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Abstract: A survey of recent developments in the theory and application of com-
posite likelihood is provided, building on the review paper of Varin (2008). A range
of application areas, including geostatistics, spatial extremes, and space-time mod-
els, as well as clustered and longitudinal data and time series are considered. The
important area of applications to statistical genetics is omitted, in light of Larribe
and Fearnhead (2011). Emphasis is given to the development of the theory, and
the current state of knowledge on efficiency and robustness of composite likelihood
inference.
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1. Introduction

Composite likelihood is an inference function derived by multiplying a col-
lection of component likelihoods; the particular collection used is often deter-
mined by the context. Because each individual component is a conditional or
marginal density, the resulting estimating equation obtained from the derivative
of the composite log-likelihood is an unbiased estimating equation. Because the
components are multiplied, whether or not they are independent, the inference
function has the properties of likelihood from a misspecified model. This paper
reviews recent work in the area of composite likelihood, reviews the contribu-
tions presented at a workshop on composite likelihood held at the University of
Warwick in April, 2008, and presents an overview of developments since then. It
complements and extends the review of Varin (2008); in particular adding more
details on various types of composite likelihood constructed from marginal and
conditional inference, adding yet more application areas, and considering spatial
aspects in greater detail. A review of composite likelihood in statistical genetics
is given in Larribe and Fearnhead (2011).

In Section 2 we give an overview of the main inferential results for com-
posite likelihood, all based on the asymptotic theory of estimating equations
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and misspecified models. Section 3 surveys the wide range of application ar-
eas where composite likelihood has been proposed, often under names such as
pseudo-likelihood or quasi-likelihood, and Section 4 concentrates on a number of
theoretical issues. In Section 5 we consider some of the computational aspects
of construction of, and inference from, composite likelihood, and conclude in
Section 6 with a summary of unresolved issues.

2. Composite Likelihood Inference

2.1. Definitions and notation

Consider an m-dimensional vector random variable Y , with probability den-
sity function f(y; θ) for some unknown p-dimensional parameter vector θ ∈ Θ.
Denote by {A1, . . . ,AK} a set of marginal or conditional events with associ-
ated likelihoods Lk(θ; y) ∝ f(y ∈ Ak; θ). Following Lindsay (1988) a composite
likelihood is the weighted product

LC(θ; y) =
K∏

k=1

Lk(θ; y)wk ,

where wk are nonnegative weights to be chosen. If the weights are all equal
then they can be ignored: selection of unequal weights to improve efficiency is
discussed in the context of particular applications in Sections 3 and 4.

Although the above definition allows for combinations of marginal and con-
ditional densities (Cox and Reid (2004)), composite likelihoods are typically dis-
tinguished in conditional and marginal versions.

Composite conditional likelihoods Perhaps the precedent of composite likeli-
hood is the pseudolikelihood proposed by Besag (1974) for approximate inference
in spatial processes. This pseudolikelihood is the product of the conditional den-
sities of a single observation given its neighbours,

LC(θ; y) =
m∏

r=1

f(yr|{ys : ys is neighbour of yr}; θ).

More recent variants of Besag’s proposal involve using blocks of observations in
both conditional and conditioned events, see Vecchia (1988) and Stein, Chi and
Welty (2004).

Liang (1987) studies composite conditional likelihoods of type

LC(θ; y) =
m−1∏

r=1

m∏

s=r+1

f(yr|yr + ys; θ), (2.1)
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and apply them to stratified case-control studies. Further work on this proposal
may be found in Hanfelt (2004), Wang and Williamson (2005), and Fujii and
Yanagimoto (2005).

Molenberghs and Verbeke (2005) in the context of longitudinal studies, and
Mardia et al. (2008) in bioinformatics, construct composite likelihoods by pooling
pairwise conditional densities

LC(θ; y) =
m∏

r=1

m∏

s=1

f(yr|ys; θ),

or by pooling full conditional densities

LC(θ; y) =
m∏

r=1

f(yr|y(−r); θ),

where y(−r) denotes the vector of all the observations but yr.

Composite marginal likelihoods The simplest composite marginal likelihood
is the pseudolikelihood constructed under working independence assumptions,

Lind(θ; y) =
m∏

r=1

f(yr; θ),

sometimes referred to in the literature as the independence likelihood (Chan-
dler and Bate (2007)). The independence likelihood permits inference only on
marginal parameters. If parameters related to dependence are also of interest it
is necessary to model blocks of observations, as in the pairwise likelihood (Cox
and Reid (2004); Varin (2008))

Lpair(θ; y) =
m−1∏

r=1

m∏

s=r+1

f(yr, ys; θ), (2.2)

and in its extensions constructed from larger sets of observations, see Caragea
and Smith (2007).

For continuous symmetric responses with inference focused on the depen-
dence structure, Curriero and Lele (1999) and Lele and Taper (2002) propose
composite marginal likelihoods based on pairwise differences,

Ldiff(θ; y) =
m−1∏

r=1

m∏

s=r+1

f(yr − ys; θ). (2.3)
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Terminology Composite likelihoods are referred to with several different names,
including pseudolikelihood (Molenberghs and Verbeke (2005)), approximate like-
lihood (Stein, Chi and Welty (2004)), and quasi-likelihood (Hjort and Omre
(1994); Glasbey (2001); Hjort and Varin (2008)). The first two are too generic to
be informative, and the third is a possible source of misunderstanding as it over-
laps with a well established alternative (McCullagh (1983); Wedderburn (1974)).
Composite marginal likelihoods in time series are sometimes called split-data like-
lihoods (Rydén (1994); Vandekerkhove (2005)). In the psychometric literature,
methods based on composite likelihood are called limited information methods.
We consistently use the phrase composite (marginal/conditional) likelihood in
this review, and use the notation LC(·) and c"(·) for the likelihood and log-
likelihood function, respectively. If needed, we distinguish marginal, LMC, and
conditional, LCC, composite likelihoods.

2.2. Derived quantities

The maximum composite likelihood estimator θ̂CL locates the maximum of
the composite likelihood, or equivalently of the composite log-likelihood c"(θ; y) =∑K

k=1 "k(θ; y)wk, where "k(θ; y) = logLk(θ; y). In standard problems θ̂CL may be
found by solving the composite score function u(θ; y) = ∇θc"(θ; y), which is a
linear combination of the scores associated with each log-likelihood term "k(θ; y).

Composite likelihoods may be seen as misspecified likelihoods, where mis-
specification occurs because of the working independence assumption among the
likelihood terms forming the pseudolikelihood. Consequently, the second Bartlett
identity does not hold, and we need to distinguish between the sensitivity matrix

H(θ) = Eθ {−∇θ u(θ; Y )} =
∫

{−∇θ u(θ; y)}f(y; θ)dy

and the variability matrix

J(θ) = varθ {u(θ; Y )} ,

and the Fisher information needs to be substituted by the Godambe information
matrix (Godambe (1960))

G(θ) = H(θ)J(θ)−1H(θ), (2.4)

also referred to as the sandwich information matrix. We reserve the notation
I(θ) = varθ{∇θ log f(Y ; θ)} for the expected Fisher information; if c"(θ) is a true
log-likelihood function then G = H = I. An estimating equation u(θ; y) which
has H(θ) = J(θ) for all θ is called information unbiased, after Lindsay (1982).
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2.3. Asymptotic theory

In the case of n independent and identically distributed observations Y1, . . .,
Yn from the model f(y; θ) on Rm, and n → ∞ with m fixed, some standard
asymptotic results are available from Kent (1982), Lindsay (1988), and Molen-
berghs and Verbeke (2005, Chap. 9), which we now summarize. Since

LC(θ; y) =
n∏

i=1

LC(θ; yi), and c"(θ; y) =
n∑

i=1

c"(θ; yi),

under regularity conditions on the component log-densities we have a central limit
theorem for the composite likelihood score statistic, leading to the result that
the composite maximum likelihood estimator, θ̂CL is asymptotically normally
distributed: √

n(θ̂CL − θ) d→ Np{0, G−1(θ)},

where Np(µ,Σ) is the p-dimensional normal distribution with mean and variance
as indicated, and G(θ) is the Godambe information matrix in a single observation,
defined at (2.4).

The ratio of G(θ) to the expected Fisher information I(θ) determines the
asymptotic efficiency of θ̂CL relative to the maximum likelihood estimator from
the full model. If θ is a scalar this can be assessed or plotted over the range of
θ; see, for example, Cox and Reid (2004, Fig. 1).

Suppose scientific interest is in a q-dimensional subvector ψ of the param-
eter θ = (ψ, τ). Composite likelihood versions of Wald and score statistics for
testing H0 : ψ = ψ0 are easily constructed, and have the usual asymptotic χ2

q

distribution, see Molenberghs and Verbeke (2005). The Wald-type statistic is

We = n(ψ̂CL − ψ0)TGψψ(θ̂CL)(ψ̂CL − ψ0),

where Gψψ is the q × q submatrix of the Godambe information pertaining to ψ.
The score-type statistic is

Wu =
1
n

uψ {ψ0, τ̂CL(ψ0)}T H̃
ψψ

G̃ψψH̃
ψψ

uψ {ψ0, τ̂CL(ψ0)} ,

where Hψψ is the q × q submatrix of the inverse of H(θ) pertaining to ψ, and
H̃ = H{ψ0, τ̂CL(ψ0)}. As in ordinary likelihood inference We and Wu suffer from
practical limitations: We is not invariant to reparametrization, while Wu may
be numerically unstable. In addition, estimates of the variability and sensitiv-
ity matrices H(θ) and J(θ) are needed. While they can sometimes be evaluated
explicitly, it is more usual to use empirical estimates. As H(θ) is a mean, its em-
pirical estimation is straightforward, but the empirical estimation of J(θ) requires
some internal replication; see Section 5.
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The composite likelihood ratio statistic

W = 2
[
c"(θ̂CL; y) − c" {ψ0, τ̂CL(ψ0); y}

]
(2.5)

seems preferable, but it has the drawback of a non-standard asymptotic distri-
bution

W
d→

q∑

j=1

λjZ
2
j ,

where Z1, . . . , Zq are independent normal variates and λ1, . . . ,λq are the eigen-
values of the matrix (Hψψ)−1Gψψ. This result can be derived under the general
framework of misspecified likelihoods, see Kent (1982) and the book length ex-
position of White (1994).

Geys, Molenberghs and Ryan (1999) propose the adjusted composite like-
lihood ratio statistic W ′ = W/λ̄ with an approximate χ2

q distribution, where λ̄
denotes the average of the eigenvalues λj ; Rotnitzky and Jewell (1990) suggest
this for the independence likelihood. The mean of W ′ coincides with that of its
asymptotic χ2

q distribution, but higher order moments differ. A better solution
is provided by a Satterthwaite (1946) adjustment W

′′ = νW/(qλ̄) with approx-
imate χ2

ν distribution, where the rescaling and the effective degrees of freedom
ν = (

∑q
j=1 λj)2/

∑q
j=1 λ2

j are chosen so that the mean and the variance of W
′′

coincide with that of the approximate distribution (Varin (2008); Lindsay, Pilla
and Basak (2000)).

Chandler and Bate (2007) propose a different type of adjustment for the
independence likelihood: essentially stretching the composite log-likelihood on
the θ-axis about θ̂CL to ensure, at least approximately, that the second Bartlett
identity holds, and thus that the usual χ2

q approximation can be used. Vertical
rescaling is another possibility, discussed briefly in Chandler and Bate (2007,
Sec. 6), and extended to composite likelihood in Pace, Salvan and Sartori (2011).
In the scalar parameter case, vertical rescaling is the same as dividing the com-
posite log-likelihood ratio statistic by J−1H.

Saddlepoint approximations for quadratic forms are derived in Kuonen
(1999), and seem directly applicable to W , but we are not aware of detailed
discussion of this application.

