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WHEN SHOULD MODES OF INFERENCE DISAGREE?
SOME SIMPLE BUT CHALLENGING EXAMPLES1

BY D. A. S. FRASER∗, N. REID∗ AND WEI LIN†

University of Toronto∗ and AidVoice Lab†

At a recent conference on Bayes, fiducial and frequentist inference,
David Cox presented eight illustrative examples, chosen to highlight poten-
tial difficulties for the theory of inference. We discuss these examples in light
of the efforts of the conference, and related meetings, to study the similarities
and differences between the approaches to inference. Emphasis is placed on
the goal of finding a distribution for an unknown parameter.

In memory of Steve Fienberg

DF: Steve was an undergraduate student long ago in classes for which I was for-
tunate to be the instructor; he had that extraordinary enthusiasm for the discipline
and life, which makes the classroom scene a joy and a reason in itself. We remained
close friends ever since. He was persistent in the pursuit of directions and needs
in all areas of our discipline and tireless in bringing together people who could
participate and contribute. He will be deeply remembered in his multiple roles.

NR: When I met Steve in recent years, at conferences or committee meetings,
he always seemed to be busily tapping away on his iPad, and when he looked
up he would say “Annals of Applied Statistics”. (Although as it turned out he
was editing several journals at the same time.) Steve was an inspiring mentor to
me, about editorial work and much else. He showed by example how much fun
a professional life can be when you take the effort to meet many people, try to
understand what they are working on, keep an open mind about the potential of
that work and focus on advancing our field.

1. Introduction. The fourth in a series of workshops on Bayesian, Fiducial,
and Frequentist inference took place from May 1 to 3, 2017, at Harvard Univer-
sity; the theme was “foundational thinking in statistics and inference under uncer-
tainty”. The series of workshops has been abbreviated to “BFF”, meant to connote
at the same time “Best Friends Forever”. At least part of the motivation for this is
the desire to explore the possibility that approaches to inference by the three routes
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in the title can all be used to provide something like a distribution for an unknown
parameter.

The Bayesian method based on the posterior distribution for a parameter of
interest, conditional on the data, is perhaps the most accessible approach to con-
structing a distribution for a parameter. While “frequentism” is often associated
with the approach to inference based on maximizing the power of tests, building on
the fundamental lemma of Neyman and Pearson (1933), more recently the empha-
sis has shifted towards pure frequency properties, and the frequentist label in this
trio refers to confidence distribution functions developed from Fisher (1930) and
Cox (1958), and reviewed and extended by Xie and Singh (2013) and Schweder
and Hjort (2016). The fiducial approach originated with Fisher (1930), was devel-
oped in transformation models in Fraser (1961) and more recently has been the
focus of generalized fiducial inference in work by Hannig and his collaborators,
for example, Hannig (2009) and Hannig et al. (2016). The p-value function or
significance function approach of Fraser (1990) that we emphasize below is a fre-
quentist approach, close to the confidence distribution, but taking inspiration from
a structural version of Fisher’s fiducial argument.

David Cox submitted to the workshop eight seemingly simple statistical ex-
amples as challenges for approaches to statistical inference. We list the examples
below, and then provide a brief overview of the “B, F, F” approaches to inference.
Our view is that the theory of higher order approximation based on the likelihood
function addresses some of the issues in the eight examples, by providing both a
measure of departure and a calculation of the significance function that is available
in wide generality. An outline of the theory is given below, and then applied to the
examples.

Although the examples are highly idealized, they isolate issues that can arise in
applications where the anomalies might not be so clear-cut, and thus highlight the
role of theory in applications. We provide some examples of this in the relevant
sections discussing each example.

2. Cox’s challenge questions.

A Variables y1, y2 are independently normally distributed with means μ1, μ2
and common variance 1. The parameter of interest is ψ = μ2/μ1 and the observed
data are y1 = 0.5, y2 = 10.

B The same model as A, but with data y1 = 0.5, y2 = 0.5.
C Variables y and θ are independently normally distributed with means θ

and 0 and common variance 1. The parameter of interest is θ . The value y = 6 is
observed.

D Variables yi1, yi2 are independently normally distributed with means μi

and common variance σ 2 for i = 1, . . . , n. The parameter of interest is σ 2.
E Variables yi , i = 1, . . . , n, are independently normally distributed with

means μi , and common variance 1. The parameter of interest is �μ2
i .
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F Variables yi , i = 1, . . . , n are independently normally distributed with
means cos(θxi) and common variance 1. For large n, x1, . . . , xn are arbitrarily
distributed over (0,1).

G There are n decimal digits. Is their marginal distribution consistent with
those digits being independent and uniformly distributed on the set {0,1, . . . ,9}?

H What is the role of physical randomization?

In these examples, “routine” application of methods, either Bayesian or fre-
quentist, lead to difficulties. Examples A and B highlight anomalies in the con-
struction of confidence intervals; Examples D and E draw attention to the potential
for Bayesian, likelihood and fiducial methods to fail in models with large numbers
of nuisance parameters. Example C isolates in extreme form disagreement between
different sources of information bearing on the problem. This can possibly be re-
solved in any individual instance, but how do theories of inference deal with this in
general? Example F, and to some extent examples A and B, focus attention on the
parameterization of the model. In example G the null hypothesis is well-defined,
but alternatives are not. Example H draws attention to the divide between infer-
ence based on modelling and inference based on the design of the data collection
method; the latter can be viewed as nonparametric, although current approaches to
nonparametric inference tend to be model-based, even if the models are in some
sense infinite-dimensional.

