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Abstract

This article studies M -type estimators for fitting robust generalized additive models

in the presence of anomalous data. A new theoretical construct is developed to con-

nect the costly M -type estimation with least-squares type calculations. Its asymptotic

properties are studied and used to motivate a computational algorithm. The main idea

is to decompose the overall M -type estimation problem into a sequence of well-studied

conventional additive model fittings. The resulting algorithm is fast and stable, can

be paired with different nonparametric smoothers, and can also be applied to cases

with multiple covariates. As another contribution of this article, automatic methods for

smoothing parameter selection are proposed. These methods are designed to be resis-

tant to outliers. The empirical performance of the proposed methodology is illustrated

via both simulation experiments and real data analysis.
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1 Introduction

Generalized additive models (GAMs) (e.g., Hastie and Tibshirani, 1990) are extensions

of additive models (AMs). They can be applied to handle a wider class of data such

as binary and count data. Their parametric counterparts are the well-known generalized

linear models (GLMs) (e.g., McCullagh and Nelder, 1989). Both GLMs and GAMs assume

the response variable follows an exponential family distribution. They also share the same

goal of modeling the relationship between the predictors and the mean of the response.

While GLMs achieve this goal by using parametric methods, GAMs allow nonparametric

fitting and hence are more flexible.

Robust estimation for GLMs has been widely studied. For example, robust logistic re-

gression has been considered by Copas (1988) and Carroll and Pederson (1993). For more

general settings, Stefanski et al. (1986) and Künch et al. (1989) propose using bounded

score functions to define robust estimates, Morgenthaler (1992) uses L1 norm for likelihood

calculations, and Preisser and Qaqish (1999) and Cantoni and Ronchetti (2001) construct

robust estimating equations for conducting, respectively, robust estimation and robust in-

ference procedures. For the robust estimation of GAMs, two recent papers are devoted to

the subject: Alimadad and Salibian-Barrera (2011) and Croux et al. (2011). The estimation

procedures developed in these two papers produce promising empirical results. However,

they also have some minor shortcomings: the procedure of Alimadad and Salibian-Barrera

(2011) uses brute force cross-validation for smoothing parameter selection and hence it is

computationally expensive, while no theoretical support is provided for the method of Croux

et al. (2011).

Following the idea of Stefanski et al. (1986) and Preisser and Qaqish (1999), we use

robust estimating equations to define robust estimates for GAMs. Computing the corre-

sponding robust estimates is not always trivial as it requires the solving of a system of

nonlinear equations. To circumvent this issue, we study the theoretical properties of a new
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transformation that is capable of converting this nonlinear problem into a least-squares type

calculation. This transformation contains unknown quantities so it cannot be performed in

practice. However, it motivates an efficient algorithm for computing the robust estimates.

The main idea is to decompose the original nonlinear equation-solving problem into a se-

quence of relatively fast and well-studied AM fittings. It can also be paired with different

nonparametric smoothers, and applied to problems with multiple covariates. In this work we

also develop automatic and reliable methods for choosing the amount of smoothing. These

methods are based on the work of Konishi and Kitagawa (1996), and they accommodate

the presence of outliers and worked well in simulations.

The rest of this article is organized as follows. Background material is provided in

Section 2. The proposed robust estimators and the aforementioned computational algorithm

are presented in Section 3, while some theoretical development is given in Section 4. The

issue of smoothing parameter selection is then addressed in Section 5, and Section 6 discusses

the case of multiple covariates. Empirical performances of the proposed methodology are

evaluated via simulations and real data example in Sections 7 and 8 respectively. Concluding

remarks are offered in Section 9 while technical details are deferred to the appendix.

2 Background

2.1 Notation and Definitions

A standard setting for GAM fitting is as follows. The responses {yi}ni=1 are assumed to be

independent and follow the exponential family distribution with unknown expectation µi

and known variance function V (µi). The expectation µi is related to the linear predictor ηi

via a monotonic link function g: ηi = g(µi). Suppose there are m covariates x1i, . . . , xmi.

In GAMs ηi is modeled as a sum of smooth functions f1, . . . , fm of these covariates:

ηi ≡
m∑
j=1

fj(xji). (1)
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For clarity we will first focus on the case when m = 1 and delay our discussion for m > 1 to

Section 6. To simplify notation, when m = 1, we write f1 = f and x1i = xi for all i. That

is, (1) reduces to ηi = f(xi).

