Local Inference Principle allows the use of the observed likelihood function L

0

(�)

of course. It also allows the use of the sensitivity vector v

0

(�). We will see in Section 6

how the sensitivity vector provides an important calibration in the calculation of measures

of departure.

5. CONFIDENCE AND OTHER INVERSIONS

Consider a 95% con�dence procedure C(y). A pivotal type quantity z(y; �) is given

by the indicator function

z(y; �) = 1

C(y)

(�)

and the corresponding survivor function has a lower bound 0:95 at z = 1,

S(z; �) = P (z(y; �) � 1 ; �) � :95 :

As our concerns in this paper focus on continuous variables we �nd it convenient to re-

strict attention to exact con�dence regions at arbitrary con�dence levels: speci�cally we

assume that con�dence procedures are based on a pivotal quantity z(y; �) that has a �xed

distribution, is continuously di�erentiable, and has one-one mappings between any pair of

z

i

, y

i

, � for each i,

z

i

(y

i

; �)$ y

i

(z

i

; �)$ � : (5:1)

The last condition indicates that each coordinate variable y

i

can be viewed as measuring

�, as discussed in Section 4. For a vector � each y

i

would be a vector of corresponding

dimension.
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Now consider a set A on the pivot space with probability content �. Then

C(y) = f� : z(y

0

; �) in Ag (5:2)

is a � level con�dence region. For example with (y

1

; : : : ; y

n

) from the normal (�; �

2

) and

z

i

= (y

i

��)=�, the set A = fz :

p

n�z=s

z

< t

�

g using the right tail � point gives the 1��

con�dence lower bound �y

0

� t

�

s

0

y

=

p

n. In this case the pivotal quantity as just de�ned

above would require the nominal coordinate to be a pair of coordinates with a sign or order

condition, but this is a minor technical point of no real consequence here.

A somewhat di�erent way of obtaining an assessment on the parameter space is pro-

vided by the �ducial method. This again requires a pivotal quantity and we assume

the continuity and other properties as above. Fiducial also requires the same dimen-

sion for variable and parameter or a reduction to this by conditioning on an ancillary

variable: accordingly we assume that an ancillary a(y) = a(z) is available so that given

a(y) = a(y

0

) = a

0

the pairwise links y $ z $ � are one-one.

The �ducial distribution for � is obtained by mapping the pivotal distribution for given

a(z) = a

0

onto the parameter space using the one-one mapping z $ � for �xed y = y

0

. A

� level �ducial region D(y

0

) then has a proportion � of the �ducial distribution. We note

in passing that the inverse of D(y

0

) using the one-one mapping for �xed y

0

gives a set A

on pivot space with probability content �.

We now compare the two inversion methods and assume a model-data instance

ff(y; �); y

0

g together with the pivotal structure described above. First we note that the

�ducial is more restrictive in that it requires the set A to have conditional probability �

given the ancillary in addition to the marginal probability �. We could of course add this

conditioning requirement as a positive feature for a con�dence procedure.

For � con�dence we choose a � region A and then invert, while for �ducial we choose

a � region D(y

0

) and can note that there is a corresponding � region A. If indeed we

choose the regions after the model-data instance ff(y; �); y

0

g is available, then there is
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a one-one correspondence between con�dence and �ducial procedures; indeed, there is

no mathematical di�erence, just a procedural di�erence: choose and invert or invert and

choose. There can of course be di�erences in assessment particularly in the frame of

repeated sampling from the same �.

As a third method of inverting consider the use of the Bayesian paradigm (4.1). A

prior density is a density with respect to some speci�ed support measure. Suppose we have

a preferred default prior. We could then combine it with the speci�ed support measure to

give a new support measure; the default prior density then becomes the uniform or at

prior with respect to the support measure and other possibilities say �(�) for the prior

become modi�cations of the default prior. This is part of the background for the Bernardo

(1979) reference prior approach (Bernardo & Smith, 1994).

In the location model case examined in Section 2 the location reparameterization

gave a natural Euclidean support measure. The at prior relative to this measure gives a

Bayesian inversion that agrees with the con�dence inversion and the �ducial inversion. The

option then of using a prior �(�) relative to the chosen parameterization can be viewed

as a way of supplementing con�dence or �ducial intervals to account for the modifying

information �(�). We pursue this link more generally in Section 10.