3. BFF. Inference in a Bayesian approach is reported as a posterior distribu-
tion for the parameter, conditioned on the observed data. Probabilities for θ are
introduced by a prior distribution, so the role of this prior is central. Bayes (1763)
used a mathematically convenient prior to suggest probability for θ . Many later
writers saw this as very arbitrary, even subjective; see for example, Fisher (1956),
Chapter 2. Laplace (1812) was somewhat accepting of the Bayesian approach, and
put forward a notion of what would now be called a noninformative prior, meant
to express complete lack of prior knowledge about the parameters.

Many, although not all, modern treatments of Bayesian theory for inference
accept that inferences based on the posterior distribution from a particular prior
should be calibrated under the model for the data. That is, the prior should lead
to posterior inference that maintains its stated properties under repeated sampling
from the model for the response f (y; θ). Often this calibration is defined by the
notion of probability matching of one-sided intervals for scalar parameters, which
is extensively developed in Datta and Mukerjee (2004), in which case a posterior
region of probability α should be a confidence region at the stated level. There is
a lengthy discussion of this requirement of calibration in Berger (2006), Goldstein
(2006), Fienberg (2006), and Wasserman (2006) and other papers in the same vol-
ume.

In contrast, many modern applications of Bayesian inference do not dwell on
the choice of prior or on a need for calibration, but rather make a choice of con-
venience, possibly in the expectation that this will not influence the result “too
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much”. Fraser (2011) argues that Bayesian inference obtains justification only
through calibration, also called repetition validity or confidence. Rubin (1984) ex-
amines calibration in a wider sense, averaging over a range of models for the data,
rather than calibrating under the given model.

A major difficulty is that calibration needs to be targeted on the parameter of
interest, so the usual approach of marginalizing a multi-dimensional posterior to a
series of individual parameters of interest gives posteriors that typically cannot be
calibrated. A more general concern is raised in Reid and Cox (2015), who discuss
different notions of probability, and question whether probability based on the un-
certainty in our information should have the same standing for scientific inference
as an empirical probability based on a given sampling mechanism.

Fisher (1930) introduced fiducial inference as a means of establishing a distribu-
tion for a parameter that did not require the injection of probability from outside the
model. He assumed that a statistic T was available with a distribution depending
only on the parameter of interest θ , with a known distribution function F(·; θ). He
further supposed that the distribution F was continuous and stochastically increas-
ing, and argued that fixing T at its observed value t in the equation p = F(t; θ)

established a relationship between p and θ . Then assuming that the relationship
was monotone in θ , the fact that p follows a uniform distribution under the model
induces a distribution for θ called the fiducial distribution, with density

f (θ |t)dθ = − ∂

∂θ
F (t; θ)dθ.

Fraser (1966) reformulated Fisher’s fiducial argument for transformation mod-
els. In these models linking the observation, or a statistic, to the parameter, is more
direct. For example in a location model, a change from an observed value y to
y + a can be offset by a corresponding change in the location parameter θ to θ − a

without changing the basic distribution. Fraser (1966) showed how this could be
used to construct structural distributions for parameters in general transformation
models. A local location version of that argument leads to

(1) f (θ |t)dθ = −Fθ(t; θ)dθ = Ft(t; θ)

{−Fθ(t; θ)

Ft (t; θ)

}
dθ = L(θ)

(
dt

dθ

)
dθ,

where L(θ) is the likelihood function and dt/dθ can be described as the effect of
θ at a data point t . We have used subscripts as shorthand for partial differentiation,
and the derivative of t with respect to θ is for fixed value of the pivot F(t; θ). The
final expression defines a data-dependent prior, discussed in Fraser et al. (2010).

Neyman (1937) restricted the relationship between t and θ to sets C of values
for the pivot and constructed what he called confidence sets, replacing the term
fiducial. Cox (1958) noted that one-sided confidence bounds could be converted to
a confidence distribution:

. . . in the common simple cases, where the upper α limit for θ is monotone in α, there
seems no reason why we should not work with the confidence distributions for the
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unknown parameter. These can either be defined directly, or can be introduced in terms
of the set of all confidence intervals at different levels of probability.

More formal notation for this was presented in Efron (1993). Defining the quantile
function θt (α) by Pr{θ ≤ θt (α)} = α as calculated from the density f (t; θ), the
confidence density is then πt(θ) = dαt(θ)/dθ , where αt(θ) = θ−1

t (α).
It is usually the case that the parameter of the statistical model is a vector, but

the monotonicity requirement for the construction of fiducial or confidence distri-
butions essentially restricts discussion to a scalar parameter of interest. Although
a Bayesian approach seems to have an advantage in this case, because a posterior
distribution for a single parameter can be obtained by marginalizing the joint pos-
terior, as noted above the resulting inference is not calibrated unless the prior is
targeted on the parameter of interest.