One common nonparametric approach to estimating f is penalized basis expansion fit-

ting. With a set of pre-specified basis functions {b1(·), . . . , bp(·)}, the smooth function f ,

now written as f(x;β), is assumed to have the following representation:

f(x;β) =

p∑
j=1

bj(x)βj , (2)

where β = (β1, . . . , βp)
T is a vector of basis coefficients. To estimate β, regularization

methods such as penalized likelihood are often used. Let D be a pre-specified penalty

matrix and λ > 0 be a smoothing parameter. Then β can be estimated by maximizing

n∑
i=1

l(yi, µi)− λβTDβ,

where l is the log-likelihood function or a quasi log-likelihood function. Differentiating this

functional with respect to β yields the following system of estimating equations

n∑
i=1

yi − µi
V (µi)

∂

∂β
µi − Sβ = 0, with S = 2λD. (3)

The traditional estimator of β, denoted as β̌, is the solution of (3). Popular members of this

class of nonparametric smoothers include smoothing splines (e.g., Green and Silverman,

1994) and penalized regression splines (e.g., Ruppert et al., 2003).

2.2 Influence Function of β̌

Influence function is a useful concept for studying the robustness properties of an estimator.

Suppose the data {zi}ni=1 are generated from a distribution G(z, θ) with an unknown pa-

rameter θ. Further suppose that the estimator θ̂ for θ can be expressed as θ̂ = H(Ĝ),

where H is a functional and Ĝ is the empirical cumulative distribution function (cdf)
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Ĝ(z, θ) =
∑n

i=1 I{zi≤z}/n. The influence function of θ̂ at z is defined as

IF(z;H,G) = lim
ε→0

H{(1− ε)G+ εδz} −H(G)

ε
,

where δz is the point mass 1 at z. This influence function measures the impact of an

infinitesimal contamination at z on the estimator. If an estimator is robust, IF(z;H,G)

should not be arbitrarily large for any value of z. In other words, IF(z;H,G) should be

bounded for all values of z if the estimator is robust. For a more thorough discussion on

influence functions, see, for example, Hampel et al. (1986).

Let F (y, x) be the joint cdf of the response y and the covariate x. To derive the influence

function for β̌, we first note that β̌ is an M -estimator defined by the score function

ψ̌(yi,β) =
yi − µi
V (µi)

∂

∂β
µi −

1

n
Sβ, (4)

and that it can be expressed as β̌ = Ť (F̂ ), where F̂ is the empirical joint cdf F̂ (y, x) =∑n
i=1 I({yi ≤ y} ∩ {xi ≤ x})/n and the functional Ť is defined implicitly by

∫
ψ̌{z, Ť (F )}dF (z, x) =

0. Here, I(A) is the indicator function of the set A. From Hampel et al. (1986), its influence

function is given by

IF(y; ψ̌, F ) = −

{∫
∂

∂β
ψ̌(z,β)

∣∣∣∣
β=Ť (F )

dF (z, x)

}−1

ψ̌{y, Ť (F )}.

Note that we use the notation IF(y; ψ̌, F ) instead of IF(y; Ť , F ) to stress the dependence

on the score function. Now as ψ̌ is unbounded in y and the term inside the bigger pair of

braces is a constant with respect to y, IF(y; ψ̌, F ) is also unbounded in y, suggesting that

β̌ is not a robust estimator.

3 Methodology

3.1 Robust Estimating Equations

In order to achieve robust estimation for GAMs, one could modify the estimating equa-

tions (3) so that the resulting influence function is bounded. Following this idea, we define

5



our robust estimator, β̂, of β as the solution of

n∑
i=1

ψ(yi,β) =

n∑
i=1

{
ν(yi, µi)ζ(µi)

∂

∂β
µi − a(β)− 1

n
Sβ

}
= 0, (5)

where

a(β) =
1

n

n∑
i=1

E {ν(yi, µi)} ζ(µi)
∂

∂β
µi

with the expectation taken with respect to the conditional distribution yi|x1, . . . , xm, ν

is a weight function that down-weighs the effects of outliers, and ζ is a scaling function

to be defined below. Note that if ν(y, µ) = (y − µ)/V (µ) and ζ(µ) = 1, then a(β) =

0, and ψ and β̂ reduces to ψ̌ and β̌ respectively. We further note that an additional

weight function can be introduced to (5) to alleviate the effects of high leverage points.