The computational simplicity of composite likelihood functions in typical
situations allows use of the parametric bootstrap. This has the advantage of
working also in non-standard settings, such as when the parameter under the
null hypothesis lies on the boundary of the parametric space (Bellio and Varin
(2005)), but it has the drawback of requiring the complete specification of a joint
model for the data, thus losing in model robustness.
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Analogues of the Akaike (AIC) and the Bayesian (BIC) information crite-
ria for model selection are easily derived in the framework of composite likeli-
hoods. They have the usual forms AIC = −2c"(θ̂CL; y) + 2dim(θ) and BIC =
−2c"(θ̂CL; y) + dim(θ) log n, where dim(θ) is an effective number of parameters,
estimated from the sensitivity matrix and the Godambe information: dim(θ) =
tr

{
H(θ)G(θ)−1

}
. Formal derivation of these information criteria may be found

in Varin and Vidoni (2005) for the composite AIC criterion, and in Gao and Song
(2010) for the composite BIC criterion.

These criteria may be used for model averaging (Claeskens and Hjort (2008)),
or for selection of tuning parameters in shrinkage methods. See Gao and Song
(2010) for examples of the Lasso penalty with composite marginal likelihoods.

The inference in the previous section follows directly from the usual asymp-
totic theory, under standard regularity conditions. It is also of interest to consider
the case where n is fixed and m increases, as in the case of a single (n = 1) long
time series or a spatial dataset. In this case the asymptotic theory depends on
the availability of internal replication: for example in an autoregressive model of
small-ish order, there is sufficient independence in a single long series to obtain
a central limit result.

The asymptotic variance for pairwise likelihood, and a modified version of
it, was treated in Cox and Reid (2004) using Taylor series expansions. Since the
validity of these expansions depends on the consistency of θ, which does not hold
in general for m → ∞, the argument is purely informal, and a more rigorous
treatment is needed. Cox and Reid (2004) also suggest that it may be possible
to choose a )= 0 in the composite log-likelihood "C(θ) = "pair(θ) − am"ind(θ) to
ensure consistency as m → ∞ for fixed n, but to our knowledge no examples of
this strategy have been investigated.

3. Applications

3.1. Gaussian random fields

Geostatistical models for large datasets are increasingly common, partic-
ularly with the use of automatic collection methods such as remote sensing,
and composite likelihood methods for approximate inference are very appeal-
ing. A typical model in geostatistics applications is a Gaussian random field
Y = {Y (c) : c ∈ C ⊂ IR2} with mean function µ(c) and covariance matrix Σ(θ)
whose entries reflect spatial correlation; Cressie (1993) gives several examples
of parametric spatial correlation functions. Classical geostatistics estimation of
θ is based on various methods of curve fitting to the sample variogram (Cressie
(1993)). These methods have been strongly criticised, as there is considerable ar-
bitrariness in tuning the fitting algorithms, and the resulting estimators are often
inefficient (Diggle and Ribeiro (2007, Sec. 6.3)). Maximum likelihood estimation
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would be more efficient, but requires the inversion of the covariance matrix Σ(θ),
usually with a computational cost of order O(m3). This cost is prohibitive with
many modern spatial, or spatio-temporal, data sets.

Let yr = y(cr) be the observation of process Y at location cr. Stemming
from the work by Besag (1974), Vecchia (1988) proposes approximating the full
likelihood with the composite conditional likelihood

LCC(θ; y) = f(y1; θ)
m∏

r=2

f(yr|Br; θ),

where Br is a subset of {yr−1, . . . , y1} chosen so as to make feasible the compu-
tation of LC. Vecchia (1988) suggestes restricting Br to a number of neighbours
of yr. The use of this composite conditional likelihood is illustrated in Vecchia
(1988) by the spatial analysis of water levels in 93 observation wells from an
aquifer in the Saratoga Valley in Wyoming.

Stein, Chi and Welty (2004) further develop Vecchia’s proposal, and use
it to approximate the restricted likelihood function. The authors show that
statistical efficiency can be improved using blocks of observations in place of
single observations,

LCC(θ; y) = f(z1; θ)
B∏

b=2

f(zb|B′
b; θ),

where z1, . . . , zB are B blocks of data and B′
b is a subset of {zb−1, . . . , z1}. This

approximate restricted likelihood method is used in Stein, Chi and Welty (2004)
to analyse a data set of over 13, 000 measurements of levels of chlorophyll in
Lake Michigan. The measurements were made in a highly irregular pattern,
which creates some challenges in the choice of conditioning sets. It was found that
including some distant observations in the conditioning sets leads to a remarkable
improvement in the efficiency of the composite likelihood parameter estimators.

Difficulties with the composite likelihoods of Stein, Chi and Welty (2004)
and Vecchia (1988) arise with the selection of the observation order and of the
conditioning sets Bb and B′

b. To overcome such complications, in the pair of papers
Caragea and Smith (2006, 2007) three different likelihood approximations all
based on splitting the data into blocks are proposed. The first method, the “big
blocks likelihood”, consists in estimating θ from the joint density of the block
means. The second method is denoted “small blocks” and it is the composite
marginal likelihood formed by the product of densities for all the observations in
each block,

LMC(θ; y) =
B∏

b=1

f(zb; θ),
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where z1, . . . , zB are B blocks of data. Hence, while the big blocks likelihood
captures large-sample properties of the process but ignores the within blocks
dependence, the small blocks method does the opposite. A proposed compromise
between the two, called a hybrid method, is to use the big blocks likelihood
multiplied by the composite conditional likelihood formed by the product of
conditional densities of the observations within blocks, conditioned on the block
mean. Efficiency studies indicate poor performance of the big blocks method,
while the small blocks and the hybrid methods work similarly with high efficiency.
Caragea and Smith (2006) illustrate the good behaviour of the last two methods
for spatial estimation of rainfall trends across the south-central U.S.A.

A major reason for concern with maximum likelihood estimation is the diffi-
culty in checking the assumption of multivariate normality. This difficulty is also
shared by these blockwise strategies. In contrast, the pairwise likelihood (2.2)
and the composite likelihood of differences (2.3) just require bivariate normality
for pairs of observations, which is much simpler to validate. Pairwise likelihood
was suggested for inference in geostatistical models first in Hjort and Omre (1994)
and then further developed for image models by Nott and Rydén (1999). The
composite likelihood based on differences (2.3) is proposed by Curriero and Lele
(1999) and applied to temperature data in three dimensional geothermal fields
in Mateu et al. (2007).

3.2. Spatial extremes

The rise in hazardous environmental events leads to much interest in statisti-
cal modelling of spatial extremes. A flexible approach to this problem is provided
by max-stable models obtained from underlying Gaussian random fields con-
structed by building on unpublished work of Smith (1990). Despite the attractive
properties of these models, both classical and Bayesian inference are impractical
because of the curse of dimensionality with the likelihood computation, see Davi-
son and Gholamrezaee (2009). At the present time, only expressions for bivariate
marginal densities have been derived. Thus, pairwise likelihood inference is nat-
urally considered as a surrogate for impossible ordinary likelihood analysis in
Davison and Gholamrezaee (2009) and Padoan, Ribatet and Sisson (2010) with
applications to maximum temperatures in Switzerland and maximum precipita-
tions in the U.S.A., respectively. In these papers computations are carried out
with the R Development Core Team (2009) package SpatialExtremes by Rib-
atet (2009), which seems to be the first publicly available software implementing
composite likelihood methods.

A related approach is followed by Smith and Stephenson (2009), where pair-
wise likelihood is used in place of the unfeasible ordinary likelihood for Bayesian
inference in max-stable spatial processes. The approach is illustrated through
analysis of annual maximum rainfall data in South-West England.
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3.3. Serially correlated random effects

In longitudinal and panel studies, random effects models are popular choices
for modelling unobserved heterogeneity. In these models the outcomes are mod-
elled as independent variables conditionally upon a subject-specific random effect,
usually assumed to be constant for all the measurements. The latter assumption
may be unrealistic in most cases: better models should take into account also
the possible serial dependence within subject-specific measurements.

Consider longitudinal counts Yir observed at occasion r = 1, . . . ,mi for sub-
ject i = 1, . . . , n. This type of data may be naturally modelled as conditionally
independent Poisson variables

Yir|Ui ∼ Po{Ui exp(xT
irβ)},

where Ui is a random effect, xir is a covariate vector, and β are unknown re-
gression coefficients. A common assumption is that U1, . . . , Un are independent
Gamma variables with unit mean. Accordingly, the marginal distribution of
Yir is negative binomial. To account for serial dependence Henderson and Shi-
makura (2003) suggest extending the above model by assuming different Gamma-
distributed random effects Uir for each measurement,

Yir|Uir ∼ Po{Uir exp(xT
irβ)},

while specifying the joint distribution of Uir to describe the serial dependence.
For example, Henderson and Shimakura (2003) propose an autoregressive depen-
dence of type

cor(Uir, Ujs) =

{
ρ|r−s| if i = j

0 if i )= j.

Unfortunately, the higher model flexibility of the above formulation is paid for in
terms of computational complexity. The likelihood function involves a number of
terms exponentially increasing with the series length mi. Likelihood computation
is impractical except in low dimensions. Hence, Henderson and Shimakura (2003)
propose that inference be based on the pairwise likelihood

Lpair(θ; y) =
n∏

i=1

1
mi − 1

mi−1∏

r=1

mi∏

s=r+1

f(yir, yis; θ).

The weights 1/(mi − 1) are used to match the ordinary likelihood in the case of
independence, as suggested in LeCessie and van Houwelingen (1994). Henderson
and Shimakura (2003) illustrate pairwise likelihood inference for the above model
with the analysis of a clinical trial on the number of analgesic doses taken by
hospital patients in successive time intervals following abdominal surgery.
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A further development of the Henderson and Shimakura (2003) work is pro-
vided by Fiocco, Putter and van Houwelingen (2009), who modify the autoregres-
sive Gamma process Uir to enhance numerical stability when large counts are in-
volved. They further suggest a two-step composite likelihood analysis where first
regression and oversdispersion parameters are estimated from the independence
likelihood, and then dependence parameters are obtained separately from the
pairwise likelihood. In their simulation studies, Fiocco, Putter and van Houwelin-
gen (2009) find that this two-step approach loses little in efficiency with respect
to joint estimation of all the parameters from the pairwise likelihood, and apply
this approach to a meta-analysis study for survival curves.

A motivation similar to that of Henderson and Shimakura (2003) and Fiocco,
Putter and van Houwelingen (2009) underlies the work by Varin and Czado
(2010), who suggest an autoregressive mixed probit model for ordinal and binary
longitudinal outcomes. The response Yir is viewed as a censored version of a
continuous unobserved variable Y ∗

ir,

Yir = yir ↔ αyir−1 < Y ∗
ir ≤ αyir , yir ∈ {1, . . . , h},

where −∞ ≡ α0 < α1 < . . . < αh−1 < αh ≡ ∞ are suitable threshold parameters.
The unobserved Y ∗

ir is modelled with a normal linear mixed model

Y ∗
ir = xT

irβ + Ui + εir,

where U1, . . . , Un are n independent normal distributed random effects with zero
mean and variance σ2. To account for serial dependence, the errors εir are as-
sumed to be generated from an autoregressive process of order one,

εir = ρεir−1 + (1 − ρ2)1/2 ηir,

where ηir are independent standard normal innovations. Accordingly, the likeli-
hood function is a product of n rectangular normal probabilities of dimensions
m1, . . . ,mn. With the exception of longitudinal studies with a small number
of measurements mi, the evaluation of the likelihood requires time-consuming
Monte Carlo methods with possible numerical instabilities. Hence, Varin and
Czado (2010) propose the use of pairwise likelihood inference based on pairs of
observations less than q units apart,

L(q)
pair(θ; y) =

n∏

i=1

∏

{r,s:|tir−tis|≤q}

f(yir, yis; θ),

where tir is the time of observation r on subject i. The bivariate probabili-
ties f(yir, yis; θ) are easily computed with very precise deterministic quadrature
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methods available in standard statistical software, thus avoiding the need for
simulations. This work is motivated by the analysis of a longitudinal study on
the determinants of headache severity: the data consist of pain severity diaries
compiled by the patients four times a day for periods of different lengths, from
four days to almost one year of consecutive measurements; the outcome is the
severity of headache measured on an ordinal scale with six levels. Covariate data
included personal and clinical information, as well as weather conditions.