In the fiducial and confidence approaches, it is necessary to find a statistic that
measures the parameter of interest, and typically to do this for one scalar parameter
at a time. One approach is to use the asymptotic normal distribution of familiar
likelihood-based quantities, such as the maximum likelihood estimate or the square
root of the log-likelihood ratio statistic. These will give approximate confidence
distributions; for recent discussion see Schweder and Hjort (2016), Chapter 3.

Our view is that the theory of higher order approximation based on the likeli-
hood function leads to an essentially unique function of the data measuring a scalar
parameter of interest and provides an accurate approximation to its distribution in
finite samples. While the accuracy of the approximation is emphasized most often
in the literature, the simplification offered by providing a single pivotal quantity
may be more important. In the next section we summarize this theory by focussing
on the key steps in the argument, and in the following section consider the eight
challenge problems. The theory is based on a local location construction which
provides approximately ancillary directions and leads to an approximate condi-
tional model. The nuisance parameters are then eliminated by integration, and the
resulting distribution is inverted to give confidence bounds and a significance func-
tion. In this sense it combines aspects of the fiducial argument as reformulated
for transformation models, and the confidence distribution approach. An approach
less directly tied to transformation models, but leading to similar expressions, is
reviewed in Pierce and Bellio (2017).

4. Likelihood inference and accurate approximation.

4.1. Local location approximation. Suppose our model f (y; θ) for y =
(y1, . . . , yn) has parameter θ ∈ R

p . Fraser and Reid (1995) obtained a p-
dimensional model on the sample space by conditioning, using inference direc-
tions V = (v1, . . . , vp) at the observed value y0. Assuming that a pivotal quantity
z(y; θ) is available, which could be a vector of marginal distribution functions for
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independent components, these directions are obtained as

V = −
(

∂z

∂y

)−1(
∂z

∂θ

)∣∣∣∣
(y0,θ̂0)

= d

dθ
y(z; θ)

∣∣∣∣
(y0,θ̂0)

,

where in the second expression z is fixed, and appears in a special context in
(1). The inference directions V record how the parameter influences the data in
a neighbourhood of the observed data point and associated maximum likelihood
estimate. The conditional model in the linear space of these directions can be
approximated by an exponential model with p-dimensional canonical parameter
ϕT(θ) = (∂/∂V )
(θ;y)|y0 , called the tangent exponential model, and this model
has all the structure needed to provide third-order accurate p-value or significance
functions [Fraser and Reid (1995)].

4.2. Exponential family models. An exponential model for y has a density of
the form

f (y; θ) = exp
{
ϕT(θ)s(y) − κ(θ)

}
h(y),

where s has the same dimension as the canonical parameter ϕ. The parameter
ϕ(θ) applied to s(y) provides a logarithmic tilt of the base density h(y) and κ(θ)

provides the needed norming. In this model inference for θ is clearly based only on
the variable s(y), and the distribution of s can be accurately approximated using
saddlepoint methods, leading to

(2) h(s;ϕ)ds
.= ek/n

(2π)p/2 exp
{−(
̂ − 
)

}|ĵ |−1/2 ds,

where 
̂ − 
 = 
(ϕ̂) − 
(ϕ) is the log of the likelihood ratio, ϕ̂ = ϕ(θ̂) is the max-
imum likelihood estimate and ĵ = jϕϕ(ϕ̂) = −∂2
(ϕ̂)/∂ϕ ∂ϕT is the Fisher in-
formation matrix; each of these quantities also depends on s. This approximate
density depends on relatively simple and widely used statistical quantities. The
notation .= is used here and below to indicate the leading term of an asymptotic
approximation in n. As described in Section 4.1, it can be used whether or not the
original model for y is of exponential family form.

4.3. Scalar case. If the dimension of ϕ is p = 1, (2) can be written

(3) h(s;ϕ)ds
.= ek/n

(2π)1/2 e−r2/2 r

q
dr,

where r2/2 = 
̂ − 
, r = sign(ϕ̂ − ϕ){2(
̂ − 
)}1/2 and q = (ϕ̂ − ϕ)|ĵϕϕ|1/2 is the
Wald departure. The distribution function evaluated at the observed value s0 is the
p-value or significance function:

p(ϕ) = H
(
s0;ϕ) .=

∫ r0

−∞
ek/n

(2π)1/2 e−r2/2 r

q
dr

.= 

(
r0 − 1

r0 log
r0

q0

)
= 

(
r∗)

.(4)
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This records the percentile position of s0 relative to a parameter value ϕ. The
approximation in (4) has relative error O(n−3/2) when the distribution of s is con-
tinuous, and O(n−1) when it is discrete [Barndorff-Nielsen (1991)].

