Assignment1

STA447

<u>Note</u>: Due Thursday, February17 at the beginning of the lecture. Please try to keep a copy of the original . This assignment is worth 16% of your final grade. Plagerism \Rightarrow 0 . **No** late assignments .

- 1. Let $\{X_t: t=0,1,...\}$ be a Galton Watson branching process with $X_0=1$ and geometric(p) offspring distribution 0 . Let T be the first time the population becomes extinct. Obtain <math>P(T=k) and determine which values of p lead to $E(T) < \infty$.
- 2. Let $\{F_t$, t in $T\}$ be σ -fields of events. Show $\bigcap_{t \in T} F_t$ is also a σ -field. Give an example of 2 σ -fields F_1 , F_2 where $F_1 \cup F_2$ is not a σ -field.
- 3. For a < b in \Re show $\sigma(\{(a,b)\}) = \sigma(\{[a,b]\}) = \sigma(\{open subsets\})$.
- 4. Show $X_n \overset{ms}{\to} X \Leftrightarrow X_n \text{-} X_m \overset{ms}{\to} 0$, as $n,m \to \infty$.

Hints: (a)Recall that p-convergent sequences have subsequences converging almost surely. (b) It is a direct consequence of the MCT and the definition of liminf that for $X_n \ge 0$ $E(\lim_{n \to \infty} X_n) \le \lim_{n \to \infty} E(X_n)$. This is called Fatou's Lemma .

5. (a) Show
$$X_n \stackrel{p}{\rightarrow} 0 \Leftrightarrow E(\frac{|X_n|}{1+|X_n|}) \rightarrow 0$$
.

- (b) Does there exist a sequence of independent rv's X_1 , X_2 ,... such that $P(\sum_{k=1}^{\infty}|X_k|<\infty)=1/2$?
- 6. For X, Y in L define $\langle X,Y \rangle = E(XY)$ and $||X|| = \sqrt{\langle X,X \rangle}$. Verify
- (i) $\langle aX+bY,Z \rangle = a\langle X,Z \rangle + b\langle Y,Z \rangle$
- (ii) $||X+Y||^2 + ||X-Y||^2 = 2||X||^2 + 2||Y||^2$
- (iii) if $i \neq j \Rightarrow \langle X_i, X_i \rangle \neq 0$ then

$$\|\sum_{i=1}^{n} X_{i}\|^{2} = \sum_{i=1}^{n} \|X_{i}\|^{2}$$

- 7. Let $\{N(t)\}$, $t\ge 0\}$ be a renewal process with iid interarrival times $X_i\ge 0$ with $E(X_i)=\infty$. Show $E(N(t))/t\to 0$ as $t\to\infty$.
- 8. Let $\{N(t)\}$, $t\ge 0\}$ be a renewal process with iid interarrival times $X_i\ge 0$ having mean μ and (finite) variance σ^2 . Show

$$\frac{N(t)\text{-}t/\mu}{\sqrt{t\sigma^2/\mu^3}} \overset{d}{\to} N(0,1) \text{ , as } t \to \infty \text{ .}$$