To facilitate theoretical developments, we largely omit the use of this additional weight

function, although an example is given in Section 8.

Similarly as before, we write β̂ = T (F̂ ), where now T (F̂ ) is defined by
∫
ψ{z, T (F )}dF (z, x) =

0. Thus the corresponding influence function is

IF(y;ψ, F ) = −

{∫
∂

∂β
ψ(z,β)

∣∣∣∣
β=T (F )

dF (z, x)

}−1

ψ{y, T (F )}.

In order to make ψ and hence IF(y;ψ, F ) bounded, one could select a bounded ν guaranteed

by some function φ,

ν(y, µ) = φ

{
y − µ
V

1
2 (µ)

}
1

V
1
2 (µ)

,

and a natural candidate is the following Huber-type function with cutoff c that does not

depend on the sample size n and is related to the efficiency of the robust estimation:

φc(r) =

 r, |r| ≤ c

c× sign(r), |r| > c
. (6)

We know that the choice φc is sufficient for most practical use, but theoretical derivations

often require twice differentiability that can be achieved by imposing smoothness constraints

in a small neighborhood of c. We define the scaling function ζ(µi) = 1/E{φ′(ri)}, where
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ri = (yi − µi)/V
1/2(µi). For given µi, this can be separately obtained by numerically

approximation or even explicit calculation (e.g., for Binomial and Poisson with φc).

Notice that the estimator β̂ is an M -estimator, and that it can also be treated as a

penalized likelihood estimator. This is because β̂ can also be obtained as the maximizer of

n∑
i=1

q(yi, µi)− λβTDβ,

where the quasi-likelihood term q is given by

q(yi, µi) =

∫ µi

yi

ν(yi, t)ζ(µi)dt−
1

n

n∑
j=1

∫ µj

yj

E {ν(yj , t)ζ(µj)} dt for all i. (7)

This term q corresponds to a robustified likelihood of our estimation procedure and hence

we shall call it robust quasi-likelihood.

3.2 A General Algorithm for Robust GAM Estimation

Due to the nonlinear nature of ν, obtaining the robust estimate β̂, the solution to (5), is not

a trivial calculation. Here we propose a practical algorithm for carrying out this task. The

idea is to approximate the solution of (5) by iteratively solving (3), taking the advantage

that many fast methods and softwares are available for the solving of (3). We first provide

an intuitive argument that motivates our algorithm.

Suppose for now good estimates µ̂i’s for µi’s are available. Define

ỹi = [ν(yi, µ̂i)− E {ν(yi, µ̂i)}] ζ(µ̂i)V (µ̂i) + µ̂i. (8)

Also define β̃ as the solution to (3) with the yi’s replaced by these ỹi’s. That is, β̃ solves

n∑
i=1

ỹi − µi
V (µi)

∂

∂β
µi − Sβ = 0. (9)

Straightforward algebra shows that both β̃ and β̂ solve the same estimating equations.

From this two important questions arise: (i) are β̃ and β̂ the same? And if yes, (ii) what

do we gain by this?
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Under certain conditions, the next section establishes the asymptotic equivalence of β̃

and β̂. This implies that, if the ỹi’s were known, our gain would be that the robust estimator

β̂ can be computed quickly as the solution to (9).

Of course in practice ỹi’s are unknown, but the above discussion suggests a fast iterative

method for solving (5). The idea is, given a current set of estimates of µi’s, first calculate

the next estimates of ỹi’s through (8), then plug in these new ỹi’s into (9) and solve for the

next set of estimates of µi’s.

Many common GAM fitting methods, such as local scoring and iterative re-weighted

least-squares, for solving (3) are iterative, with each iteration effectively as a weighted AM

fitting. This means a direct application of the above idea for solving (5) will involve itera-

tions within iterations. The proposed algorithm eliminates this issue by further combining

the calculation of ỹi’s and the weighted AM fitting in one single step. Starting with initial

estimates µ̂
(0)
i ’s for µi’s, this algorithm iterates until convergence the following two steps

for t = 0, 1, . . .:

1. Compute, for all i,

z̃
(t+1)
i = (ỹ

(t)
i − µ̂

(t)
i )g′(µ̂

(t)
i ) + η̂

(t)
i ,

where

ỹ
(t)
i =

[
ν(yi, µ̂

(t)
i )− E

{
ν(yi, µ̂

(t)
i )
}]

ζ(µ
(t)
i )V (µ̂

(t)
i ) + µ̂

(t)
i

and

η̂
(t)
i = g(µ̂

(t)
i ).