4.4. Scalar parameter of interest. When ϕ is a vector, and we have a scalar
parameter of interest ψ(ϕ), we need a distribution for a scalar variable that mea-
sures ψ . For this we are led to the marginal density of an ancillary recorded as a
function of s on L0

ψ = {s : λ̂ψ = λ̂0
ψ }, where λ = λ(ϕ) is a complementing nui-

sance parameter. This integral on the ancillary contour can be approximated by
Laplace’s method, leading to

(5) h(s;ψ)
.= ek/n

(2π)1/2 e
−r2

ψ/2|ĵ |−1/2∣∣j(λλ)(ϕ̃)
∣∣1/2

, s ∈ L0
ψ,

where ϕ̃ = ϕ̂ψ is the constrained maximum likelihood estimate, rψ = sign(ψ̂ −
ψ)[2{
(ϕ̂)− 
(ϕ̃)}]1/2 and |j(λλ)(ϕ̃)| = |jλλ(ϕ̃)||ϕ̃T

λϕ̃λ| is the nuisance information
for λ rescaled to ϕ; see for example Fraser, Reid and Wu (1999). The integration
is along an ancillary contour for given ψ , and the adjustment factor involving
the nuisance information determinants is independent of the contour. Essentially
the nuisance parameter is eliminated by marginalizing over the distribution that
describes that parameter, for a fixed value of ψ [Fraser (2016)].

The p-value function p(ψ) for the scalar ψ(ϕ) is the observed distribution func-
tion from (5). This is available to third order by using the step from (3) to (4) but
replacing q by an adjusted Wald departure

(6) Q = sign(ψ̂ − ψ)|χ̂ − χ̃ |{|j̃(λλ)|/|ĵϕϕ|}−1/2
,

where χ = χ(ϕ) is a local linear approximation to the parameter of interest on the
ϕ scale [Brazzale, Davison and Reid (2007), Chapter 8.5]. The associated signifi-
cance function is

(7) p(ψ) = H 0(s;ψ)
.= 

(
r − 1

r
log

r

Q

)
= 

(
r∗)

,

where we have integrated along the line L0
ψ described above. As with (4), the

approximation has relative error O(n−3/2) in continuous models and O(n−1) in
discrete models.

The integration from (3) to (4), or from (5) to (7), relies on an asymptotic expan-
sion of r in terms of q , or Q, of the form r = q + aq/n1/2 + bq2/n + O(n−3/2),
and in particular requires that r is a monotone function of q or Q, at least to
O(n−1/2).

The density (5) also gives the marginal log-likelihood function for ψ provided
we use a reparametrization for which the observed Fisher information is rotation-
ally symmetric, in order to have a common reference distribution on different L0

ψ
lines. This marginal log-likelihood function is

(8) 
m(ψ) = 
(ψ, λ̂ψ) + 1

2
log |j̃(λλ)|,

assuming that the observed Fisher information ĵϕϕ = I ; see Fraser (2003).
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4.5. Vector parameter of interest. The density approximation (5) applies for
scalar or vector parameters of interest, but the p-value calculation (7) requires a
one-dimensional integration. Davison et al. (2014) and Fraser, Reid and Sartori
(2016) show how the exponential family model can be used to construct a direc-
tional test and a directional p-value.

5. Cox’s challenge questions.

5.1. A, B: Ratio of normal means. This is an abstraction of a problem treated
in Bliss (1935a, 1935b) in connection with probit modelling of biological assays.
The dose at which a 50% response is expected, the ED50, is estimated by a ra-
tio of independent normal variables: in Bliss’s case the estimates of the intercept
and slope of the regression. Fieller (1954) noted that the confidence region for
the ED50 given in Bliss (1935b) could apply more generally, described this as
the fiducial distribution and noted that the same distribution arose by inverting a
pivotal quantity. Fieller (1954) and Bliss (1935a, 1935b) assumed the variances
were estimated from the data, and used the t distribution as the reference, but in
the present example the variances are known, and the relevant pivotal quantity is
w = (y2 − ψy1)/(1 + ψ2)1/2, which has a standard normal distribution. In per-
sonal communication David Cox wrote that it was Fisher who gave the solution
in Bliss (1935b); in the acknowledgments Bliss writes: “I am indebted especially
to Prof. R.A. Fisher, without whose help it could not have been written”. Fieller
(1954) emphasized that pivotal inversion of w in the usual way could result in a
confidence interval that was the whole real line, or confidence sets of the form
(−∞, a] ∪ (b,∞), which he called exclusive. Example A leads to an exclusive
set.

The pivotal quantity w has an unusual feature: it measures the departure from
ψ in an increasing direction if y1 > 0 and in a decreasing direction if y1 < 0, and
these contradictory measures of information are averaged in using the normal dis-
tribution for w. Thus the fiducial or confidence distribution (w) is not monotone
in ψ ∈ R; see for example Schweder and Hjort (2016), Section 4.6. As David Cox
has pointed out in personal communication, if the observed value of y1, and hence
the maximum likelihood estimate of μ1 is close to zero, then under the model
there is appreciable chance that it is less than zero, and the sign of ψ is not well
determined.