3.4. Spatially correlated random effects

The numerical difficulties described in case of serially correlated random
effects further increase with spatially correlated random effects. Consider a gen-
eralized linear model with linear predictor

g{E(Y (c)} = x(c)Tβ + U(c), c ∈ C ⊂ IR2,

where g is a suitable link function and {U(c) : c ∈ C ⊂ IR2} is a zero-mean
stationary Gaussian random field. Models of this type are termed generalized
linear geostatistical models in Diggle and Ribeiro (2007). Given the observations
at m locations c1, . . . , cm, the likelihood function is expressed in terms of a single
m-dimensional integral,

L(θ; y) =
∫

IRm

m∏

r=1

f{y(cr)|u(cr); θ}f{u(c1), . . . , u(cm); θ}du(c1) . . . du(cm),

whose approximation may be difficult even for moderate m. Typical solutions are
based on simulation algorithms such as Monte Carlo expectation-maximization
or Markov chain Monte Carlo algorithms, see Diggle and Ribeiro (2007) for
references. For large data sets, simulation methods become very demanding and
thus pairwise likelihood represents an effective alternative. This was first studied
by Heagerty and Lele (1998) for binary data with probit link. They proposed a
pairwise likelihood formed by pairs of observations not more than q units apart,

L(q)
pair(θ; y) =

∏

{r,s:‖cr−cs‖2≤q}

f{y(cr), y(cs); θ}.

Heagerty and Lele (1998) use these ideas for spatial modelling of defoliation by
gypsy moths in Massachusetts.

Varin, Høst and Skare (2005) investigate pairwise likelihood for general-
ized linear models and suggested that excluding pairs formed by observations
too distant may be not only numerically efficient but also statistically efficient.
Apanasovich et al. (2008) consider pairwise likelihood inference for logistic re-
gression with a linear predictor expressed by the sum of a nonparametric term
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and a spatially correlated random effect accounting for short range dependence.
This last work is motivated by spatial modelling of aberrant crypt foci in colon
carcinogenesis.

3.5. Joint mixed models

Correlated random effects are also used for joint modelling of multivariate
longitudinal profiles. Let (Y (1)

ir , . . . , Y (d)
ir )T be a vector of d outcomes for subject

i = 1, . . . , n at occasion r = 1, . . . ,mi. A possible modelling strategy for data
of this type consists in assuming a mixed model for each single outcome and
then modelling the association among the outcomes with a suitable covariance
matrix for the random effects. Suppose for ease of exposition a random intercept
generalized linear model for each outcome,

g{E(Y (v)
ir )} = xT

irβ + U (v)
i , v = 1, . . . , d,

where U (v)
i is a random effect specific for outcome v and subject i (i = 1, . . . , n).

The various univariate mixed models can be combined by assuming a d-dimen-
sional multivariate normal distribution for all the random effects, U (1)

i , . . . , U (d)
i ,

of a single subject (i = 1, . . . , n).
With the assumption of independence among different subjects, the likeli-

hood is

L(θ; y) =
n∏

i=1

Li(θ; y
(1)
i , . . . , y(d)

i ),

with y(v)
i = (y(v)

i1 , . . . , y(v)
imi

)T indicating the vector of all observations of outcome
v for subject i. When the dimension d of the outcomes increases, the number of
random effects parameters,

(d
2

)
+d, grows quadratically, making the maximization

of the likelihood quickly out of reach even in the case of normal linear mixed
models where the likelihood has an analytic form.

Molenberghs and Verbeke (2005, Sec. 25) propose to alleviate these compu-
tational difficulties by the method of “pairwise fitting”. Consider the composite
marginal likelihood constructed from all pairs of outcomes,

LMC(θ1,2, . . . , θd−1,d; y) =
d−1∏

v=1

d∏

w=v+1

L(θv,w; y(v), y(w)), (3.1)

where L(θv,w; y(v), y(w)) is the likelihood based on outcomes v and w only. In
contrast to previously discussed composite likelihoods, here different pair-specific
parameters are assumed, i.e. θv,w, is the subset of θ pertaining to the assumed
distribution of (Y (v), Y (w)). This separate parameterization is necessary to allow
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distinct maximization of each term L(θv,w; y(v), y(w)) forming the composite like-
lihood (3.1), and thus resolve the computational difficulties associated with joint
maximization.

Let ω = (θ1,2, . . . , θd−1,d)T be the vector containing all the
(d
2

)
pair-specific

parameters. Then, ω̂ = (θ̂1,2, . . . , θ̂d−1,d)T locates the maximum of the composite
likelihood (3.1). Accordingly, we have

√
n(ω̂ − ω) d−→ N{0, G−1(ω)}.

Obviously, there is a one-to-many correspondence between ω and the original
parameter θ, for example, θv,w and θv,w have some components of θ in common. A
single estimate of θ may then be obtained by averaging all the corresponding pair-
specific estimates in ω̂. If we denote by A the weight matrix such that θ̂ = Aω̂,
then inference is based on the asymptotic distribution

√
n(θ̂ − θ) d−→ N{0, ATG−1(ω)A}.

Further details of the pairwise fitting method can be found in a series of papers
by S. Fieuws and his colleagues with applications to multivariate longitudinal
profiles of hearing thresholds (Fieuws and Verbeke (2006); Fieuws, Verbeke, and
Molenberghs (2007)), batteries of binary questionnaires on psychocognitive func-
tioning (Fieuws et al. (2006), Fieuws, Verbeke, and Molenberghs (2007)) analysis
of several biochemical and physiological markers for failure of renal graft (Fieuws
et al. (2007)). Barry and Bowman (2008) apply the pairwise fitting method to a
longitudinal study designed to compare the facial shapes of a group of 49 infants
with unilateral cleft lip and palate with those of a group of 100 age-matched
controls.

3.6. Time-varying correlation matrices

Engle, Shephard, and Sheppard (2009) propose composite likelihood meth-
ods for risk management with high-dimensional portfolios. Consider a m-dimen-
sional vector of log-returns yt observed at times t = 1, . . . , T. Risk management
models assume that Yt is a martingale difference sequence

E(Yt|Ft−1) = 0, Cov(Yt|Ft−1) = Ht,

where Ft−1 is the information up to time t − 1, and Ht is a time-varying co-
variance matrix. Models proposed for Ht are parametrized in terms of dynamics
parameters of interest θ and of nuisance parameters λ. Standard inference is
based on a two-step approach. First, nuisance parameters are estimated using a
method of moments. Then, parameters of interest are obtained by maximizing a
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misspecified likelihood constructed under working assumptions of multinormality
with the nuisance parameters kept fixed at their moment-based estimates.

There are two sources of difficulty with the above fitting method. First, the
method needs the inversion of T correlation matrices Ht, each requiring O(m3)
operations. Second, even if these inversions were possible, the precision of the
resulting estimators for θ would quickly fail because the dimension of nuisance
parameters grows as the number of assets K increases.

In order to overcome these difficulties, Engle, Shephard, and Sheppard (2009)
investigate the use of composite marginal likelihoods formed by summing up
(misspecified) log-likelihoods of subsets of assets. This approach resolves the
numerical difficulties connected with the inversion of high dimensional matrices.
The problem of increasing numbers of nuisance parameters is addressed by using
moment estimators for the nuisance parameters specific to each asset, and as-
suming a common set of parameters across assets; these common parameters are
estimated by composite likelihood. This methodology is developed further for
composite likelihood analysis of a panel of GARCH models in Pakel, Shepard,
and Sheppard (2011), and simulation studies indicate that composite likelihood
methods work very well when there are a large number of short series.

3.7. Marginal regression models with missing data

Statistical analysis of longitudinal data is complicated by the likely occur-
rence of missing responses. The popular method of generalized estimating equa-
tions (GEEs) devised by Liang and Zeger (1986) provides valid inference un-
der the assumption of ignorable missing data (missing completely at random).
Complications arise when such an assumption cannot be trusted. If the weaker
assumption of missing-at-random is valid, then GEEs can be saved by the use of
inverse probability weights, as in Robins (1995). A difficulty with this strategy is
that it requires correct specification of the missing data process, something that
can be awkward in practice. Alternatively, one may base inference on the ob-
served likelihood. However, this strategy suffers from lack of robustness because
it relies on correct specification of the joint distribution of all observed responses.

In this context, composite likelihood methods are attractive as a compro-
mise between advantages from likelihood-type analysis and robustness to model
specification of GEEs. In the following lines, we summarize composite likelihood
inference for marginal regression in presence of noningnorable missing data.

If only parameters in the univariate margins are of interest, Troxel, Lip-
sitz and Harrington (2003) suggest basing inference under missing at random
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assumptions on the independence likelihood

Lind(β, γ; y, r) =
n∏

i=1

mi∏

r=1

{f(yir, oir; β, γ)}oir

{∫

Y
f(yir, oir; β, γ)dyir

}1−oir

=
n∏

i=1

mi∏

r=1

{f(yir; β)πir(γ)}oir

[∫

Y
f(yir; β){1 − πir(γ)}dyir

]1−oir

,

where β are marginal regression parameters, oir indicates whether observation
r on subject i has been observed or not, and πir(γ) is the probability of having
observed it modelled as a function of parameter γ. This independence likelihood
thus requires only the correct specification of univariate margins f(yir; β) and
of observation probabilities πir(γ). This approach is applied in Troxel, Lipsitz
and Harrington (2003) to evaluation of adjuvant chemotherapy following surgery
in a longitudinal study of 430 breast cancer patients with up to 37% missing
responses. See also Parzen et al. (2006) for another illustration using data from
the well-known Six Cities longitudinal study on the health effects of air pollution.

In situations where the association between responses is substantial, this in-
dependence likelihood may lead to sensible, but inefficient, inferences on regres-
sors β. For such situations, Parzen et al. (2007) suggest incorporating information
about dependence by moving to the pairwise likelihood

Lpair(β,α, γ; y, o) = L1 × L2 × L3 × L4,

with

L1 =
n∏

i=1

mi−1∏

r=1

mi∏

s=r+1

{f(yir, yis, oir, ois; β,α, γ)}oirois ,

L2 =
n∏

i=1

mi−1∏

r=1

mi∏

s=r+1

{∫

Y
f(yir, yis, oir, ois;β,α, γ)dyir

}(1−oir)ois

,

L3 =
n∏

i=1

mi−1∏

r=1

mi∏

s=r+1

{∫

Y
f(yir, yis, oir, ois;β,α, γ)dyir

}oir(1−ois)

,

L4 =
n∏

i=1

mi−1∏

r=1

mi∏

s=r+1

{∫

Y

∫

Y
f(yir, yis, oir, ois; β,α, γ)dyirdyis

}(1−oir)(1−ois)

,

where α is a vector of association parameters involved in the joint distribution
of a pair of responses. This pairwise likelihood is contrasted in Parzen et al.
(2007) with the previously described independence likelihood of Troxel, Lipsitz
and Harrington (2003), again with analysis of data from the Six Cities study. The
results show advantages from modelling also the dependence between responses.
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Although the above pairwise likelihood may improve estimation efficiency
compared to the independence likelihood, this comes at the cost of requiring
correct specification of bivariate margins both of responses and of missingness
indicators. In particular, the specification of the missing data mechanism even
only for pairs is a critical aspect. Yi, Zeng and Cook (2009) show how to over-
come this. They assume that, given any pair of responses (yij , yik) and covariates
xi, the missing data process does not contain information on parameter β and
α. With this assumption, inference can be based on the pairwise likelihood con-
structed from the observed pairs of responses only,

Lpair(β,α; y) =
n∏

i=1

mi−1∏

r=1

mi∏

s=r+1

f(yir, yis; β,α)oirois ,

without requiring specification of the missing process distribution. Yi, Zeng
and Cook (2009) show that this leads to an unbiased estimating equation and
hence consistent inference for (β,α), without assuming the missing at random
mechanism.