6. THE LOCATION PARAMETERIZATION

Consider a statistical model with variable and parameter of the same dimension. With

an observed data point y

0

we would of course be primarily interested in the observed log

likelihood `

0

(�) = `(�; y

0

). Then, following the discussion in Section 4, we could also quite

naturally be interested in the gradient of the log likelihood taken with respect to y at y

0

:

'

0

(�) = r`(�; y)

�

�

y

0

= (@=@y)`(�; y)

�

�

y

0

: (6:1)

As likelihood is typically viewed as a+ log f(y; �) with arbitrary a we �nd it necessary for

the uses of (6.1) to work from likelihood that has been standardized to have value 0 at the

14



observed maximum likelihood value, that is, to take likelihood to be

`(�; y) = log f(y; �)� log f(y;

^

�) : (6:2)

In this case '

0

(

^

�

0

) = 0. If we work more loosely with '(�) = (@=@y) logf(y; �) then the

'(�) that we use in the various results to follow will be replaced by '(�) � '(

^

�) and in

e�ect will be given as

'

0

(�) =

@

@y

`(�; y)

�

�

y

0

�

@

@y

`(�; y)

�

�

(

^

�

0

;y

0

)

; (6:3)

Now consider a more general model f(y; �) where the dimension n of the variable is

larger than the dimension p for the parameter. The familiar reduction is by means of

su�ciency but this is only available for quite special model structure. An examination of

general asymptotic models shows that quite generally an ancillary say a(y) of dimension

n�p is available thus permitting the conditional analysis as found for example with location

models; see Section 2. Of course the ancillary is an approximate ancillary of appropriate

order that su�ces for third order inference calculations; see Section 7 and Fraser & Reid

(1999).

For this general model context the gradient of likelihood would be calculated within

the conditional model or equivalently for computation calculated from the full model but

taken tangent to the conditioning variable. Let V = (v

1

; : : : ; v

p

) be p vectors tangent to

the observed ancillary surface at the data point. Then we write '

0

(�) = `

;V

(�; y

0

) if the

likelihood function has been standardized at the maximum likelihood value; this uses

`

;V

(�; y) = (@=@V

0

) `(�; y) = f`

;v

1

(�; y); : : : ; `

;v

p

(�; y)g (6:4)

where `

;v

(�; y) = (d=dt)`(�; y+ tv)

�

�

t=0

de�nes the directional derivative in the direction v.

More generally with `(�; y) = log f(y; �) we write

'

0

(�) = `

;V

(�; y

0

)� `

;V

(

^

�

0

; y

0

) (6:5)
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which incorporates the likelihood standardization.

For notation we now use just `(�) and '(�) but emphasize that these depend on the

observed data y

0

and also in the general case on the tangent directions V to the ancillary

at the data point.

In the context of the Strong Likelihood Principle or in the context of the standard

Bayesian paradigm we can view the e�ective model to be any model so long as the likelihood

at y

0

agrees with the observed `(�). In the present context with the Local Inference

Principle we can view the e�ective model to be any model in the much smaller class that

has both likelihood and likelihood gradient equal to the observed `(�) and '(�). On the

basis of the discussion concerning the Local Inference Principle, we view this smaller class

of models as the more appropriate background for the inference context.

Now consider the possible models that have the given characteristics `(�) and '(�) at

the data y

0

. An exponential model with given `(�) and '(�) has the form

f

E

(y; �) =

c

(2�)

p=2

expf`(�) + '

0

(�)(y � y

0

)gj|̂

''

j

�1=2

(6:6)

where |̂ = �`

''

(�)j

'̂

is the negative Hessian calculated with respect to '. This arises

(Fraser & Reid, 1993; Cakmak et al, 1995, 1998; Cakmak et al, 1994; Andrews, Fraser &

Wong, 1999) as a third order exponential model approximation and is referred to as the

tangent exponential model at the data y

0

. This model is shown (Fraser & Reid, 1993) to

provide third order inference at y

0

for any model with given `(�) and '(�).