Asymptotic calculations are not needed here, but the requirement of monotonic-
ity in the theory, combined with Figure 1, suggests a reparametrization to the angle
α = tan−1(ψ); the radial distance ρ gives a convenient complementary nuisance
parameter. Parametrizing the model with the angle α as the parameter of interest
provides a way to enforce the continuity and monotonicity required by the theory
outlined in Section 4, at the expense of changing the parametrization. Although in
principle α takes values on the circle in R

2, the meaningful range for α is α̂ ±π/2,
as outside this range we again lose monotonicity and continuity; see Figures 2
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FIG. 1. The dotted lines correspond to points with a given slope ψ . On the sample space (left), w

measures departure relative to increasing ψ when y1 > 0 and decreasing ψ otherwise. The parame-
ter space (right), shows that fixing the parameter of interest together with a direction corresponding
to increasing parameter value leads naturally to the angle α as an appropriate parametrization.

and 3. A referee has noted that the parameter space is data-dependent, which is
unusual, but seems unavoidable here. The line L0

α in the sample space, where the
nuisance parameter is fixed at its constrained estimate, goes through the observed
value (y0

1 , y0
2) and is in the direction α +π/2 corresponding to increasing α on the

sample space. The distribution on this line is standard normal.
In Figure 2 we centre the graph at the maximum likelihood value; the pivotal

statistic is w = −y1 sinα + y2 cosα, the p-value function for α is (w) and the
likelihood function is exp(−w2/2). This pivotal is algebraically the same as the
Fieller pivotal, but in effect is used conditionally and handles the directional effect
of ψ on the data point.

For the data of example A the p-value function is monotone in α, has range
(0,1) and provides a set of nested confidence intervals for α in the usual way. For
the data of example B both y1 and y2 are close to 0, and the p-value function and
the likelihood function take values over a much smaller interval; see Figure 3.

The intervals for α obtained by this route can if desired be converted back to
the scale of the parameter of interest ψ , and the plot of the significance function
on this scale is consistent with the solution using the pivotal w, but the evident
discontinuity in the plot draws attention to the unusual nature of the inference
problem. In example A, the upper limit for α transforms to a negative limit for ψ ,
and vice versa.

This example suggests that any theory of distributions for parameters needs
to pay close attention to the parametrization of the model. Schweder and Hjort
[(2016), Section 4.6] use confidence densities that are not required to be monotone,
so that exclusive intervals, for example, are included in the approach. Xie and
Singh (2013) treat this example in an independent sampling context by finding the
approximate distribution of x̄1/x̄2, in their notation, but don’t address the difficulty
highlighted by this example.

A Bayesian approach to this problem can avoid “difficult” confidence sets by
using informative prior distributions that downweight values of μ1 near zero, but
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FIG. 2. The significance function and likelihood function for example, A: y1 = 0.5, y2 = 10. The
maximum likelihood estimate is α̂ = 1.52 and we show both the α and ψ scale for the parameter.
There are two discontinuities in ψ shown, at α = ±π/2, where y1 changes from positive to negative.
The discontinuity at π/2 leads to what Fieller (1954) called exclusive confidence regions for ψ at
confidence level 0.95. Horizontal dotted lines are drawn at p = 0.975 and p = 0.025.

this seems an artificial solution. Ghosh (2011) discusses probability matching pri-
ors for this model; as with the approximation of Xie and Singh (2013) this re-
quires an asymptotic setting for validity, and does not draw attention to the need
for monotonicity or to the discontinuity noted above.

Estimation of a ratio arises in more complex examples of regression calibration,
as well as other contexts; for example, the estimation of density ratios is discussed
in the context of the analysis of photometric and spectroscopic data in astronomy
in Izbicki, Lee and Freeman (2017), Section 4.
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FIG. 3. The significance function and likelihood function for example, B, (y1 = 0.5, y2 = 0.5). The
maximum likelihood estimate is α̂ = 0.785 and we show both the α and ψ scale for the parameter.
There are discontinuities in ψ , at α = ±π/2, where y1 changes from positive to negative. Confidence
intervals for α are only available for a restricted range of confidence levels, (0.24,0.76). For other
confidence levels all values of α and all values of ψ are consistent with the data. Horizontal dotted
lines are drawn at p = 0.975 and p = 0.025.

5.2. C: Prior-data conflict. If we assume that the normal distribution for θ is
a genuine prior in the sense of Efron (2013), for example, based on prior obser-
vation of a random process, then the prior is more accurately described as part of
the model, and standard probability calculus enables derivation of the conditional
distribution for θ given y = y0, which is N(y0/2,1/2). From Figure 4 however we
see that this distribution is neither compatible with the initial distribution for θ nor
with the observed value from the model for y, and it seems appropriate to report
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FIG. 4. Conditional likelihood function for θ , given y = 6 (top). Individual likelihood functions
(bottom) show the incompatibility of this with both the prior and the model.

the individual density functions shown there. The separation of the two models
suggests that one or other assumption is incorrect. From a practical viewpoint, this
seems uncontroversial.

For a more formal approach, Box (1980) suggested using the marginal distri-
bution for y which is N(0,1.41); an observation of 6 conveys the inadequacy of
the modelling. The marginal distribution for y is also called the prior predictive
distribution; the posterior predictive distribution or some modification of it is of-
ten recommended. Two recent examples implementing posterior predictive checks
are Simoiu, Corbett-Davies and Goel (2017) and Hartmann et al. (2017). A for-
mal theory for assessing conflict between the prior and the data is summarized in
Evans (2015), Chapter 5. In the application studied in Keele and Quinn (2017), an
informative prior for the parameter of interest was required, and sensitivity of the
inference to that prior is carefully considered.