4. Properties

4.1. Introduction

The motivation for the use of any version of composite likelihood is usually
computational: to avoid computing or, in some cases, modelling the joint distri-
bution of a possibly high-dimensional response vector. This is particularly true in
applications of composite likelihood to mixed and random effects models, where
the likelihood requires integration over the distribution of the random effects, as
described in Section 3. Within this context, where composite likelihood is essen-
tially a misspecified model, interest has often focused on the relative efficiency
of estimation from composite likelihood relative to the full likelihood. In Section
4.1 below we summarize the main results on efficiency of composite likelihood
estimation.

Another motivation for the use of composite likelihood is a notion of robust-
ness, in this case robustness under possible misspecification of the higher order
dimensional distributions. For example, if pairwise likelihood is used for depen-
dent binary data, it is not necessary to choose a model for joint probabilities of
triples and quadruples, and to the extent that a number of possibilities for these
could be consistent with the modelled joint probabilities of pairs, composite like-
lihood is, by construction, robust against these alternatives. This is a different
notion of robustness than that in robust point estimation, and closer in spirit to
the type of robustness achieved by generalized estimating equations. However,
for many high-dimensional models, it is not clear what types of higher-order joint
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densities are indeed compatible with the modelled lower order marginal densities,
so it is difficult to study the robustness issue in any generality. In Section 4.2
below we summarize what seems to be known about robustness in the literature.

Composite likelihood has also been used to construct joint distributions in
settings where there are not obvious high dimensional distributions at hand, for
example in the use of frailty models in survival data (Fiocco, Putter and van
Houwelingen (2009)).

Another feature of composite likelihood, noted for example in Liang and
Yu (2003), is that the likelihood surface can be much smoother than the full
joint likelihood, and thus easier to maximize. This is related to, but slightly
different than, the ease of computation of composite likelihood, and closer in spirit
to robustness of composite likelihood: by not specifying very high dimensional
characteristics of the model, we are perhaps allowing a less complex structure on
the parameter space as well. Renard, Molenberghs and Geys (2004) use the term
computational robustness; in simulations they found that pairwise likelihood is
more robust to convergence than their comparison method based on penalized
quasi-likelihood. Computational aspects are considered in more detail in Section
5.

4.2. Relative efficiency

The seemingly high efficiency of composite likelihood methods in many ap-
plications has contributed to the increased interest in, and literature on, these
methods. Three possible types of efficiency comparisons are: (i) asymptotic
efficiency computed by an analytical calculation of G(θ) and comparison with
the Fisher information I(θ), (ii) estimated asymptotic efficiency using simulation
based estimates of G(θ) and I(θ), and (iii) empirical efficiency using simulation
based estimates of var(θ̂CL) and var(θ̂). The first gives the clearest interpreta-
tion, although under the model assumption of the ‘asymptotic ideal’, whereas the
third is closer to what may be achieved with finite sample sizes. A drawback of
simulation based studies is that many aspects of the model must be specified in
advance, so the relevance of the results to other, slightly different, models is not
always clear. When θ is a vector, an overall summary of the comparison of G(θ)
with I(θ) can be computed using the ratio of the determinants, but more usually
the diagonal components corresponding to particular parameters of interest are
compared.

In exceptional cases pairwise likelihood estimators are fully efficient, and
even identical to the maximum likelihood estimators. Mardia, Hughes and Taylor
(2007) show that composite conditional estimators are identical to maximum like-
lihood estimators in the multivariate normal distribution with arbitrary means
and covariances, and Jin (2009) gives the same result for pairwise likelihood.
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Mardia et al. (2009) provide an explanation for this, by showing that compos-
ite conditional estimators are fully efficient in exponential families that have a
certain closure property under subsetting. Under further restrictions, composite
marginal estimators are also fully efficient. An interesting special case is the
equi-correlated multivariate normal distribution: a single observation vector has
mean µ and covariance matrix σ2{(1 − ρ)I + ρ11T}, where I is the identity ma-
trix of dimension m, and 1 is an m-vector of 1’s. With µ and σ unknown, both
pairwise maximum likelihood estimators and pairwise and full composite condi-
tional maximum likelihood estimators are identical to the maximum likelihood
estimator. If µ is fixed the same result holds, but if σ2 is fixed, then compos-
ite likelihood estimates for ρ are not fully efficient. Although this model is not
covered by the closure result of Mardia et al. (2009), they adapt their discussion
to show why the result continues to be true. It is possible that the method of
Mardia et al. (2009) may also be adapted to explain the relatively high efficiency
of composite likelihood methods in more complex applications, at least in some
special cases. For example, while the bivariate von Mises distribution is not in
the class of exponential families treated in Mardia et al. (2009), that paper shows
that it is close to that class for most parameter values: this clarifies some results
presented in Mardia et al. (2008) on this model.

The quadratic exponential distribution was proposed as a model for multi-
variate binary data in Cox (1972), and inference for this model was developed
in Zhao and Prenctice (1990). As noted in Cox and Reid (2004) its likelihood
function is equal to the pairwise likelihood function for binary data generated by
a probit link. This provides a simple example where pairwise likelihood has full
efficiency. Two-way contingency tables also have pairwise likelihood estimators
equal to maximum likelihood estimators (Mardia et al. (2009)).

Hjort and Varin (2008) also study in detail properties of composite condi-
tional and composite marginal likelihoods in a simplified class of models. In their
case they restrict attention to Markov chain models, and both theoretical anal-
ysis and detailed calculations provide strong evidence that composite marginal
likelihood inference is both efficient and robust, and preferable to composite con-
ditional likelihood inference. In their case the full likelihood is given by

"(θ; y) =
∑

a,b

ya,b log pa,b(θ),

where ya,b is the number of transitions from a to b, pa,b(θ) is the stationary
transition probability function, and a, b range over the number of states in the
Markov chain. This is a curved exponential family model, so the theory of Mardia
et al. (2009) does not apply. The pairwise log-likelihood function is

c"(θ; y) =
∑

a,b

ya,b log pa,b(θ) +
∑

a

ya+ log pa(θ), (4.1)
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where ya+ =
∑

b ya,b and pa(θ) is the equilibrium probability that the chain is in
state a. Equation (4.1) is interpreted in Hjort and Varin (2008) as a penalized log-
likelihood, with a penalty function that is targetted on matching the equilibrium
distribution. This provides a different explanation of the efficiency and robustness
of pairwise likelihood inference.

The papers by Mardia et al. (2009) and Hjort and Varin (2008) seek to
establish some general results about composite likelihood, albeit in relatively
specialized settings. The rest of the literature that we have reviewed on composite
likelihood is typically concerned with comparisons in particular models motivated
by applications. In the paragraphs below we highlight recent work on efficiency
that seems to us to be particularly useful.

In models for clustered data, where observations yir, r = 1, . . . ,mi, within
the ith cluster are correlated, asymptotic relative efficiency can often be assessed
by obtaining analytical expressions for G(θ) and J(θ). Within this context, ex-
tensive studies of asymptotic relative efficiency are available, and there is also a
literature on the choice of weights, usually related to cluster size, for achieving op-
timal efficiency. For pairwise likelihood, Joe and Lee (2009) investigate the choice
of weights for clustered data in detail, and show that the best choice of weights
depends on the strength of the dependence within clusters. The models investi-
gated analytically are the multivariate normal, where direct comparisons to the
maximum likelihood estimator can be made, and the multivariate binary, created
by dichotomizing multivariate normal observations. The weights 1/(mi−1), rec-
ommended in Kuk and Nott (2000), LeCessie and van Houwelingen (1994), and
Zhao and Joe (2005), are suitable for the limiting case of independence within
clusters, but the weights 1/{mi(mi−1)} are optimal for very strong dependence.
A compromise suggested in Joe and Lee (2009) is 1/[(mi − 1){1 + 0.5(mi − 1)}],
which works well for a range of parameter values and models. Most applications
to date however have used the simpler weights 1/(mi − 1). Joe and Lee (2009)
also show that the best choice of weights depends on which parameter is to be
estimated, providing further detail on the earlier results of Kuk and Nott (2000)
and others that unweighted pairwise likelihood can be preferable for inference
about the association parameters, whereas weighting improves on the estimation
of the parameters in the mean.

When modelling clustered data the parameters in the one-dimensional mar-
gins are usually regression coefficients and variances, and the association param-
eters only appear in the two-dimensional margins. This suggests using separate
approaches for inference on these two sets of parameters, and several sugges-
tions along these lines have appeared in various contexts. Zhao and Joe (2005)
explore using the independence likelihood for the marginal parameters and pair-
wise likelihood for the association parameters, although in most cases the full
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pairwise likelihood method turns out to be more efficient. Kuk (2007) suggests a
quite promising hybrid method that uses optimal score functions for the marginal
parameters, and pairwise likelihood for the association parameters, regarded as
nuisance parameters. This hybrid method is shown to be related to, but better
than, alternating logistic regression (Carey, Zeger, and Diggle (2003)), and is
illustrated on ordinal count data, as well as negative binomial count data; the
latter application is also treated in Henderson and Shimakura (2003). For further
discussion of this approach see Varin (2008).

The same data structure yir, r = 1, . . . ,mi, may arise as longitudinal data,
in which case serial dependence of the observations is usually part of the model.
In this case the inferential problem is more similar to time series analysis, with
the difference that longitudinal data is typically n independent short time series,
rather than a single long time series. Asymptotic efficiency for longitudinal data
is studied analytically in Joe and Lee (2009). The weighting schemes typically
proposed in time series analysis downweight observations that are far apart in
time, and Joe and Lee (2009) find that choosing weights so that the pairwise
likelihood is constructed only from adjacent pairs is preferable to the full pairwise
likelihood involving all possible pairs in the sequence.

For time series models both marginal and conditional composite likelihoods
have been proposed, with a possible weighting scheme chosen to downweight
observations that are far apart in time. Explicit comparison of the simulation
variance for composite marginal likelihood of different orders is illustrated in
Varin and Vidoni (2006), where again it is shown that including too distant
observations in the composite marginal formulation can lead to a loss of efficiency.
Simulations of non-stationary time series are presented in a particular model for
ecology in Lele (2006), where the pairwise likelihood is shown to be more efficient
than the independence likelihood.

There are a number of investigations of asymptotic relative efficiency for
clustered and longitudinal data that rely on simulations, rather than analytical
calculations of the asymptotic variances. Such studies can consider more com-
plex models for marginal and association parameters, but it is difficult to gain
an overall picture of the results. Examples of simulation studies that show high
relative efficiency for pairwise likelihood in binary data include Renard et al.
(2002), Renard, Molenberghs and Geys (2004), Fieuws and Verbeke (2006) and
Feddag and Bacci (2009). The last paper considers a multidimensional Rasch
model proposed for longitudinal studies in item response theory. In all these pa-
pers pairwise likelihood has good simulation-based efficiency relative to inference
based on the full likelihood function, or in some cases approximations to it, but
there is likely to be a statistical ‘file-drawer’ problem in that situations for which
composite likelihood performs poorly are perhaps unlikely to be published, at
least until a method can be developed that seems to work well.