In a somewhat related manner it is shown (Cakmak et al, 1995, 1998; Cakmak et al,

1994) that the location model with given `(�) and '(�) has the form

f

L

(y; �) =

c

(2�)

p=2

exp

�

`f�(� � y + y

0

)g

�

j|̂

0

��

j

�1=2

(6:7)

where |̂

0

��

is the observed information on the � = �(�) scale and �(�) is an essentially

unique location reparameterization. This arises as a third order location model approx-

imation and provides third order inference at y

0

. The parameter �(�) has uniqueness
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(Fraser & Yi, 1999) subject to expandability in a Taylor's series. We refer to �(�) as the

location reparameterization for the statistical model with given `(�) and '(�) at the data

y

0

.

For the case of a scalar variable and scalar parameter an explicit expression is available

for �(�):

�(�) =

Z

�

^

�

0

�

`

�

(�)

'(�)

d� (6:8)

where `

�

(�) = (@=@�)`(�) is the score function for the given model (Fraser, 1996).

For the vector parameter case the de�nition of �(�) gives the di�erential equation

`

'

0

(�) = �'

0

(�)

@�(�)

@'

0

(6:9)

where � is viewed as a function of '. This has a unique solution subject to expandability in

a power series. A simple expression for �(�) as in the scalar case does not seem accessible

(Fraser & Yi, 1999).

The notion of a variable measuring a parameter in a general sense has been discussed

previously and viewed as an important part of statistical modelling. A coordinate by

coordinate pivotal quantity can provide a de�nition for this. Let z = z(y; �) be a pivotal

quantity as de�ned in Sections 4 and 5; this can describe the manner in which a variable and

parameter are interrelated, or how the variable in a general sense measures the parameter.

The directions V = (v

1

; : : : ; v

p

) that are tangent to an essentially unique second order

ancillary are available from the pivotal quantity:

V =

@y

@�

�

�

(y

0

;

^

�

0

)

= �z

�1

;y

0

z

�

0

�

�

(y

0

;

^

�

0

)

; (6:10)

where z

�

0

= (@=@�

0

) z(y; �), z

;y

0

= (@=@y

0

) z(y; �) and the middle expression involves

di�erentiation for �xed pivotal value. This provides quite generally the n� p matrix V for

the de�nition (6.5) of '(�). In the scalar parameter case the matrix V becomes a vector

v that is equal (4.3) to the velocity vector v

0

(�) at � =

^

�

0

. For background, see Fraser &

Reid (1999).
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7. RECENT LIKELIHOOD ASYMPTOTICS

Recent likelihood asymptotics has produced the conditioning procedure described in

Section 6 that in e�ect reduces the dimension of the variable from n for the primary

variable to p for the conditional variable which is then the essential measurement variable

for the parameter which is also of dimension p (Fraser & Reid, 1999). This then builds on

earlier theory that permits the reduction of this variable to a scalar pivotal quantity that

gives an essentially unique third order measure of departure from a value say  for a scalar

interest parameter  (�). (Barndor�-Nielsen, 1986; Fraser & Reid, 1993, 1995). And this

in turn builds on earlier likelihood and saddlepoint approximation theory that gives quite

accurate p-values (Daniels, 1954; Lugannani & Rice, 1980).

In almost all cases, frequentist or Bayesian, the resulting approximation is obtained

through one or other of the combining formulas

�

1

(r;Q) = �(r) + �(r)

�

1

r

�

1

Q

�

�

2

(r;Q) = �fr � r

�1

log(r=Q)g

(7:1)

where �(�) and �(�) are the standard normal density and distribution functions and r and

Q are very specially chosen measures of departure. These formulas were developed in

speci�c contexts by Lugannani & Rice (1980) and Barndor�-Nielsen (1986, 1991).

For the case of testing a scalar interest parameter  , the r quite generally is the signed

likelihood ratio

r = sgn(

^

 �  ) �

h

2

�

(

^

�; y)� `(

^

�

 

; y)

	

i

1=2

(7:2)

where

^

�

 

is the constrained maximum likelihood value given the �xed tested value for  .

The other ingredient Q is quite problem speci�c in the recent development of asymptotic

likelihood theory and a general de�nition has been a primary goal.

First consider a scalar full parameter � with interest parameter  = �. In this case

the reparameterization '(�) from (6.5) with (6.10) is a scalar parameter and the Q is a
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corresponding standardized maximum likelihood departure

q

f

= sgn(

^

� � �) � j'̂� 'jj|̂

''

j

1=2

: (7:3)

With (7.1) and (7.2) this gives the p-value p(�). For the Bayesian approach with � as the

integration variable and �(�) as the prior, the survivor posterior probability s(�) is given

by (7.1) and (7.2) with Q taken to be a standardized score departure

q

B

= `

�

(�)j|̂

��

j

�1=2

�

�(

^

�)

�(�)

: (7:4)

These given third order accuracy (Fraser 1990; Fraser & Reid, 1993).