A referee questioned what the fiducial approach might suggest in this example.
This question highlights one difficulty, that “the fiducial approach” is not very
well defined. If the information about θ is ignored, then the fiducial distribution
for θ is N(y0,1). If both the N(0,1) model for θ and the N(θ,1) model for y are
considered to be on equal footing, but with θ unobserved, then there seems to be
no basis for the construction of a fiducial density.

In this example the theory of Section 4 is not directly helpful, because all the cal-
culations outlined there are valid under the assumption that the model for y, given
θ is correct. However the general principle of using diagnostic plots or calculations
to check the assumptions continues to apply, no matter how the inference is con-
ducted. In a setting where there is an asymptotic theory in n, one might expect that
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a large discrepancy between the conventional normal approximation and a higher
order approximation casts doubt on the validity of the model. We are not aware
however of any work that has succeeded in demonstrating a general result along
these lines. Typically even the first order approximation is dependent on the cor-
rectness of the model, although exceptions to this are discussed in Ogden (2017),
where conditions on approximation likelihoods are given that ensure standard first
order theory continues to be valid.

5.3. D: Neyman–Scott problem. This is an exponential model, with n nuisance
parameters and a scalar parameter of interest, ψ = σ 2. The canonical parameter is

ϕ =
(

μ1

σ 2 , . . . ,
μn

σ 2 ,
1

σ 2

)
,

and the canonical variable is{
ȳ1, . . . , ȳn,

n∑
i=1

(
y2
i1 + y2

i2
)}

.

The saddlepoint density approximation (5) leads to an expression equivalent
to deriving inference from the marginal density of s2 = �i(yi1 − yi2)

2, which
is 2σ 2χ2

n . The method of marginalizing along an ancillary contour for fixed σ

sketched in Section 4.3 is equivalent in this example to eliminating the nuisance
parameters μi by marginalizing over the distribution of ȳi . The saddlepoint ap-
proximation is not needed as the exact distribution for s2 is readily available, but
if used, the information correction term in (5) gives the correct degrees of freedom
adjustment for inference about σ 2 [Cox and Reid (1987)]. Use of the usual like-
lihood methods based on the profile log-likelihood function in this example leads
to an inconsistent estimator of σ 2. Although in principle the higher order the-
ory does not apply to the setting with increasing numbers of nuisance parameters,
the methodology that it provides for eliminating nuisance parameters does lead to
the accepted solution. It is a feature of the approximations that the elimination of
nuisance parameters in examples where there is an exact conditional or marginal
density for the parameter of interest is a close approximation to this exact density,
even with increasing numbers of parameters; see for example Sartori (2003).

This example is also discussed in Schweder and Hjort [(2016), Section 4.4],
where the pivotal quantity �i(yi1 − yi2)

2/(2σ 2) is deduced from the form of the
profile log-likelihood function. With this choice of pivotal quantity the confidence
density is the same as the fiducial density. As noted above any joint fiducial distri-
bution for the vector parameter (μ1, . . . ,μn, σ ) cannot be marginalized to a valid
marginal fiducial distribution. A historical survey of this discussion is provided
in Schweder and Hjort (2016), Chapter 6. A Bayesian approach to this example
is discussed in Ghosh [(2011), Example 3], where it is shown that the improper
prior for location-scale models dμ1 · · ·dμn dσ/σ leads again to the same solution
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based on the χ2
n distribution, but the posterior based on Jeffreys’ prior leads to in-

consistent inference for σ 2. Ghosh (2011) motivates the location-scale prior as a
two-group reference prior.

5.4. E: Curved parameter of interest. This example is due to Stein (1959),
and is a simple illustration that using a flat prior for μ gives a posterior marginal
distribution for the parameter of interest ψ = ‖μ‖2 that is far from calibrated; see
for example, Cox and Hinkley (1974), page 383. It has also been discussed as an
example where marginalizing a joint fiducial density fails.

The model is an exponential family with canonical parameter μ and variable y.
Following the development of Section 4.4, the density measuring ψ is on the line
in the sample space where the nuisance parameter estimate is constant, λ̂ψ = λ̂0

ψ .
The easiest version of the nuisance parameter for the calculations is λ = μ/‖μ‖,
so that μi = ψ1/2λi , λ̂i,ψ = ψ1/2yi/‖y‖, and the line L0

ψ goes through y0 and

ψ1/2y0/‖y0‖. Integration to this line is marginalization over the sphere through y0

with radius ψ . The inference summaries p(ψ) and 
(ψ) are then given by (7) and
(8). In a slightly different setting, where yi ∼ N(0,1/n), i = 1, . . . , k, Reid and
Sun (2010) show that the normal approximation to r∗

ψ is very close to the exact
distribution of n‖y‖2, which is a noncentral χ2

k distribution with noncentrality
parameter nψ2, even for very small values of n and large values of k. In this version
of the problem this exact distribution can be recovered in a Bayesian argument by
using a matching prior for ψ ; the prior π(μ) ∝ ‖μ‖−(k−1) is both a probability
matching prior and a reference prior [Datta and Ghosh (1995)]. This prior will not
be a matching prior for any other function of μ; it is necessary to target the prior
on the parameter of interest.