22 CRISTIANO VARIN, NANCY REID AND DAVID FIRTH

Sparse clustered binary data may arise in finely stratified studies, and two
versions of composite likelihood are suggested in Hanfelt (2004) and in Wang and
Williamson (2005), using Liang (1987)’s composite conditional likelihood (2.1).
Simulations in Wang and Williamson (2005) compare composite likelihood es-
timators of marginal and association parameters to estimators derived from an
estimating equations approach. The two methods have comparable efficiency;
the authors note that the composite likelihood equations for the association pa-
rameters very often have multiple roots, which makes numerical work based on
composite likelihood rather difficult in this setting. It would be useful to have
an explanation for this, as most authors who comment on numerical aspects of
composite likelihood estimation report that composite likelihood functions are
well behaved and relatively easy to maximize.

In the approach of Hanfelt (2004) to sparse binary data there are an increas-
ing number of nuisance parameters, and an adaptation of the estimating equation
for the association parameter derived from the composite conditional likelihood is
needed. Hjort and Varin (2008) note that in the Neyman-Scott model of several
normal groups with common mean but separate variances, the pairwise likelihood
based on differences gives consistent inference for the common variance, even as
the number of groups increases. Composite likelihood inference with very large
numbers of nuisance parameters is also considered in Engle, Shephard, and Shep-
pard (2009) and Pakel, Shepard, and Sheppard (2011).

Heagerty and Lele (1998) propose the use of pairwise likelihood for spatial
binary data generated through a multivariate probit model. Limited simulations
there suggest that the pairwise likelihood estimator is efficient for estimating
parameters in the mean, but somewhat less efficient in estimation of variance
parameters. See Bhat, Sener and Eluru (2010) for an extension to regression
analysis of spatially correlated ordinal responses. A general approach to spatial
generalized linear mixed models is discussed in Varin, Høst and Skare (2005), and
simulations are presented showing that pairwise likelihood inference for both
mean and variance parameters in a Poisson random effects model does better
than inference based on a high-dimensional Laplace approximation of the full
likelihood. Several computational issues arise in fitting pairwise and full log-
likelihoods in spatial generalized linear mixed models, and the authors describe
an EM-type algorithm; see Section 5.

Caragea and Smith (2007) use analytical calculations of asymptotic effi-
ciency, as well as simulations, to choose among three possible composite like-
lihood approaches for Gaussian random fields, as described in Section 3.1 above.
Their conclusions are broadly that a method that uses groups of nearby obser-
vations (“small blocks”) is more efficient than a version closer to independence
likelihood, and that for estimating regression parameters a hybrid method is
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slightly better. Simulations of spatial point processes presented in Guan (2006)
show that adaptive estimation the weights assigned to the likelihood of each pair
can be effective.

While most simulation studies show that some version of composite likelihood
has high efficiency, a warning is presented in Oliveira (2004), where a new spatial
model for rainfall is proposed. This model is based on a mixture of discrete
and continuous spatial processes to represent both the occurrence and amount
of rainfall, and it is noted that simulations indicate very poor performance of
pairwise likelihood for estimating parameters in the spatial correlation functions.

Simulation efficiency of pairwise likelihood in general state space models is
considered in Varin and Vidoni (2009) and Joe and Lee (2009), and Andrieu,
Doucet, and Tadic (2005) develop a version of composite likelihood adapted to
sequential Monte Carlo inference.

4.3. Robustness

Many authors refer to composite likelihood inference as robust, because com-
posite likelihood requires only model assumptions on the lower dimensional con-
ditional or marginal densities, and not detailed specification of the full joint
distribution. Thus if there are several joint distributions with the same lower
dimensional marginal or conditional distributions, the inference is the same for
all members of that family.

A small number of papers investigate robustness in more detail, usually
through simulations from a misspecified model. For example, Lele and Taper
(2002) investigate the behaviour of θ̂CL from the likelihood based on pairwise
differences, (2.3), in their case a one-way random effects model, first assuming
normality for the distribution of the random effects, and then simulating the
random effects under non-normal distributions. They conclude that composite
likelihood estimators and restricted maximum likelihood (REML) estimators of
variance components behave similarly under model misspecification. The REML
likelihood is the likelihood function for the marginal distribution of the residuals,
which for normal theory models is the same as the likelihood based on pairwise
differences, so may be very close to (2.3) in the models that Lele and Taper (2002)
study. Wang and Williamson (2005) present simulations of sparse clustered bi-
nary data under a model for which the correlation structure is misspecified, and
their results also indicate that composite likelihood methods continue to have
high efficiency.

In longitudinal data analysis it is not unusual to have missing observations,
and modelling this can be important for valid inferences. This is considered
in detail in Parzen et al. (2007), and again in Yi, Zeng and Cook (2009), as
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discussed in Section 3.4. The fact that some versions of composite likelihood are
indeed robust to the specification of the missing data mechanism is another very
attractive feature of composite likelihood.

The inverse of the Godambe information, G(θ), is often called the robust
variance estimate, as it is computed under the assumption that the model is mis-
specified, and composite likelihood models are by definition misspecified. How-
ever the use of G−1(θ) as a variance estimator does not guarantee, for example,
that the composite likelihood estimator has high efficiency under a range of mod-
els consistent with the composite likelihood; these need to be investigated on their
own merits.

Liang and Qin (2000) use a specialized version of composite conditional like-
lihood for a number of non-standard regression models, where modelling of the
distribution of the explanatory variables may be needed. Their simulations ad-
dress robustness to misspecification of this aspect of the modelling, noting that
the composite maximum likelihood estimator continues to have small bias, but
somewhat larger variance, under this misspecification.

Finally, Kent (1982) calls the log-likelihood ratio statistic W robust if its
asymptotic distribution was χ2

p, rather than the more complex form given after
(2.5), and discusses a special class of exponential family models that guaranteed
this result by showing that the score equations are information unbiased. This
line of argument is developed further in Mardia et al. (2009).

4.4. Identifiability

It is not clear whether or not composite likelihood methods give meaningful
results if there is no joint distribution compatible with the component densi-
ties used to construct the composite likelihood. In the case that the composite
likelihood is constructed from conditional distributions, the Hammersley-Clifford
Theorem specifies when there is a genuine joint distribution consistent with these
conditional distributions, and this was used in Besag (1974) in his development of
pseudo-likelihood for spatial data. This issue is pursued in Wang and Ip (2008),
where the key notion of interactions is defined, and their role in ensuring the com-
patibility of conditional and joint distributions is emphasized; see also Arnold,
Castillo, and Sarabia (2001).

There is not an analogous result for composite marginal likelihood, although
there is likely to be a connection to the theory of construction of joint distribu-
tions using copulas. Several papers on the use of composite marginal likelihood
use a copula construction (Bhat, Sener and Eluru (2010); Tibaldi et al. (2004);
Andersen (2004)) but many applications of composite marginal likelihood do
not. For example, the development of composite likelihood for spatial extremes
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described in Section 3.2 uses pairwise marginals as a proxy for a genuine joint
distribution.

We may, however, consider the composite Kullback-Leibler divergence,

CKL(g, f ; θ) =
K∑

k=1

wkEg {log g(y ∈ Ak) − log f(y ∈ Ak; θ)} ,

consisting of the linear combination of the Kullback-Leibler divergences for each
term of the composite likelihood. Under some regularity conditions the maxi-
mum composite likelihood estimator θ̂CL is consistent for the parameter value
minimizing CKL, and inference about this pseudo-parameter may be useful for
particular applications. We could also view the estimating equation from the
composite likelihood as a reasonable specification of knowledge about parameters
of lower dimensional marginal distributions, in the spirit of generalized estimat-
ing equations; see Varin (2008). This might be especially true for estimating
parameters in the mean function.

Joe and Lee (2009) note in passing that unless the component likelihoods in
a composite likelihood construction are “rich enough to identify the parameter”,
the composite likelihood estimator will not be consistent. Presumably, if a full
joint distribution exists in which the parameters of the components are (subvec-
tors of the) parameters of the full joint distribution, this guarantees identifiability.
However it seems possible that the parameters of the component densities could
be identifiable under weaker conditions.

In the approach outlined in Section 3.3.3, each component marginal density
has its own parameter θrs, say, and the estimator used for the notional parameter
θ of interest is a linear combination of the pairwise estimators θ̂rs. The connection
of this to identifiability of joint densities is not clear.

5. Computational Aspects

5.1. Standard errors

Standard errors and confidence interval computation require the estimation
of the Godambe matrix and its components. Again, it is useful to distinguish
between the case of n large with m fixed, and vice-versa. The first case is simpler
with easily computed sample estimates of the sensitivity and variability matrices.
The sample estimate of the sensitivity matrix is given by

Ĥ(θ) = − 1
n

n∑

i=1

∇u(θ̂CL; yi),
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where u(θ; yi) = ∇c"(θ; yi). Computation of Hessians can be avoided by exploiting
the second Bartlett identity, which remains valid for each individual likelihood
term forming the composite likelihood. This yields the alternative estimate

Ĥ(θ) =
1
n

n∑

i=1

m∑

r=1

u(θ̂CL; yir)u(θ̂CL; yir)T.

The sample estimate of the variability matrix is expressed by the outer product
of the composite scores computed at θ̂CL,

Ĵ(θ) =
1
n

n∑

i=1

u(θ̂CL; yi)u(θ̂CL; yi)T.

The above empirical estimates of H and J may be imprecise when n is not suf-
ficiently large compared to the dimension of θ. This is well known in the longi-
tudinal literature where resampling methods, such as jackknife or bootstrap, are
often used to obtain more robust estimates of the covariance matrix of θ̂CL; see
for example Lipsitz, Dear and Zhao (1994). The jackknife covariance matrix is
given by

varjack(θ̂CL) =
n − 1

n

n∑

i=1

(θ̂(−i)
CL − θ̂CL)(θ̂(−i)

CL − θ̂CL)T,

where θ̂(−i)
CL is the composite likelihood estimator of θ with yi deleted. Zhao and

Joe (2005) use varjack for estimation of the standard errors of maximum pairwise
likelihood estimators with clustered data. A further possible advantage of the
jackknife method is the possibility to obtain an approximate bias correction of
θ̂CL. In certain applications the computation of the set of θ̂(−i)

CL can be excessively
expensive, and then it may be convenient to consider a first-order approximation
where θ̂(−i)

CL is approximated with a single step of the Newton-Raphson algorithm.
More difficult is the case of m large when n is fixed, with the extreme sit-

uation of n = 1 when a single time-series or spatial process is observed. While
the sample estimate of the sensitivity matrix H has the usual form, difficulties
arise for the variability matrix J. A sample estimate of the latter is possible only
if the data can be grouped into pseudo-independent replicates. Considering a
temporal or spatial process with good mixing properties, a sample estimate of J
can be obtained by splitting the region under study into subregions treated as
approximately independent:

Ĵws(θ) =
1
B

B∑

b=1

|Sb|u(θ̂CL; y ∈ Sb)u(θ̂CL; y ∈ Sb)T,
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where S1, . . . ,SB are B possibly overlapping subregions and |S| denotes the di-
mension of set S. Heagerty and Lele (1998) term this method window subsam-
pling and use it for pairwise likelihood inference with spatial binary data. For
more details and guidance on the choice of the subregions, we refer to Lumley
and Heagerty (1999).

When conditions for ensuring the validity of window subsamping or other
empirical estimates are not satisfied, estimation of J must be done under model
assumptions. In certain contexts, it may be possible to compute J explicitly.
For example, in the case of the pairwise likelihood, model-based estimation of J
typically requires computation of four-dimensional expectations. When it is easy
to simulate data from the complete model, Monte Carlo simulations can be used
either for estimating the J matrix with

Ĵmc(θ) =
1
B

B∑

b=1

u(θ̂CL; y(b))u(θ̂CL; y(b))T,

where y(1), . . . , y(B) are independent draws from the fitted model, or for direct
estimation of the covariance matrix of θ̂CL from repeated fitting of simulated
data.