Now consider the general case with interest parameter  and an explicit nuisance pa-

rameter �; for this it is convenient to take �

0

= (�

0

;  ). Let '(�) be the reparameterization

given by (6.5) with (6.10). The frequentist calculation needs a scalar parameter linear in

'(�) that stands in for the interest parameter  , and the local form of  (�) at

^

�

 

provides

the coe�cients:

�(�) =

 

'

0

(

^

�

 

)

j 

'

0

(

^

�

 

)j

'(�) ; (7:5)

where  

'

0

(�) = @ (�)=@'

0

= (@ (�)=@�

0

) � (@'(�)=@�

0

)

�1

=  

�

0

(�)'

�1

�

0

(�). The calcula-

tions also require an information determinant for � at the tested  (�) =  but recalibrated

in the ' parameterization:

j|

(��)

(

^

�

 

)j = jj

��

(

^

�

 

)j � j'

�

0

(

^

�

 

)j

�2

(7:6)

where the r� (r�1) determinant is evaluated as with a design matrix X, jXj = jX

0

Xj

1=2

.

For the frequentist p-value p( ) the formulas (7.1) use

q

f

= sgn(

^

 �  ) � (�̂� �̂

 

)

(

j|̂

''

j

jj

(��)

(

^

�

 

)j

)

1=2

(7:7)

and for the Bayesian survivor probability s( ) use

q

B

= `

 

(

^

�

 

)

(

j|̂

��

j

jj

��

(

^

�

 

)j

)

�1=2

�(

^

�)

�(

^

�

 

)

: (7:8)
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Examples may be found in Fraser & Reid (1995, 1999) and Fraser, Reid & Wu (1999),

Fraser, Wong, Wu (1999). These formulas have third order accuracy (Fraser & Reid, 1995,

1999; Fraser, Reid, & Wu, 1999). A general formula version without explicit nuisance

parameterization is available (Fraser, Reid and Wu, 1999).

8. STRONG MATCHING

For a scalar parameter � and a location model we saw in Section 2 that a at prior in

the location parameterization gives strong matching of frequentist and Bayesian methods.

We now use likelihood asymptotics to examine a converse: if strong matching is available

then what are the constraints on the model and the prior.

Consider a data point y

0

and suppose that strong matching occurs for all values of �,

that is, r(�) = s(�). The expressions for r(�) and s(�) using (7.3) and (7.4) both involve

the same signed likelihood ratio r but have di�erent expressions (7.3) and (7.4) for the

needed Q. The equality of r(�) and s(�) thus gives the equality of q

f

and q

B

, which with

the '(�) as standardized '̂ = 0 from (6.3) gives

�(�)

�(

^

�)

=

`

�

(�)

�'(�)

�

'

�

(

^

�)

|̂

��

= c

�

�

�

�

d�(�)

d�

�

�

�

�

;

(8:1)

using (6.8); the �rst expression on the right is for the case that '(�) is an increasing function

of � and has been centered with '̂ = 0. It follows that strong matching is obtained with a

at prior in the location parameterization (6.8) or equivalently with the prior

�(�) /

�

�

�

�

�

`

�

(�)

'(

^

�)� '(�)

�

�

�

�

�

(8:2)

based on the initial � parameterization. The constant in (8.1) compensates for the possibly

di�erent scaling for �(�) and � at

^

�; thus c�

�

(

^

�) = 1.

It is of interest that the change of parameter de�ned by d�(�)=d� is closely related to

the velocity v(�) of y with respect to � as recorded in (6.10) based on a pivotal quantity.
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We have from (6.8) that

d�(�)

d�

= �

`

�

(�); y

0

`

;y

(�; y

0

)� `

;y

(

^

�

0

; y

0

)

=

dy

d�

�

�

�

y

0

: (8:3)

In the third expression the di�erentiation is taken for �xed `(�; y)�`(

^

�; y), thus treating this

standardized likelihood as a pivotal quantity near y

0

; for some related views on likelihood

as pivotal quantity, see Hinkley (1980). We can thus view (8.3) as a velocity v(�) based

on an approximate pivotal rather than on the exact pivotal used in (6.10).