Nearly all applications of Bayesian models in complex applied settings involve
marginalization of a joint posterior to construct inference about one or more pa-
rameters of interest. While the Stein example may be an extreme case, it seems
plausible that some version of this could apply in other settings, unless the prior is
effectively swamped by the data. Tak et al. (2017) explicitly check the frequentist
coverage of their posterior intervals in simulations, but this does seem to be the
exception.

5.5. F: Cosine regression. This model has a scalar parameter and an n-
dimensional variable y and the log-likelihood function can be multi-modal. To
reduce from the dimension of the data to that of the parameter using the approxi-
mate conditioning described in Section 4.1, we compute the inference direction v,

v =
{

∂

∂θ
cos(θx1), . . . ,

∂

∂θ
cos(θxn)

}T∣∣∣∣
(y0,θ̂0)

= −{
x1 sin

(
θ̂0x1

)
, . . . , xn sin

(
θ̂0xn

)}T
.



764 D. A. S. FRASER, N. REID AND W. LIN

The tangent exponential model is normal with variance one and mean

μ(θ) = (
vT/‖v‖){

cos(θx1), . . . , cos(θxn)
}
.

This has likelihood function L(μ) = φ{(vT/‖v‖)y − μ} and significance function

p(μ) = 
{(

vT/‖v‖)
y − μ

};
μ is the canonical parameter for this exponential family.

An example of a log-likelihood function with equally spaced values of x on
(0,1) is illustrated in Figure 5 (left). Removing the interval constraint, here by
letting xi = i, gives an oscillating log-likelihood function supporting disjoint in-
tervals for values of θ , as described in Cox and Hinkley (1974), Chapter 7.5. Cox
[(2006), Example 7.4] considers a related time-series regression problem, show-
ing that the usual asymptotic theory for likelihood inference does not apply to the
estimation of θ in the context of Figure 5 (right). This example has some simi-
larities to the ratio problem of examples A and B in that inference for the given

FIG. 5. Cosine regression (example F). Plots of a log-likelihood function (top) and significance
function against θ (middle) and against μ (bottom) for n = 10, θ0 = 1, with xi = i/n (left); xi = i

(right).
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parameter of interest does not lead to a series of nested confidence intervals, but
there is a parametrization in which this can be attained. However in this case the
parametrization seems more difficult to interpret.

In a Bayesian approach a U(0,2π) prior on θ may well be viewed as non-
informative; under this prior the posterior distribution and the log-likelihood func-
tion have the same behaviour, and the construction of posterior quantiles for θ

would lead to the same anomalies as standard likelihood inference. An informa-
tive prior for θ could in principle smooth out the oscillations in the likelihood, at
the expense of injecting information into the solution. To construct a confidence
distribution, or a fiducial distribution, requires specification of a pivotal quantity
by some means; the most direct pivotal quantity is the residual sum of squares,
but this is equivalent to the log-likelihood function and will lead to the same dif-
ficulties. A very similar log-likelihood function arises in a much more complex
model described in Tak et al. (2017), where the profile log-likelihood is used for
the parameter of interest, which is a time delay in a trigonometric regression.

5.6. G: Random numbers. The decimal digits are (x1, . . . , xn) and we de-
fine y0, . . . , y9 to be the number of 0′s, . . . ,9′s. The hypothesis to be assessed
is that the marginal distribution of the y0, . . . , y9 is consistent with the digit vector
(x1, . . . , xn) having a uniform distribution on S = {0,1, . . . ,9}n.

Under the uniform distribution the vector y = (y0, . . . , y9) has a multinomial
distribution (n;1/10, . . . ,1/10) with expected value (4.5, . . . ,4.5). We embed this
in an exponential model based on the Poisson distribution with canonical param-
eter ϕ = (logp0, . . . , logp9); conditioning on �yi = n recovers the multinomial
distribution. The parameter of interest in this model is a vector, so we consider a
directional test as developed in Davison et al. (2014) and Fraser, Reid and Sartori
(2016).

The starting point is the saddlepoint approximation of (5)

h(s;ϕ)ds
.= ek/n

(2π)10/2 e
−
̂|ĵ |−1/2 ds,

with 
(ϕ;y) = {ϕ1y0 − logϕ0, . . . , ϕ9y9 − logϕ9}; the domain for the model is
S∗ = (−0.5,9.5)10 ∩ {∑yi = n}. As in Davison et al. (2014) we measure the dis-
crepancy of y from its expected value conditional on the direction of departure.
We compute the p-value using the squared length s2 = ∑

(yi − 4.5)2 and integrate
from the origin along the vector (y0 − 4.5, . . . , y9 − 4.5)T. The boundary point is
where some coordinate attains the maximum possible absolute value 4.5. Denoting
the squared length of this boundary point by (sb)2 the directional p-value is

p0 =
∫ s0

0
s9e
−
̂|ĵϕϕ|−1/2 ds

/∫ sb

0
s9e
−
̂|ĵϕϕ|−1/2 ds.