2. Fit a weighted additive model with z̃
(t+1)
i as the response and use [V (µ̂

(t)
i ){g′(µ̂(t)

i )}2]−1

as the weights. Take the fitted values as the next set of iterative estimates η̂
(t+1)
i ’s.

We have a few remarks about this algorithm. First, the initial estimates µ̂
(0)
i ’s can be

obtained as the solution of (3); i.e., by nonrobust fitting. We used these initial estimates

throughout all our numerical work, and they were remarkably reliable as initial guesses.
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Second, the above algorithm can be coupled with any types of nonparametric smoothers, as

long as the weighted fitting described in Step 2 is feasible. Third, the algorithm can also be

applied to cases with more than one covariates. A bivariate example is given in Section 8.

Fourth, in practice, we do not update the value of ζ(µ
(t)
i ) when the number of iterations t is

bigger than a threshold, say 10. We discovered that this strategy speeds up the convergence

of the algorithm without sacrificing the quality of the estimates. Lastly, for problems with

normal errors and identity link function, ỹi in (8) recovers the pseudo data derived by Oh

et al. (2007), and the above algorithm reduces to their ES-algorithm for computing robust

nonparametric regression estimates.

4 Asymptotic Equivalence

Recall β̃ is the solution to (9) while β̂ is the solution to (5). Denote the corresponding

estimates for f derived from β̃ and β̂ through (2) as f̃ and f̂ respectively. This section

establishes the asymptotic equivalence between f̃ and f̂ . We note that the analysis below

is applicable for a special but wide class of estimators, namely, those with their penalty

βTDβ derived from the norm of a reproducing kernel Hilbert space (RKHS). Briefly, H is

called a RKHS if H is a Hilbert space of real-valued functions on an index set T , and there

exists a bivariate symmetric, nonnegative definite function K(·, ·) defined on T × T such

that the following two conditions are satisfied: (i) K(t, ·) ∈ H, for all t ∈ T , and (ii) the

inner product 〈K(t, ·), f(·)〉H = f(t), for all t ∈ T and f ∈ H. With this setup, the penalty

matrix D is defined through K(·, ·). For details, please see Wahba (1990).

In below we use J(f) to denote such a penalty term. Without loss of generality, we

shall present the theory for a single covariate model. The Euclidean norm is denoted by

||x||2 =
∑n

i=1 x
2
i for x ∈ <n, while the normalized version is ||x||2n = ||x||2/n.

We begin by noting that the solution of (3) can be obtained by iteratively solving a se-

quence of weighted least squares problems, as follows. Let fi = f(xi), wii = [V (µi){g′(µi)}2]−1,
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zi = fi+g′(µi)(yi−µi), zw,i = w
1/2
ii zi and fw,i = w

1/2
ii fi; here the zi’s are typically known as

the working data used during the fitting process, while fw,i and zw,i are the weighted versions

of fi and zi respectively. Further write W = diag{wii : i = 1, . . . , n}, z = (z1, . . . , zn)T,

f = (f1, . . . , fn)T, zw = (zw,1, . . . , zw,n)T and fw = (fw,1, . . . , fw,n)T; i.e., fw = W1/2f and

zw = W1/2z. Then, given z and zw, in each iteration the next estimates for f and fw are

given, respectively, as the minimizers of

1

2
(z− f)TW(z− f) + λfTR∗f i.e.,

1

2
‖zw − fw‖2 + λfT

wRfw,

where J(f) = fTR∗f = fT
wRfw is a reproducing kernel Hilbert space representation of the

penalty λβTDβ with R∗ = W1/2RW1/2. It can be shown that the estimate for fw is

f̌w = H(λ)zw, where the smoothing matrix is H(λ) = (I + 2λR)−1.