Now consider a statistical model f(y; �) with vector parameter �. We saw in Section 2

that a location model with a at prior in the location parameterization has strong matching

for parameters that are linear in the location parameter. We now examine inference for an

interest parameter  (�) that is possibly nonlinear in the present general model context.

For a data point y

0

let `(�) and '(�) be the corresponding likelihood and likelihood

gradient. We have noted in Section 6 that there is a corresponding essentially unique

location parameterization; let �(�) be such a parameterization. For statistical and in-

ference properties we note in passing that both '(�) and �(�) are unique up to a�ne

transformations; they can then be standardized to coincide with � �

^

�

0

to �rst derivative

at

^

�

0

.

Suppose that we have strong matching p( ) = s( ) for inference concerning  . It

follows then that q

f

and q

B

from (7.7) and (7.8) are equal giving

�(

^

�

 

)

�(

^

�)

=

`

 

(

^

�

 

)

��̂

 

j'

�

(

^

�)j

j|̂

��

j

j|

��

(

^

�

 

)j

j'

�

(

^

�

 

)j

; (8:4)

where we assume that '(�) is centered so that '(

^

�) = '̂ = 0.

To better examine the structure of the prior and to avoid the constant that appears

in the scalar case (8.1) we standardize the parameterizations. First we take the de�nition

of '(�) with respect to coordinates at y

0

to be such that |̂

''

= I; next we rescale ��

^

�

0

so

that ' and ��

^

�

0

agree to �rst derivative at � =

^

�

0

. We then choose a linear transformation

of the linear parameterization �(�) so that it too coincides with ��

^

�

0

at � =

^

�

0

. In these
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new parameterizations we then have |̂

��

= |̂

��

= |̂

''

= '

�

(

^

�) = �

�

(

^

�) = I. This eliminates

the middle factor in (8.4).

The derivation of the Bayesian survivor function s( ) assumes that the integration

coordinates are (�

0

;  ) rather than the more general � used here. To handle the general case

here and yet avoid the use of the more general formula in Fraser, Reid & Wu (1999), we

recalibrate  (�) in a one-one manner so that j@ =@�j = 1 along the curve � =

^

�

 

generated

by varying  ; for this we note that the recalibration of  does not a�ect the Bayesian

survivor function derived from the integration parameter �, as the essential Bayesian inputs

are just the variable of integration and the prior density. With this rede�nition we then

obtain an interpretation for the �rst factor in (8.4):

`

 

(

^

 )

��̂

 

=

�

�

�

�

@ (�)

@�

0

(�)

�

�

�

�

�1

^

�

 

: (8:5)

We can view this as making a component type adjustment to the prior that in e�ect

attributes a at prior to change in � along � =

^

�

 

. This aspect then is in accord with the

results from the scalar parameter case in (8.1) and (8.2); it also has an observed information

correspondence with the Peers-Tibshirani prior mentioned in Section 3.

The results for the scalar parameter case (8.1) and the calculation just given for the

�rst factor in (8.4) suggest that the location parameterization �(�) is the natural reference

parameterization for Bayesian integration. Accordingly we now take the integration vari-

able � to be �(�) and then examine the prior when taken with respect to �. In particular

the �rst factor in (8.4) becomes unity and we then obtain

�(

^

�

 

)

�(

^

�)

=

j|

[��]

(

^

�

 

)j

j'

[�]

(

^

�

 

)j

(8:6)

where jj

[��]

(

^

�

 

) is the information determinant recalibrated in the � scale and j'

[�]

(�

 

)j

is the Jacobian determinant with � rescaled in � coordinates, all at

^

�

 

.