Further calculation shows that the p-value is the same as that obtained using the
chi-squared test of fit of the uniform multinomial distribution. Although it is based
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on the squared length of the vector, any monotone departure measure in the same
vector direction will lead to the same p-value.

Specific types of departure from the uniform are not addressed by the directional
approach. It is likely that careful construction of pivotal quantities tailored to a
particular departure could be used for the development of a confidence distribution
or a fiducial probability, but there seems to be no driving principle that could guide
this.

5.7. H: The role of physical randomization. We interpret physical randomiza-
tion as referring to the random allocation of treatments to experimental units in
a designed experiment, or to the selection of units for measurement in a sample
survey. Randomization introduces crucial symmetries that may be exploited in a
parametric model, strengthening the model assumptions, but the model-based ap-
proach discussed here is different from the randomization analysis of a designed
experiment or a sample survey. In simple cases where there is an identified parame-
ter, for example an additive treatment effect, it may be possible to construct a set of
confidence bounds from the randomization distribution, as suggested for example,
in Schweder and Hjort [(2016), Section 11.6], and this can provide a confidence
distribution for that parameter.

6. Discussion. As David Cox has stated, the questions he posed are simplified
in order to bring out some essential issues, and the issue is not so much whether an
answer can be obtained, as whether theories of inference can address these issues.
We have emphasized the approach to significance or p-value functions developed
from higher order approximations, as this seems to give a principled approach to
both to the elimination of nuisance parameters, and to determining a quantity, r∗

ψ ,
which is pivotal to a high order of approximation and can be used directly to assess
individual parameters in light of the data.

Several examples closer to the practice of statistics are discussed in Brazzale,
Davison and Reid (2007) and Fraser, Wong and Sun (2009). As one example, the
latter paper treats the transformed regression model of Box and Cox (1964), with
independent observations yλ

i = α + βxi + σzi , where zi is assumed to follow a
N(0,1) distribution. The inference directions form an n × 4 matrix with ith row

(9) Vi =
(

∂

∂θ

)
(α + βxi + σzi)

1/λ

∣∣∣∣
(y,θ̂)

= yi

λ̂yλ̂
i

(
1, xi, ẑi ,−yλ̂

i logyi

)
,

where θ = (α,β,σ,λ) and ẑi = σ̂−1(yλ̂
i − α̂ − β̂xi). Differentiating the log-

likelihood in the directions V gives the canonical parameter

(10) ϕT = �i

{−λyλ−1
i

(
yλ
i − α − βxi

)
/σ 2 + (λ − 1)y−1

i

}
Vi.

Numerical work presented in Fraser, Wong and Sun [(2009), Section 6] shows that
the p-value function computed using (7) is very accurate for various parameters in
the model.
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The development of the approximate p-value function, and particularly the re-
quirement of monotonicity, highlights the role of the parametrization of the model.
Examples A, B and F feature non-monotonicity that raises issues of interpretation.
The importance of a theory concerning parametrization of statistical models has
been emphasized by McCullagh (2002), but there seems to be little else on this
point in the literature. Perhaps the theory of significance functions can be used as a
diagnostic to alert the user to potential problems with a given model parametriza-
tion.

The examples D and E involving several nuisance parameters highlight the fail-
ure of likelihood or Bayesian methods that are not specifically targeted on the
parameter of interest. In these problems the asymptotic theory outlined here seems
satisfactory; it effectively eliminates the nuisance parameters as part of the devel-
opment of a measure for the parameter of interest, and for example E, shows what
the Bayesian prior will need to be in order that the resulting inference be calibrated
in a frequency sense. The necessity for targeting parameters of interest in the de-
velopment of noninformative, or reference, priors, is well-known in the theoretical
literature but seems to have had less impact on applications.

Asymptotic theory is often argued to be of limited importance for practical ap-
plications either because the sample size is sufficiently large that refined approxi-
mations are not seen to be necessary, or because the models are sufficiently tenta-
tive that achieving very precise inference under the model is not very important for
the application at hand. For the former, it does often seem to be the case that the
number of parameters, or the model complexity, increases with the sample size,
and examples D and E are reminders of the difficulties that this can create. When
there are several parameters of interest the construction of confidence distributions
or significance functions treats each parameter separately. In some settings the vec-
tor approach outlined in Section 4.5 and illustrated in example G may be useful.
Posterior inference for each parameter of interest in turn is readily implemented
in a Bayesian approach, but will only be calibrated if the prior is adapted for each
calculation [Fraser et al. (2016)].

If the schools of thought are indeed to be best friends forever they can of course
reasonably share a commitment to finding ultimate resolutions. In a Bayesian ap-
proach this seems to require a commitment to ensuring, or assessing, calibration
of the resulting inference, at least to some order of approximation. The confidence
distribution approach takes as its starting point essentially a nested set of upper
or lower confidence bounds, but is somewhat agnostic about what method is used
for this. Our approach to p-value or significance functions emphasizes the role of
higher order asymptotics in determining this starting point. In very complex mod-
els for applications of the type that feature in this journal, it must be said that a
Bayesian approach often seems conceptually simpler, if computationally demand-
ing. The simple but challenging examples serve as a useful caution to reliance on
simple solutions.
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