For technical convenience, define

ρ(zw,i − t) = [φ(zw,i − t)− E {φ(zw,i − t)}] ζ(µi), (10)

and ri = zw,i − fw,i = (yi − µi)/V
1/2(µi). Then we have ρ(zw,i − fw,i) = [φ(ri) −

E{φ(ri)}]ζ(µi). Now as we have shifted our focus from β to f , the score functions ψ̌(yi,β)

in (4) and ψ(yi,β) in (5) are now written as, respectively, ψ̌(fw; zw) and ψ(fw; zw). Their

elements are

ψ̌(fw; zw)i = {(zw,i − fw,i)− 2λ(Rfw)i}w
1
2
ii (11)

and

ψ(fw; zw)i = {ρ(zw,i − fw,i)− 2λ(Rfw)i}w
1
2
ii (12)

respectively. Further denote z̃i = fi + g′(µi)(ỹi − µi) and z̃w,i = w
1/2
ii z̃i. Write z̃ =

(z̃1, . . . , z̃n)T and z̃w = (z̃w,1, . . . , z̃w,n)T. With these notations, we have ψ̌(fw; z̃w) =

ψ(fw; zw). We shall show that, with the assumptions below, the M -type robust estima-

tor f̂ = W−1/2f̂w satisfying ψ(f̂w, zw) = 0 can be approximated arbitrarily well by the

traditional estimator f̃ = W−1/2f̃w = W−1/2H(λ)z̃w satisfying ψ̌(f̃w; z̃w) = 0.
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(A.1) The function f is bounded, i.e., sup−∞<t<∞ |f(t)| <∞.

(A.2) Assume that max1≤i≤n var{φ(ri)} < ∞ for all n, where ri = (yi − µi)/V 1/2(µi), and

that φ possesses bounded first and second derivatives.

Note that (A.1) is to ensure that µi = g−1(fi)’s are bounded away from singularities (in-

cluding ±∞) of the functions g, g′, 1/g, 1/g′ and 1/V , and thus avoid unboundedness of wii,

ζ(µi) and ∂µi/∂β. Regarding (A.2), as mentioned in Huber (1973), higher order derivatives

are technically convenient, but hardly essential for the results to hold. It can be easily

fulfilled by modify φc in (6) with cubic splines for small intervals around ±c.

(A.3) To address the dependence of λ on n, we may write λ = λn if necessary.

(a) Let dn = maxi{H(λn)ii}, assume that λn/n→ 0 and dn → 0, as n→∞.

(b) There exists K0 <∞ such that tr{H(λn)}/λn < K0 for all n.

One can easily verify (A.3) for smoothing splines based on the equivalent kernel represen-

tations (Nychka, 1995). Note that, as a result of the normalization by n−1 in the sum of

squares, the “λ” appearing in Nychka (1995) is actually equal to λn/n in this paper. In

particular, (A.3.b) involves balancing the rates of the smoothing parameter with the effec-

tive degrees of freedom, tr{H(λn)}, of the smoother. Based on the equivalent kernel theory

in Nychka (1995), one expects that tr{H(λn)} ∼ (λn/n)−1/2m, where m is the order of the

spline. So (A.3.b) holds with a wide range of the smoothing parameter λn/n ∼ n−κ for

0 < κ ≤ 2m/(2m + 1), while the fastest one κ = 2m/(2m + 1) corresponds to the optimal

convergence rate of the resulting estimator.

(A.4) The space of all f ’s, denoted as H, is a reproducing kernel Hilbert space. Let C =

{f ∈ H : ‖f‖H ≤ G}, where ‖f‖2H = J(f) and G > 0 is some constant. Assume that

C is compact with respect to the L2 norm.
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Theorem 1 If the assumptions (A.1)–(A.4) hold, then a consistent robust estimator f̂

exists in a neighborhood of f in C and Cn = E{‖f̃ − f‖2n} → 0 as n→∞, moreover,

C−1/2
n ‖f̃ − f̂‖n

P−→ 0.

This theorem implies that the robust estimate f̂ can be well approximated by f̃ . It also

suggests that f̂ shares the same asymptotic squared error properties as f̃ . The proof of this

theorem can be found in Appendix A.