Now consider a rotation (

1

; : : : ; 

p�1

; �) of the revised � coordinates such that � =

constant is tangent to  (�) at

^

�

 

. If as a special case we have that  (�) is a linear parameter
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in terms of the location parameterization �, then we have that strong matching is obtained

with a at prior that has �(

^

�

 

)=�(

^

�) = 1. In this case, � is equivalent to the special  (�)

at

^

�

 

and  = (

1

; : : : ; 

p�1

) is the nuisance parameter. Now if  (�) is nonlinear at

^

�

 

we

still have j'

[�]

(

^

�

 

) = j'

[]

(

^

�

 

)j and thus have that

�(

^

�

 

)

�(

^

�)

=

j|

[��]

(

^

�

 

)j

j|

[]

(

^

�

 

)j

=

j|

��

(

^

�

 

)j

j|



(

^

�

 

)j

; (8:7)

which is the ratio of the Hessian determinant of likelihood at

^

�

 

calculated for the curved

nuisance parameter �(�) to the Hessian determinant calculated for the linear parameter

(�), both treated as nuisance parameters at

^

�

 

and both calibrated in the same pa-

rameterization. The �nal expression in (8.7) follows by noting that the ratio is free of the

coordinate scaling provided that  is obtained from the integration coordinates �

0

= (�

0

;  ).

In conclusion, for the vector parameter case we have strong matching if the interest

parameter is linear (in the latent location parameterization) and other wise have strong

matching if the general at prior is adjusted by the nuisance information ratio (8.7).

For an example consider the normal circle problem at the end of Section 2. For the

full parameter this is a location model and we have (�

1

; �

2

) = ('

1

; '

2

) = (�

1

; �

2

) with

observed information determinants equal to one at all points. For a curved component

parameter we examined the distance  = f(�

1

+ R)

2

+ �

2

2

g of (�

1

; �

2

) from (�R; 0); let

r = f(y

1

+ R)

2

+ y

2

2

g be the analogous distance of (y

1

; y

2

) from (�R; 0). Certainly r is a

natural variable measuring  . Also let � and a be the related polar angles for (�

1

; �

2

) and

(y

1

; y

2

) relative to the positive axis from the point (�R; 0): We can view � as the nuisance

parameter and note the a � � has the von Moses distribution with shape parameter  r

conditional on r.

The �rst factor in (8.4) has the value 1 for this example, as  directly records Euclidean

distance. The second also has the value 1 as the informations are already standardized.

The third factor recorded in (8.7) takes the value

j

��

(

^

�

 

)

j



(

^

�

 

)

=

r

 

=

�(

^

�

 

)

�(

^

�)

:
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Thus the prior  

�1

adjusts the general at prior  d�d = d�

1

d�

2

to give strong matching

for  (�) to the third order.

We can give a geometrical overview of this by examining (�

1

; �

2

) and (y

1

; y

2

) = (

^

�

1

;

^

�

2

)

on the same 2-dimensional plane. For given  we have (�

1

; �

2

) on the circle  (�) =  ; for

given r we have (y

1

; y

2

) on the circle r(y

1

; y

2

) = r. The vector from (�

1

; �

2

) to (y

1

; y

2

)

is standard normal from the frequency viewpoint and also from the Bayesian at prior

viewpoint. >From the frequentist viewpoint this vector is integrated on a region having

endpoint (y

1

; y

2

) on the circle r = r

0

; from the Bayesian viewpoint this vector is integrated

on a region having origin point (�

1

; �

2

) on the circle  (�) =  ; recall the comments at the

end of Section 2 on the probability on the inside or outside of a circle at a distance from

the datapoint. This shows clearly the need for the Bayesian adjustment for a curved

parameter component; and as indicated above the adjusted prior is uniform d�d in the

polar coordinates.

9. LOCATION PRIORS FROM PIVOTAL QUANTITIES

In the preceeding section we showed that strong matching to third order was obtained

by the use of a at prior with respect to a location parameterization �(�). An explicit

expression (8.3) for �(�) was obtained in the scalar parameter case and an existence result

for �(�) was presented for the vector parameter case. These results were based on an

observed likelihood `(�) = `(�; y

0

) and an observed likelihood gradient '(�) = `

;V

(�; y

0

).

Calculation of the gradient '(�) required an approximate ancillary with vectors V =

(v

1

; : : : ; v

p

) tangent to the ancillary at the data point; fortunately for applications the

tangents V can be derived from a pivotal quantity (5.1) without explicit construction of

the approximate ancillary. In this section we show that the at prior d�(�) itself can be

developed to second order directly from the pivotal quantity.