5.2. Composite likelihood expectation-maximization algorithm

The expectation-maximization algorithm (Dempster, Laird and Rubin (1977);
EM) and its variants are popular methods to obtain maximum likelihood esti-
mates in a number of situations. Examples include missing data, censored data,
latent variables, finite mixture models, and hidden Markov models. See McLach-
lan and Krishnan (2008) for a book length exposition.

The EM algorithm can be straightforwardly extended to maximization of
composite likelihoods. This can be useful for models where the expectation step
involves high-dimensional integration, thus making impractical the use of a stan-
dard EM algorithm. The first example of the use of a composite EM algorithm
seems to be the pairwise EM algorithm proposed by Liang and Yu (2003) in
network tomography, see also Castro et al. (2004). Varin, Høst and Skare (2005)
consider an approximate version of the same algorithm for inference in spatial
generalized linear mixed models discussed in Section 3.4. Gao and Song (2011)
discuss properties of a general composite marginal likelihood EM algorithm and
give an illustration of the pairwise version for multivariate hidden Markov models
applied to time-course microarray data.

Here we briefly summarize only the pairwise EM algorithm. Let x1, . . . , xm

be the complete data and y1, . . . , ym the observed data. Denote by θ(0) a starting
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value for θ. Given θ(h), the pairwise EM algorithm iterate at step h, the next
iterate θ(h+1) is the value such that

Q(θ(h+1)|θ(h)) ≥ Q(θ|θ(h)), for any θ ∈ Θ,

where Q(θ|θ(h)) is the sum of bivariate conditional probabilities

Q(θ|θ(h)) =
m−1∑

r=1

m∑

s=r+1

E{log f(xr, xs; θ)|yr, ys; θ(h−1)}.

As shown in detail by Gao and Song (2011), it is easy to prove that this algorithm
shares the three key properties of standard EM algorithms, namely
(i) the ascent property

Lpair(θ(h+1); y) ≥ Lpair(θ(h); y), h = 1, 2, . . .

(ii) convergence to a stationary point of the objective function, and
(iii) convergence rate depending on the curvature of the objective function.

5.3. Low-dimensional integration versus high-dimensional integration

In many applications, the motivation for composite likelihood inference is to
substitute awkward high-dimensional integration involved in full likelihoods with
low-dimensional integrals. The latter can often be computed by using accurate
deterministic quadrature rules. For example, Bellio and Varin (2005) approxi-
mate integrals involved in logistic regression models with random effects using
normal scale mixtures and bivariate quadrature rules.

In contrast, high-dimensional integrals typically require Monte Carlo simu-
lation methods with various potential difficulties. First, the computational time
may be too large for practical purposes. Second, the simulation error may be sub-
stantial and difficult to evaluate, making the optimization of the approximated
likelihood troublesome. A third reason for concern regards reproducibility of
results, especially for a non-technical audience.

A possible advantage of simulated maximum likelihood versus composite like-
lihood methods is the possibility to base inference on the standard asymptotic
results, without the need to compute the more difficult Godambe information
or to modify the chi-squared distribution of the likelihood ratio test. However,
some authors suggest the use of the Godambe information also for simulated
maximum likelihood to take into account the simulation error due to the use of
a finite number of draws; see for example McFadden and Train (2000). Thus,
the potential simplicity of maximum likelihood inference is lost when using sim-
ulations to approximate the likelihood. For a comparison between simulated
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maximum likelihood based on quasi-Monte Carlo rules and pairwise likelihood
for ordinal probit models see Bhat, Varin, and Ferdous (2010).

5.4. Combinatorial difficulties

As observed by one referee, another computational motivation for preferring
the composite likelihood method is the combinatorial difficulty associated with
some likelihood-type analyses based on the complete data. Examples of this
include computation of the partial likelihood (Cox (1975)) for the proportional
hazards model when the number of events is large, and computation of the con-
ditional likelihood for case-control studies with a large number of cases. Other
combinatorial difficulties arise when the computation of the joint distribution of
the data requires conditioning on the order statistics, thus involving m! permu-
tations, where m is the sample size (Kalbfleisch (1978)). While the difficulty
of computing high-dimensional integrals leads naturally to composite marginal
likelihoods, avoiding these combinatorial difficulties leads to the use of composite
conditional likelihoods, as in Liang (1987) and Liang and Qin (2000).

6. Conclusions

6.1. Relations with other approaches

In many applications of marginal or conditional composite likelihood, the ap-
proach of generalized estimating equations originated in Liang and Zeger (1986)
is a natural alternative. This approach defines an estimating equation through
a model for the mean, and accommodates correlation among observations, and
non-homogeneous variances, by weighting the estimating equation appropriately.
Liang and Zeger (1986) showed that as long as the estimating equation for the
mean is correctly specified, the resulting estimator is consistent, and suggested
using a working covariance matrix to this end. Many refinements have since been
suggested, and the method is very convenient for semi-parametric modelling of
complex data. A possible drawback of the method is that there is no objective
function, which can be useful for comparing multiple roots of the estimating
equation. For clustered binary data Molenberghs and Verbeke (2005, Chap. 9)
give a detailed comparison of the estimating equations from pairwise likelihood,
with weight 1/(mi − 1) for clusters of size mi, to two versions of generalized
estimating equations, GEE1 and GEE2, where the latter requires modelling of
the first four moments of the data; they argue that pairwise likelihood is a com-
promise between the two, with computational complexity similar to GEE1, but
efficiency closer to GEE2.

Many of the more complex applications of composite likelihood, particularly
in longitudinal or clustered data, provide comparisons using simulation studies
to some type of estimating equation, usually a generalized estimating equation;
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see for example Geys et al. (2001), Hanfelt (2004), and Zhao and Ma (2009).
Hybrid methods that combine features of composite likelihood with generalized
estimating equations, as in Kuk (2007), seem quite promising. In the other
direction, Oman et al. (2007) use a generalized estimating equation approach to
simplify the computation of pairwise likelihood.

In its most general form composite likelihood encompasses many types of
likelihood-like functions suggested in the statistical literature, including partial
likelihood for censored survival data and its many extensions, as well as non-
parametric likelihoods for counting processes. For example, Wellner and Zhang
(2000, 2007) propose non-parametric and semi-parametric estimators for panel
count data using an independence likelihood, and Andersen (2004) uses pairwise
likelihood in the proportional hazards model. Other extensions to likelihood
composition include the weighted likelihood of Zidek and Hu (1997) and the par-
titioning of likelihood for maximization by parts in Kalbfleisch, Song and Fan
(2005).

6.2. Some challenges

Using the most general definition of composite likelihood, it may be diffi-
cult to derive very many specific properties beyond perhaps consistency of the
point estimator, as the range of models is simply too broad (Lindsay, Yi and
Sun (2011)). In this subsection we consider some ideas that seem promising for
further research in the theory and application of composite marginal likelihood
and composite conditional likelihood.

Some theoretical issues are mentioned in passing in Section 4, and others
are addressed in papers in this special issue. One important question is the rela-
tion between the lower dimensional marginal or conditional distributions used to
construct composite likelihood and the underlying joint distribution. For condi-
tional densities, the Hammersley-Clifford Theorem (Besag (1974)) provides some
guarantees about the existence of a full joint distribution, even if this distribu-
tion is not computable. There is not a similar result for the compounding of
low-dimensional joint densities, beyond univariate marginal densities, where the
independence likelihood corresponds trivially to a full joint distribution. While
some authors state that the existence of such a full joint density is needed for
sensible inference from composite likelihood, others argue that the parameters
in the low-dimensional margins may be interpretable anyway. Varin and Vidoni
(2005) argue this from the point of view of Kullback-Leibler divergence, whereas
Faes et al. (2008) devise a method of relating individual parameters in compo-
nent densities to a common parameter of interest. The theory of construction of
multivariate distributions using copulas (Joe (1997)) may be useful for exploring
these ideas further.
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In work as yet unpublished, presented at a session on composite likelihood
at the Joint Statistical Meetings in Washington, 2009, G. Y.Yi gave several il-
lustrative examples that raise questions about modelling based on composite
likelihood, and questions about the comparison of composite likelihood to full
likelihood methods. A modelling example assumes the following pairwise distri-
bution for binary data:

f(yr, ys; β) ∝ exp(βyr + βys + βrsyrys)
1 + exp(βyr + βys + βrsyrys)

.

If the binary vector has, for example, length 3, then pairwise likelihood will lead to
different estimates of β12, β13 and β23, yet the strong form of the marginal model
assumed constrains the full joint density to have β12 = β13 = β23. Similarly,
it is not difficult to construct examples where pairwise conditional densities are
not compatible with any joint density. A somewhat different point arises in
the symmetric normal example of pairwise likelihood, where Y follows a normal
distribution with covariance matrix Σ = (1− ρ)I + ρ11T, where I is the identity
and 1 is an m-vector of 1’s. In the full joint distribution for a vector Y of length
m, Σ is only positive definite for −1/(m − 1) < ρ < 1, whereas the pairwise
composite likelihood requires for only −1/2 < ρ < 1; thus pairwise likelihood
would be expected to be unsuitable for ρ < 0, a point confirmed in Mardia,
Hughes and Taylor (2007).

Several recent papers, including some in this special issue (Okabayashi, John-
son and Geyer (2011)); Davis and Yau (2011); Ng et al. (2011)) address the ques-
tion of how many terms to include in a composite likelihood, following along the
lines of Hjort and Varin (2008). The answer is likely to depend fairly strongly
on the application, but from a theoretical point of view it is possible to study in
a more general way the information accumulation provided, or not provided, by
adding additional terms. Lindsay, Yi and Sun (2011) discuss in detail a number
of aspects of the design of composite likelihoods, with particular emphasis on the
components of the composite likelihood score function. This design issue seems
especially relevant for the context of spatial and time series applications, where
replication is obtained from observations sufficiently distant in time or space. A
special aspect of this is the weighting of subsets of observations, which has been
studied in some detail particularly for clustered and/or longitudinal data. A
more general understanding of the asymptotic efficiency of composite marginal
likelihood would be welcome. Some progress is made in Mardia et al. (2009),
but the conditions there seem rather strong, and apply more easily to composite
conditional likelihood.

One motivation for the use of composite marginal likelihood is that it is
easier to model the univariate, bivariate, or trivariate dependence than the full
joint dependence. The claim is often made that these models are more robust
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than the full joint models, but it seems difficult to make this precise. This is
partly because it is not always clear how much the specification of, for example,
the bivariate marginals constrains the full joint distribution. A related question,
suggested by Bruce Lindsay in personal communication, is whether there may
be a higher dimensional model in which J = H so that asymptotic efficiency is
achieved at this particular model.

Most of the study of inference from composite likelihood has focussed on
point estimation and estimation of the asymptotic variance of the composite
maximum likelihood estimator. This follows fairly directly from the theory of
estimating equations, at least if the dimension of the vector is fixed while the
sample size increases. In ordinary likelihood theory inference based on the log-
likelihood ratio statistic is often preferred, but its asymptotic distribution for the
composite likelihood analogue is difficult to work with. Promising alternatives
include the Satterthwaite (1946) type corrections mentioned in Section 2.3 and
the adjustment developed in Pace, Salvan and Sartori (2011). Calibration of
composite likelihoods is a key ingredient also for approximate Bayesian inference
as discussed in Pauli, Racugno and Ventura (2011).