5 Smoothing Parameter Selection

For nonrobust GAMs estimation, Wood (2004, 2008) has developed fast, stable and efficient

methods for smoothing parameter selection. However, most of these nonrobust selection

methods cannot be directly applied to the robust GAM setting. In the context of nonpara-

metric regression, it is known that classical smoothing parameter selection methods could

be badly affected by outlying data. In this section we develop three smoothing parameter

selection procedures that are capable of handling such outliers. The first one is based on

the cross-validation idea. It can be applied to any smoothing methods but it is computa-

tionally expensive. The last two procedures are much less computationally demanding, but

can only be applied to the penalized smoothers (2). Although our presentation below is for

the case with one covariate, all three methods can be extended straightforwardly to select

multiple smoothing parameters for multiple covariates. In general we denote the estimate

of µi computed using the smoothing parameter λ as µ̂iλ.

5.1 Robust Cross-Validation

Cross-validation (Stone, 1974) is a widely applicable method for choosing smoothing param-

eter. It uses the so-called “leave-one-out” strategy to approximate the best λ that minimizes

the loss function under consideration. For the current problem, a natural loss function is
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the following Kullback-Leibler distance between the true and estimated µi’s:

KL(λ) = E

{
n∑
i=1

q(yi, µi)

}
− E

{
n∑
i=1

q(yi, µ̂iλ)

}
,

where q is the robust quasi-likelihood defined in (7). As the first term is a constant with

respect to λ, it can be ignored in the minimization. Denote the leave-one-out estimate

of µi as µ̂−iiλ . The second term of KL(λ) can then be estimated by the following robust

cross-validation (RCV) criterion

RCV(λ) = − 1

n

n∑
i=1

q(yi, µ̂
−i
iλ ), (13)

and λ is chosen as its minimizer.

One shortcoming about this procedure is that it is computationally expensive. Although

k-fold cross-validation can be applied to alleviate this problem, it could still be impractical

when n and/or m (number of covariates) are large. Thus, we seek faster alternatives.

5.2 Robust Information Criteria

Generalized information criterion (GIC) was introduced by Konishi and Kitagawa (1996)

for estimating the Kullback-Leibler distance between a true and a fitted model. It can be

viewed as a generalization of the Akaike information criterion (AIC), as it relaxes the AIC’s

assumption that the model parameters are estimated with maximum likelihood.

Recall the basis functions for representing f are b1, . . . , bp. Write b(x) = {b1(x), . . . , bp(x)}T

and X = {b(x1), . . . ,b(xn)}T, and denote the conditional density yi|xi as h. Appendix B

shows that, for the current problem, applying the GIC methodology will result in selecting

λ as the minimizer of the following robust AIC (RAIC) formula:

RAIC(λ) = −2

n∑
i=1

q(yi, µ̂iλ) + 2× tr(P−1Q), (14)

where

P =
1

n
XTBX +

1

n
S and Q =

1

n
XTAX− a(β)a(β)T.
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In the above A and B are diagonal matrices with elements, respectively,

ai = E

φc{ yi − µ̂iλ
V

1
2 (µ̂iλ)

}2
{ ζ2(µi)

V (µ̂iλ)

}(
∂

∂ηi
µi

∣∣∣∣
µi=µ̂iλ

)2

and

bi = E

[
φc

{
yi − µi
V

1
2 (µi)

}
∂

∂µi
log h(yi|xi, µi)

]∣∣∣∣∣
µi=µ̂iλ

{
ζ(µi)

V
1
2 (µ̂iλ)

}(
∂

∂ηi
µi

∣∣∣∣
µi=µ̂iλ

)2

.

For many model selection problems it has been observed that AIC tends to select over-

parameterized models, and this issue may carry over to RAIC(λ). One common method to

overcome this is to increase the penalty (e.g., see Bhansali and Downham, 1977). Typically

the constant 2 in the penalty term is changed to log(n), which coincides with the penalty

of the Bayesian information criterion (BIC). Following this practice we obtain our third

criterion, robust BIC (RBIC), for selecting λ:

RBIC(λ) = −2
n∑
i=1

q(yi, µ̂iλ) + log(n)× tr(P−1Q). (15)

6 Multiple Covariates

This section returns to the case when there is more than one covariate; i.e., when m > 1.

Recall that the goal is to estimate f1, . . . , fm in ηi ≡
∑m

j=1 fj(xji), where {x1i, . . . , xmi}

are the observed covariate values. Since there is no interaction term, each fj can be mod-

eled independently, and we allow different fj ’s to have different basis functions. Let the

number of bases for fj be pj , and the bases be {b(j)1 , . . . , b
(j)
pj }. Then we have the following

representation for fj :

fj(x;βj) =

pj∑
k=1

b
(j)
k (x)β

(j)
k ,

where βj = (β
(j)
1 , . . . , β

(j)
pj )T are the basis coefficients. To keep the model identifiable, it

is customary to impose the constraint that, except for f1, all fj ’s have zero mean. This

14



constraint can be automatically achieved by applying a suitable transformation to the co-

efficients, basis matrix and penalty matrix; see, e.g., Wood (2006) for details. In below we

assume that this transformation has been applied.