The approximate ancillary for these calculations was derived in Fraser & Reid (1995,

1999). This used a location model (Fraser, 1964) that coincides with the given model at
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�

0

=

^

�

0

to �rst derivative. The orbits on the full sample space for this location model

were then bent to give second derivative, second order ancillarity as calculated in terms of

the given model; this order of ancillarity then provides third order inference. While the

constructed ancillary would seemingly depend on the data point, it can be shown to be

free of that choice to the requisite order for third order inference.

The bending of the orbits was to eliminate a marginal e�ect of second order magnitude

and thus to produce ancillarity to the second order. Our interest here however centers on

the conditional distribution on the orbits and how it is a�ected by the bending. For this

we follow Fraser & Reid (ibid) and restrict attention initially to the scalar parameter case.

First consider the location model orbits (Fraser, 1964) derived from properties of

the given model to �rst derivative at �

0

. The velocity vector v(�

0

) from (4.4) gives the

direction of the orbit at the data point and also the magnitude of y-change corresponding

to �-change at �

0

. Does the bending of the orbits a�ect this?

Consider the conditional distribution along the location orbit through y

0

but using

the given model rather than the tangent location model. The distribution will typically

not be location; however a reexpressions of the variable and the parameter can make it

location to second order (Cakmak et al, 1998), with standardized form say

(2�)

�1=2

exp

�

�

(y � �)

2

2

+

a

p

n

(y � �)

3

6

+

k

p

n

�

: (9:1)

In terms of the original parameter and variable the non location characteristics will to

second order depend on some variable say x which by general theory (Fraser & Reid, 1995)

can be examined in terms of a one dimensional conditional distribution, with standardized

form say

1

p

2�

e

�x

2

=2

to �rst order. Now consider bending in the context of the two dimensional conditional

distribution for (x; y). For the conditional distribution of y suppose we bend the orbit

to the right say and condition on X = x � cy

2

=2n

1=2

with c > 0; the new conditional
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distribution for y has location �(1�cX=n

1=2

) and scale (1�cX=2n

1=2

). At the point y = 0

we then have that dy=d� = 1+ cX=n

1=2

, written as say expfk

1

=n

1=2

g, which is a constant

free of �. Thus the bending changes the velocity v

0

(�

0

) to expfk

1

=n

1=2

gv

0

(�

0

).

Now consider the velocity vector v(�). At the data y

0

this is tangent to an orbit

generated by the location model derived from �rst derivative change in the given model

at the value �. Such orbits are typically at an O(n

�1=2

) angle to the bent orbit just

described except of course at the point having maximum likelihood value �, where the

orbit is tangent to the bent orbit. The conditional distribution on the bent orbit as

opposed to this � orbit distribution will then have a factor expfk

1

=n

1=2

g coming from

the curvature in the manner described above for the value �

0

. In that bending result the

standardized variable y recorded distance from the maximum likelihood surface (y = 0).

Now the reference maximum likelihood surface corresponds to the value � and a contour

with �xed y is parallel to this surface. To transfer the velocity vector v(�) to the bent orbit

with tangent space Lfv(�

0

)g we should thus project parallel to this � surface. The observed

maximum likelihood surface di�ers from this by an O(n

�1=2

) angle; and the projection of

v(�) to Lfv(�

0

)g is through an O(n

�1=2

) angle. Thus it su�ces to project parallel to the

observed maximum likelihood surface and still retain O(n

�1

) accuracy.

Now let Hv(�) be this projection. We then have that the velocity vector on the curved

orbit is expfk

1

=n

1=2

gHv(�). It follows that the location prior satis�es

d�(�) = expfk

1

=n

1=2

gjHv(�)jd� (9:2)

when calibrated by unit change at y

0

or satis�es

d�(�) =

jHv(�)j

jv(�

0

)j

d� (9:3)

when calibrated by unit change in � at �

0

.