Another aspect of the asymptotic theory that needs further study is the case
of increasing dimension m with fixed or slowly increasing sample size: this is
particularly important for genetics applications. There does not seem to be a
rigorous proof that the composite maximum likelihood estimator is, or is not,
consistent, under various conditions on m and n: some heuristics were sketched
in Cox and Reid (2004).

One very important methodological development that is touched on in sev-
eral papers in this issue, as well as in other literature, is the use of composite
likelihood methods with missing data and with mis-measured data. This seems
a particularly important applied issue, as composite likelihood methods are so
often used with longitudinal data in medical applications, where missed visits
may be nearly unavoidable, and lead to gaps in the series available for each
subject in the study. In some models the mechanism for missingness does not
need to be modelled in the composite likelihood approach (Yi and He (2011)).
Molenberghs et al. (2011) use ideas of double robustness from the theory of es-
timating equations to adjust for missingness under the assumption of missing at
random, and Gao and Song (2011) develop EM-type algorithms that however
require missingness to be completely at random.

Another important methodological aspect is computation, particularly es-
timation of J(θ) when there is not internal replication. Several strategies are
suggested in Section 5.1, but a systematic comparison in a broad range of mod-
els could be worthwhile.

Composite likelihood is being developed, often independently by researchers
in different fields, for use in a wide variety of application areas well beyond
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the spatial or longitudinal data for which it was originally developed: computer
experiments, network analysis, population genetics, and investment portfolios,
to name only a few of the recent applications. It is a natural way to simplify the
modelling of complex systems, and seems likely to become well established as an
alternative approach to full likelihood inference.

Acknowledgements

We are grateful to Don Fraser and Grace Yun Yi for helpful discussions, and
to a referee and associate editor for comments on an earlier draft. The research
was partially supported by MIUR Italy, NSERC Canada and ESRC UK. The
2008 workshop at Warwick was supported by UK research councils ESRC, via the
National Centre for Research Methods, and EPSRC, via the Centre for Research
in Statistical Methodology.

References

Andersen, E. (2004). Composite likelihood and two-stage estimation in family studies. Biostatis-
tics 5, 15-30.

Andrieu, C., Doucet, A. and Tadic, V. (2005). On-line parameter estimation in general state-
space models. In 44th Conference on Decision and Control, 332-337.

Apanasovich, T., Ruppert, D., Lupton, J., Popovic, N. and Carroll, R. (2008). Aberrant crypt
foci and semiparametric modeling of correlated binary data. Biometrics 64, 490-500.

Arnold, B., Castillo, E. and Sarabia, J. (2001). Conditionally specified distributions: An intro-
duction. Statist. Sci. 16, 249-274.

Barry, S. and Bowman, A. (2008). Linear mixed models for longitudinal shape data with appli-
cations to facial modelling. Biostatistics 9, 555-565.

Bellio, R. and Varin, C. (2005). A pairwise likelihood approach to generalized linear models
with crossed random effects. Stat. Model. 5, 217-227.

Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. J. Roy.
Statist. Soc. Ser. B 36, 192-236.

Bhat, C. R., Sener, P. N. and Eluru, N. (2010). A flexible spatially dependent discrete choice
model: Formulation and application to teenagers’ weekday recreational activity participa-
tion. Transportation Research Part B 44, 903-921.

Bhat, C. R., Varin, C. and Ferdous, N. (2010). A comparison of the maximum simulated like-
lihood and composite marginal likelihood estimation approaches in the context of the
multivariate ordered response model system. Advances in Econometrics: Maximum Simu-
lated Likelihood Methods and Applications 26, (Edited by W. H. Greene). Emerald Group
Publishing Limited.

Caragea, P. and Smith, R. L. (2006). Approximate likelihoods for spatial processes. Preprint.

Caragea, P. and Smith, R. L. (2007). Asymptotic properties of computationally efficient alter-
native estimators for a class of multivariate normal models. J. Multivariate Anal. 98,
1417-1440.

Carey, V., Zeger, S. and Diggle, P. (2003). Modelling multivariate binary data with alternating
logistic regressions. Biometrika 80, 517-526.

Cristiano Varin


Cristiano Varin


Cristiano Varin
Italia

Cristiano Varin


Cristiano Varin


Cristiano Varin
please include also the following reference: 
Besag, J. (1975). Statistical analysis of non-lattice data. {\em The Statistician} {\bf 24}, 179--195.

Cristiano Varin


Cristiano Varin
see footnote



34 CRISTIANO VARIN, NANCY REID AND DAVID FIRTH

Castro, R., Coates, M., Liang, G., Nowak, R. and Yu, B. (2004). Network tomography: recent
developments. Statist. Sci. 19, 499-517.

Chandler, R. E. and Bate, S. (2007). Inference for clustered data using the independence log-
likelihood. Biometrika 94, 167-183.

Claeskens, G. and Hjort, N. (2008). Model Selection and Model Averaging, Cambridge University
Press, Cambridge.

Cox, D. (1975). Partial likelihood. Biometrika 62, 269-276.

Cox, D. R. (1972). The analysis of multivariate binary data. Appl. Statist. 21, 113-120.

Cox, D. and Reid, N. (2004). A note on pseudolikelihood constructed from marginal densities.
Biometrika 91, 729-737.

Cressie, N. (1993). Statistics for Spatial Data, Wiley, New York.

Curriero, F. and Lele, S. (1999). A composite likelihood approach to semivariogram estimation.
J. Agric. Biol. Environ. Stat. 4, 9-28.

Davis, R. A. and Yau, C. Y. (2011). Comments on pairwise likelihood in time series models.
Statist. Sinica 21, ??-??.

Davison, A. and Gholamrezaee, M. (2009). Geostatistics of extremes. Technical report, EPFL.
Preprint.

Dempster, A., Laird, N. and Rubin, D. (1977). Maximum likelihood from incomplete data via
the EM algorithm. J. Roy. Statist. Soc. Ser. B 39, 1-22.

Diggle, P. and Ribeiro, P. (2007). Model-based Geostatistics. Springer, New York.

Engle, R. F., Shephard, N. and Sheppard, K. (2009). Fitting and testing vast dimensional
time-varying covariance models. Preprint.

Faes, C., Aerts, M., Molenberghs, G., Geys, H., Teuns, G. and Bijnens, L. (2008). A high-
dimensional joint model for longitudinal outcomes of different nature. Statist. medicine
27, 4408-4427.

Feddag, M.-L. and Bacci, S. (2009). Pairwise likelihood for the longitudinal mixed Rasch model.
Comput. Statist. Data Anal. 53, 1027-1037.

Fieuws, S. and Verbeke, G. (2006). Pairwise fitting of mixed models for the joint modeling of
multivariate longitudinal profiles. Biometrics 62, 424-431.

Fieuws, S., Verbeke, G., Boen, G. and Delecluse, C. (2006). High dimensional multivariate
mixed models for binary questionnaire data. Appl. Statist. 55, 449-460.

Fieuws, S., Verbeke, G., Maes, B. and Vanrenterghem, Y. (2007). Predicting renal graft failure
using multivariate longitudinal profiles. Biostatistics 9, 419-431.

Fieuws, S., Verbeke, G. and Molenberghs, G. (2007). Random-effects models for multivariate
repeated measures. Statist. Meth. Medical Res. 16, 387-397.

Fiocco, M., Putter, H. and van Houwelingen, J. C. (2009). A new serially correlated gamma-
frailty process for longitudinal count data. Biostatistics 10, 245-257.

Fujii, Y. and Yanagimoto, T. (2005). Pairwise conditional score functions: a generalization of
the Mantel-Haenszel estimator. J. Statist. Plann. Inference 128, 1-12.

Gao, X. and Song, P. X.-K. (2010). Composite likelihood Bayesian information criteria for
model selection in high dimensional data. J. Amer. Statist. Assoc., to appear.

Gao, X. and Song, P. X.-K. (2011). Composite likelihood EM algorithm with applications to
multivariate hidden Markov model. Statist. Sinica 21, ??-??.

Geys, H., Molenberghs, G. and Ryan, L. (1999). Pseudolikelihood modeling of multivariate
outcomes in developmental toxicology. J. Amer. Statist. Assoc. 94, 734-745.

Cristiano Varin


Cristiano Varin


Cristiano Varin
Medicine



COMPOSITE LIKELIHOODS 35

Geys, H., Regan, M., Catalano, P. and Molenberghs, G. (2001). Two latent variable risk assess-
ment approaches for mixed continuous and discrete outcomes from developmental toxicity
data. J. Agric. Biol. Environ. Stat. 6, 340-355.

Glasbey, C. (2001). Non-linear autoregressive time series with multivariate Gaussian mixtures
as marginal distributions. Appl. Statist. 50, 143-154.

Godambe, V. (1960). An optimum property of regular maximum likelihood estimation. Ann.
Math. Statist. 31, 1208-1211.

Guan, Y. (2006). A composite likelihood approach in fitting spatial point process models. J.
Amer. Statist. Assoc. 101, 1502-1512.

Hanfelt, J. (2004). Composite conditional likelihood for sparse clustered data. J. Roy. Statist.
Soc. Ser. B 66, 259-273.

Heagerty, P. and Lele, S. (1998). A composite likelihood approach to binary spatial data. J.
Amer. Statist. Assoc. 93, 1099-1111.

Henderson, R. and Shimakura, S. (2003). A serially correlated gamma frailty model for longi-
tudinal count data. Biometrika 90, 335-366.

Hjort, N. and Omre, H. (1994). Topics in spatial statistics (with discussion, comments and re-
joinder). Scand. J. Statist. 21, 289-357.

Hjort, N. and Varin, C. (2008). ML, PL, QL in Markov chain models. Scand. J. Statist. 35,
64-82.

Jin, Z. (2009). On some aspects of composite likelihood. PhD dissertation, University of Toronto.

Joe, H. (1997) , Multivariate Models and Multivariate Dependence Concepts, Chapman & Hall,
London.

Joe, H. and Lee, Y. (2009). On weighting of bivariate margins in pairwise likelihood. J. Multi-
variate Anal. 100, 670-685.

Kalbfleisch, J. (1978). Likelihood methods and nonparametric tests. J. Amer. Statist. Assoc.
73, 167-170.

Kalbfleisch, J. D., Song, P. X.-K. and Fan, Y. (2005). Maximization by parts in likelihood
inference. J. Amer. Statist. Assoc. 100, 1145-1158.

Kent, J. (1982). Robust properties of likelihood ratio tests. Biometrika 69, 19-27.

Kuk, A. (2007). A hybrid pairwise likelihood method. Biometrika 94, 939-952.

Kuk, A. and Nott, D. (2000). A pairwise likelihood approach to analyzing correlated binary
data. Statist. Probab. Lett. 47, 329-335.

Kuonen, D. (1999). Saddlepoint approximations for distributions of quadratic forms in normal
variables. Biometrika 86, 929-935.

Larribe, F. and Fearnhead, P. (2011). On composite likelihoods in statistical genetics. Statist.
Sinica 21, ??-??.

LeCessie, S. and van Houwelingen, J. C. (1994). Logistic regression for correlated binary data.
Appl. Statist. 43, 95-108.

Lele, S. (2006). Sampling variability and estimates of density dependence: a composite-
likelihood approach. Ecology 87, 189-202.

Lele, S. and Taper, M. (2002). A composite likelihood approach to (co)variance components
estimation. J. Statist. Plann. Inference 103, 117-135.

Liang, K.-Y. (1987). Extended Mantel-Haenszel estimating procedure for multivariate logistic
regression models. Biometrics 43, 289-299.

Liang, K.-Y. and Qin, J. (2000). Regression analysis under non-standard situations: a pairwise
pseudolikelihood approach. J. Roy. Statist. Soc. Ser. B 62, 773-786.

Cristiano Varin
Zi, J.