Let λj and Dj be the smoothing parameter and penalty matrix respectively for fj .

Similarly to the case when m = 1, the robust estimate of β = (βT
1 , . . . ,β

T
m)T is defined as

the maximizer of
n∑
i=1

q(yi, µi)−
m∑
j=1

λjβ
T
j Djβj . (16)

As mentioned before, the proposed algorithm can be applied to approximate this maximizer.

Also, if we let S = diag(2λ1D1, . . . , 2λmDm), we can re-express the above penalty term∑
j λjβ

T
j Djβj as βTSβ/2, making (16) in the same form as for the single covariate case.

The robust smoothing parameter selection criteria RAIC(λ) and RBIC(λ) can then be

straightforwardly applied.

7 Simulation Study

A simulation study was conducted to evaluate the practical performance of the proposed

methodology. All together six different fitting procedures are compared. They are

1. rgamRAIC: the algorithm proposed in Section 3.2 with λ chosen by RAIC (14);

2. rgamRBIC: similar to rgamRAIC except λ is chosen by RBIC (15);

3. rgamRCV: similar to rgamRAIC except λ is chosen by RCV (13); and

4. gamAIC: a nonrobust GAM fitting procedure available in the R package mgcv (Wood,

2006) with λ chosen by AIC.

5. the method proposed by Croux et al. (2011), and

6. the method proposed by Alimadad and Salibian-Barrera (2011).

15



For the first four fitting procedures, we used the same radial basis of order 2 and 30

knots.[Thomas: Raymond, please confirm.] For k = 1, . . . , 30, the knots were placed

at the (k/30)th quantiles of the xi’s, with the smallest and the largest values removed.

Two types of error distributions were considered: the binomial and the Poisson families.

For the former the logit link was used while for the latter the log link was used. For the three

robust procedures, we followed (Cantoni and Ronchetti, 2001) and set c =1.2 for binomial

and c =1.6 for Poisson. We considered two univariate test functions:

t1(x) = 4 cos
{

2π(1− x)2
}

and t2(x) = −10x2 − 2x+ 5, t ∈ [0, 1].

A bivariate example will be given in Section 8. Three sample sizes were tested: n = 100, 200

and 500.

The noisy data were generated in the following manner. First a covariate value x was

drawn from Uniform[0, 1]. Then the response y was simulated from the distribution under

consideration with mean g−1{tk(x)}, k = 1, 2. Lastly, p100% of the simulated (x, y)’s were

randomly selected and changed to outliers in the following manner. For binomial data, y

is set to 0 if the original value of y is 1, and vice versa. For Poisson data, y is set to the

nearest integer to yuu21 , where u1 is generated from Uniform(2, 5) and u2 is drawn randomly

from {−1, 1}. Altogether three values of p were tested: 0, 0.05 and 0.1.

The mean squared error (MSE)
∑n

i=1 (µ̂i − µi)2/n was used to measure the quality of

the estimates.

7.1 Comparison with the Method of Alimadad and Salibian-Barrera (2011)

We obtained the code for the fitting method of Alimadad and Salibian-Barrera (2011) from

one of the authors’ website.[Thomas: Raymond, please confirm.] Since this method

employs brute-force cross-validation for smoothing parameter selection, it is computation-

ally very slow and discouraged us from testing it with all the simulation settings described

above. Instead, we tested for the simulation setting with Test Function t1, n = 100,

16



Table 1: Averaged MSE values (×104) and standard errors (×105, in parentheses) from the

simulation setting with Test Function t1, n = 100, p = 0.05.

fitting method binomial Poisson

rgamRAIC 87.7 (2.74) 95.8 (10.4)

rgamRBIC 88.2 (2.77) 103 (10.7)

rgamRCV 91.1 (2.64) 62.1 (8.82)

Croux et al. 129 (3.83) 76.3 (11.5)

Alimada & Salibian-Barrera 182 (2.02) 225 (17.8)

p = 0.05, for both binomial and Poisson cases. The resulting averaged MSE values, to-

gether with their estimated standard errors, are reported in Table 1. From this table, there

is strong empirical evidence that the method of Alimadad and Salibian-Barrera (2011) is

inferior to other robust methods. Consequently, this method will not be considered further.