To simplify these expressions we now examine the process of projecting parallel to the

observed maximum likelihood surface. The observed maximum likelihood surface satis�es

`

�

(

^

�

0

; y) = 0
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and the gradient vector nominally perpendicular to the surface is given by

k(y;

^

�

0

) = `

�

0

;y

(

^

�

0

; y) (9:4)

which is the vector w = k(y

0

;

^

�

0

) at the data point y

0

. The length of the vectors in (9.3)

can then be compared by projecting them to L(w), that is, by projection parallel to the

maximum likelihood surface. Accordingly we can rewrite (9.3) as

d�(�) =

w

0

v(�)

w

0

v(�

0

)

d� : (9:5)

This expression for the prior was calculated from a distribution function viewpoint

whereas (8.3) was derived from a likelihood viewpoint. A small detail remains to reconcile

the di�erent approaches. Consider the asymptotic distribution given the approximate

ancillary. Using the pivotal quantity F (y; �) we obtain

d�(�) = �

F

;�

(y

0

; �)

F

y

(y

0

; �)

d� ;

as in (4.3); while from the likelihood analysis we obtain

d�(�) = �

`

�

(�; y

0

)

`

;y

(�; y

0

)� `

;y

(�

0

; y

0

)

d� :

The integration results in Andrews et al (1999) show that these di�er to third order by a

constant factor expfk

2

=ng and thus provide the same location reparameterization to that

order.

We now record a preliminary examination of the vector parameter case. A �rst deriva-

tive change at a parameter value � generates (4.4, 6.10) a vector v(�) for each direction of

change from the value �; these can be assembled as an n� p array

V (�) =

�

v

1

(�); : : : ; v

p

(�)

�

of p vectors corresponding to the p coordinates for �. The vectors V = V (

^

�

0

) provide the

tangent vectors (6.10) to the second order ancillary.
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First suppose that � is the location reparameterization whose existence is established

in Fraser & Yi (1999). It follows that �rst derivative change at a value � generates on the

ancillary surface the location orbits for the tangent location model. Within this location

model we seek the Jacobian determinant recording the ratio of volume change at y

0

to

volume change at �.

The bending of the conditional distribution in the vector parameter case was examined

in Fraser & Reid (1995, 1999). Then following the pattern earlier in this section for the

scalar case, we �nd that the standardized coordinates are rescaled by factors expfk

3

=n

1=2

g

free of � and that projection can be taken parallel to the observed maximum likelihood

surface with retention of second order accuracy.

The gradient vectors nominally perpendicular to the maximum likelihood surface are

given by (9.4) which at the data point y

0

form the n� p array

W = `

�

0

;y

(

^

�

0

; y

0

) : (9:6)

We can then compare V (�) to V (�

0

), projected parallel to the observed maximum likelihood

surface, by taking the inner product array with W giving the location prior

d�(�) =

jW

0

V (�)j

jW

0

V (�

0

)j

d� (9:7)

when calibrated by unit change at the observed �

0

=

^

�

0

.

10. LOCATION PIVOTAL QUANTITIES

In Section 5 we discussed con�dence and other inversion procedures and found an

equivalence among them in the context of a location statistical model: a at prior relative to

the location parameterization produces a Bayesian inversion that coincides with con�dence

and other inversions. In addition this then allows that a personal or communal prior

expressed relataive to the location parameterization can be used to adjust con�dence or

�ducial priors to include the personal or communal input.
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We note also that a location parameterization for the presentation of likelihood has

been strongly promoted by Professor David Sprott. For some discussion and related attrac-

tive properties see Fraser & Reid (1998). The present use of the location parameterization

in the inversion context has close ties to reference priors; see for example, Bernardo and

Smith (1994).

Consider �rst the case of a scalar parameter � and suppose the corresponding variable

is scalar as isolated say by su�ciency or conditionality. If the parameter � itself is location

then z =

^

� � � is pivotal. More generally, the location parameterization (6.8) gives the

approximate pivotal quantity

z = j

1=2

��

(

^

� � �) =

^

j

1=2

��

Z

�

^

�

�`

�

(�

'(�)

d� (6:1)

To the �rst order this is standard normal; to the second order it has a �xed distribu-

tion which is available from likelihood (6.7) in terms of �; and to the third order it has

pivotal properties available from Section 7. These pivotal quantities can be inverted to

give con�dence, �ducial or at prior intervals, and these in turn can be adjusted by prior

information expressed relative to the location parameterization.

Now briey consider the vector parameter case. The location prameterization �(�)

exists as noted in Section 6. Let

^

j

1=2

��

be a square root of the observed information expressed

in terms of �; then

z =

^

j

1=2

��

(

^

� � �)

is an approximate vector pivotal quantity with �xed distribution properties as indicated

by the scalar case above. This can be inverted to give con�dence, �ducial or at prior

Bayesian regions following the methods in Sections 2 and 5 using approximation theory

from Section 6.
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