Cristiano Varin


Cristiano Varin


Cristiano Varin
(thus, this reference should be moved to the last page)

Cristiano Varin




36 CRISTIANO VARIN, NANCY REID AND DAVID FIRTH

Liang, G. and Yu, B. (2003). Maximum pseudo likelihood estimation in network tomography.
IEEE Trans. Signal Process. 51, 2043-2053.

Liang, K.-Y. and Zeger, S. (1986). Longitudinal data analysis using generalized linear models.
Biometrika 73, 13-22.

Lindsay, B. G. (1982). Conditional score functions: some optimality results. Biometrika 69,
503-512.

Lindsay, B. (1988). Composite likelihood methods. Contemporary Mathematics 80, 220-239.

Lindsay, B. G., Pilla, R. S. and Basak, P. (2000). Moment-based approximations of distributions
using mixtures: theory and application. Ann. Inst. Statist. Math. 52, 215-230.

Lindsay, B. G., Yi, G. Y. and Sun, J. (2011). Issues and strategies in the selection of composite
likelihoods. Statist. Sinica 21, ??-??.

Lipsitz, S., Dear, K. and Zhao, L. (1994). Jackknife estimators of variance for parameter esti-
mates from estimating equations with applications to clustered survival data. Biometrics
50, 842-846.

Lumley, T. and Heagerty, P. (1999). Weighted empirical adaptive variance estimators for cor-
related data regression. J. Roy. Statist. Soc. Ser. B 61, 459-477.

Mardia, K. V., Hughes, G. and Taylor, C. C. (2007). Efficiency of the pseudolikelihood for
multivariate normal and von mises distributions. Preprint.

Mardia, K. V., Hughes, G., Taylor, C. C. and Singh, H. (2008). A multivariate von Mises
distribution with applications to bioinformatics. Canadian Journal of Statistics 36, 99-
109.

Mardia, K. V., Kent, J. T., Hughes, G. and Taylor, C. C. (2009). Maximum likelihood estimation
using composite likelihoods for closed exponential families. Biometrika 96, 975-982.

Mateu, J., Porcu, E., Christakos, G. and Bevilacqua, M. (2007). Fitting negative spatial co-
variances to geothermal field temperatures in Nea Kessani (Greece). Environmetrics 18,
759-773.

McCullagh, P. (1983). Quasi-likelihood functions. Ann. Statist. 11, 59-67.

McFadden, D. and Train, K. (2000). Mixed MNL models for discrete responses. J. Appl. Econo-
metrics 15, 447-470.

McLachlan, G. and Krishnan, T. (2008). The EM Algorithm and Extensions. Second Edition,
Wiley, Hoboken, New Jersey.

Molenberghs, G., Kenward, M. G., Verbeke, G. and Birhanu, T. (2011). Pseudo-likelihood for
incomplete data. Statist. Sinica 21, ??-??.

Molenberghs, G. and Verbeke, G. (2005). Models for Discrete Longitudinal Data. Springer, New
York.

Ng, C. T., Joe, H., Karlis, D., and Liu, J. (2011). Composite likelihood for time series models
with a latent autoregressive process. Statist. Sinica 21, ??-??.

Nott, D. and Rydén, T. (1999). Pairwise likelihood methods for inference in image models.
Biometrika 86, 661-676.

Okabayashi, S., Johnson, L. and Geyer, C. J. (2011). Extending pseudo-likelihood for potts
models. Statist. Sinica 21, ??-??.

Oliveira, V. D. (2004). A simple model for spatial rainfall fields. Stochastic Environmental
Research and Risk Assessment 18, 131-140.

Oman, S., Landsman, V., Carmel, Y. and Kadmon, R. (2007). Analyzing spatially distributed
binary data using independent-block estimating equations. Biometrics 63, 892-890.

Cristiano Varin


Cristiano Varin


Cristiano Varin


Cristiano Varin
Potts

Cristiano Varin




COMPOSITE LIKELIHOODS 37

Pace, L., Salvan, A. and Sartori, N. (2011). Adjusting composite likelihood ratio statistics.
Statist. Sinica 21, ??-??.

Padoan, S., Ribatet, M. and Sisson, S. (2010). Likelihood-based inference for max-stable pro-
cesses. J. Amer. Statist. Assoc. 105, 263-277.

Pakel, C., Shepard, N. and Sheppard, K. (2011). Nuisance parameters, composite likelihoods
and a panel of GARCH models. Statist. Sinica 21, ??-??.

Parzen, M., Lipsitz, S., Fitzmaurice, G., Ibrahim, J. and Troxel, A. (2006). Pseudo-likelihood
methods for longitudinal binary data with non-ignorable missing responses and covariates.
Statist. Medicine 25, 2784-2796.

Parzen, M., Lipsitz, S., Fitzmaurice, G., Ibrahim, J., Troxel, A. and Molenberghs, G. (2007).
Pseudo-likelihood methods for the analysis of longitudinal binary data subject to nonig-
norable non-monotone missingness. J. Data Sci. 5, 1-21.

Pauli, F., Racugno, W. and Ventura, L. (2011). Bayesian composite marginal likelihoods. Statist.
Sinica 21, ??-??.

R Development Core Team (2009), R: A Language and Environment for Statistical Com-
puting, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
http://www.R-project.org

Renard, D., Geys, H., Molenberghs, G., Burzykowski, T. and Buyse, M. (2002). Validation of
surrogate endpoints in multiple randomized clinical trials with discrete outcomes. Biomet-
rical J. 8, 921-935.

Renard, D., Molenberghs, G. and Geys, H. (2004). A pairwise likelihood approach to estimation
in multilevel probit models. Comput. Statist. Data Anal. 44, 649-667.

Ribatet, M. (2009). A User’s Guide to the SpatialExtremes Package. EPFL, Lausanne, Switzer-
land.

Robins, J. (1995). Analysis of semiparametric regression models for repeated outcomes in the
presence of missing data. J. Amer. Statist. Assoc. 90, 106-121.

Rotnitzky, A. and Jewell, N. (1990). Hypothesis testing of regression parameters in semipara-
metric generalized linear models for cluster correlated data. Biometrika 77, 485-497.

Rydén, T. (1994). Consistent and asymptotically normal parameter estimates for hidden Markov
models. Ann. Statist. 22, 1884-1895.

Satterthwaite, F. E. (1946). An approximate distribution of estimates of variance components.
Biometrics Bulletin 2, 110-114.

Smith, E. and Stephenson, A. (2009). An extended Gaussian max-stable process model for
spatial extremes. J. Statist. Plann. Inference 139, 1266-1275.

Smith, R. (1990). Max-stable processes and spatial extremes. Unpublished.

Stein, M., Chi, Z. and Welty, L. (2004). Approximating likelihoods for large spatial data sets.
J. Roy. Statist. Soc. Ser. B 66, 275-296.

Tibaldi, F., Molenberghs, G., Burzykowski, T. and Geys, H. (2004). Pseudo-likelihood estima-
tion for a marginal multivariate survival model. Statist. Medicine 23, 924-963.

Troxel, A., Lipsitz, S. and Harrington, D. (2003). Marginal models for the analysis of longitudi-
nal measurements with nonignorable non-monotone missing data. Biometrika 85, 661-672.

Vandekerkhove, P. (2005). Consistent and asymptotically normal parameter estimates for hidden
Markov mixtures of Markov models. Bernoulli 11, 103-129.

Varin, C. (2008). On composite marginal likelihoods. Adv. Statist. Anal. 92, 1-28.

Varin, C. and Czado, C. (2010). A mixed autoregressive probit model for ordinal longitudinal
data. Biostatistics 11, 127-138.

Cristiano Varin


Cristiano Varin


Cristiano Varin
Shephard



38 CRISTIANO VARIN, NANCY REID AND DAVID FIRTH

Varin, C., Høst, G. and Skare, Ø. (2005). Pairwise likelihood inference in spatial generalized
linear mixed models. Comput. Statist. Data Anal. 49, 1173-1191.

Varin, C. and Vidoni, P. (2005). A note on composite likelihood inference and model selection.
Biometrika 92, 519-528.

Varin, C. and Vidoni, P. (2006). Pairwise likelihood inference for ordinal categorical time series.
Comput. Statist. Data Anal. 51, 2365-2373.

Varin, C. and Vidoni, P. (2009). Pairwise likelihood inference for general state space models.
Econometric Rev. 28, 170-185.

Vecchia, A. V. (1988). Estimation and model identification for continuous spatial processes. J.
Roy. Statist. Soc. Ser. B 50, 297-312.

Wang, M. and Williamson, J. M. (2005). Generalization of the Mantel-Haenszel estimating
function for sparse clustered binary data. Biometrics 61, 973-981.

Wang, Y. and Ip, E. (2008). Conditionally specified continuous distributions. Biometrika 95,
735-746.

Wedderburn, R. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-
Newton method. Biometrika 61, 439-447.

Wellner, J. A. and Zhang, Y. (2000). Two estimators of the mean of a counting process with
panel count data. Ann. Statist. 28, 779-814.

Wellner, J. A. and Zhang, Y. (2007). Two likelihood-based semiparametric estimation methdos
for panel count data with covariates. Ann. Statist. 35, 2106-2142.

White, H. (1994). Estimation, Inference and Specification Analysis. Cambridge University Press,
Cambridge.

Yi, G. Y. and He, W. (2011). A pairwise likelihood method for correlated binary data
with/without missing observations under generalized partially linear single-index models.
Statist. Sinica 21, ??-??.

Yi, G. Y., Zeng, L. and Cook, R. J. (2009). A robust pairwise likelihood method for incomplete
longitudinal binary data arising in clusters. Canad. J. Statist., to appear.

Zhao, H. and Ma, W.-Q. (2009). A pairwise likelihood procedure for analyzing exchangeable
binary data with random cluster sizes. Comm. Statist. Theory Methods 38, 594-606.

Zhao, L. P. and Prenctice, R. L. (1990). Correlated binary regression using a quadratic expo-
nential model. Biometrika 77, 642-648.

Zhao, Y. and Joe, H. (2005). Composite likelihood estimation in multivariate data analysis.
Canad. J. Statist. 33, 335-356.

Zidek, J. V. and Hu, F. (1997). The asymptotic properties of the maximum-relevance weighted
likelihood estimators. Canad. J. Statist. 25, 45-59.

Department of Statistics, Ca’ Foscari University, 35121 Venice, Italy.

E-mail: sammy@unive.it

Department of Statistics, University of Toronto, Toronto M5S 3GS, Canada.

E-mail: reid@utstat.utoronto.ca

Department of Statistics, University of Warwick, Coventry CV4 7AL, UK.

E-mail: d.firth@warwick.ac.uk

(Received November 2009; accepted August 2010)

http://file:sammy@unive.it
Cristiano Varin


Cristiano Varin


Cristiano Varin
Dipartimento di Statistica, Università Ca' Foscari, Venezia, Italy

Cristiano Varin


Cristiano Varin


Cristiano Varin


Cristiano Varin
methods

http://file:reid@utstat.utoronto.ca
http://file:d.firth@warwick.ac.uk

	1. Introduction
	2. Composite Likelihood Inference
	2.1. Definitions and notation
	2.2. Derived quantities
	2.3. Asymptotic theory

	3. Applications
	3.1. Gaussian random fields
	3.2. Spatial extremes
	3.3. Serially correlated random effects
	3.4. Spatially correlated random effects
	3.5. Joint mixed models
	3.6. Time-varying correlation matrices
	3.7. Marginal regression models with missing data

	4. Properties
	4.1. Introduction
	4.2. Relative efficiency
	4.3. Robustness
	4.4. Identifiability

	5. Computational Aspects
	5.1. Standard errors
	5.2. Composite likelihood expectation-maximization algorithm
	5.3. Low-dimensional integration versus high-dimensional integration
	5.4. Combinatorial difficulties

	6. Conclusions
	6.1. Relations with other approaches
	6.2. Some challenges