7.2 Comparison with the Remaining Five Methods

In this subsection the first five fitting methods listed at the beginning of this section are

tested for all the simulation settings described above, with the exception that the computa-

tionally expensive method rgamRCVwas only considered for n = 100. For each simulation

setting, the averaged MSEs together with their estimated standard errors were computed

and reported in Tables 2 to 5.

To facilitate comparison, except for rgamRCV, for all possible pairs of fitting procedures,

we applied paired t-tests to test if the averaged MSEs are significantly different. The

significance level was adjusted with Bonferroni’s method and the overall family-wise error

rate was 0.05. The fitting procedures were then ranked in the following manner. If the mean

MSE value of a procedure is significantly less than the remaining two, it will be assigned

17



a rank 1. If the mean MSE value of a procedure is significantly larger than one but less

than the other one, it will then be assigned a rank 2, and similarly for rank 3. Procedures

having non-significantly different mean MSE values will share the same averaged rank. The

resulting ranks are also reported in Tables 2 to 5.

From these tables, one can see that no method is universally the best. One can also see

that rgamRBIC never performed worse than any other methods in the contaminated cases.

It also performed well when there was no contamination except for the Poisson family with

Test Function t1. For rgamRAIC, from the averaged ranks, it seems to be slightly superior to

gamAIC but inferior to rgamRBIC. As for rgamRCV, it performed well in most cases and its

results are comparable to those from rgamRBIC. However, its huge computational expenses

significantly lower its practical values. Lastly, we note that the method of Croux et al.

(2011) also estimates the dispersion function, so the comparison here may not be entirely

fair.

Table 2: Averaged MSE values (×104), standard errors (×105, in parentheses) and paired

t-test rankings (in square brackets) from the simulation setting with Test Function t1 and

binomial data.

Fitting Method

p n gamAIC rgamRAIC rgamRBIC rgamRCV Croux et al.

0 100 79 (3.56) [2.5] 90.1 (5.45) [2.5] 90.7 (5.45) [2.5] 74.1 (3.05) 107 (3.7) [2.5]

200 36.2 (1.24) [1] 45.1 (1.3) [2] 46 (1.29) [3] - 59.6 (1.83) [4]

500 14.4 (0.442) [2.5] 24.6 (0.466) [2.5] 26.1 (0.424) [2.5] - 25.7 (0.653) [2.5]

0.05 100 110 (2.81) [3] 87.7 (2.74) [1.5] 88.2 (2.77) [1.5] 91.1 (2.64) 129 (3.83) [4]

200 68.1 (1.44) [3] 56.8 (1.38) [1.5] 57.2 (1.39) [1.5] - 84.3 (2.18) [4]

500 41.9 (0.688) [2.5] 40.2 (0.719) [1] 40.8 (0.707) [2.5] - 49.5 (0.886) [4]

0.1 100 182 (3.42) [3.5] 140 (12.4) [1.5] 140 (12.4) [1.5] 149 (3.21) 186 (4.25) [3.5]

200 139 (2.01) [3.5] 102 (2.52) [1.5] 101 (2.57) [1.5] - 145 (2.46) [3.5]

500 104 (1.11) [3.5] 86.5 (1.33) [2] 84.6 (1.37) [1] - 106 (1.19) [3.5]

averaged rank [2.78] [1.78] [1.94] [3.5]
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Table 3: Similar to Table 2 but for Test Function t2.

Fitting Method

p n gamAIC rgamRAIC rgamRBIC rgamRCV Croux et al.

0 100 44.3 (2.3) [2.5] 39.3 (2.01) [2.5] 38.7 (2.01) [2.5] 40.6 (1.86) 49.8 (2.94) [2.5]

200 18.2 (0.94) [2.5] 18 (0.745) [2.5] 17.6 (0.732) [2.5] - 21.7 (1.15) [2.5]

500 6.89 (0.344) [2.5] 7.43 (0.337) [2.5] 7.1 (0.311) [2.5] - 9.69 (0.436) [2.5]

0.05 100 72.6 (2.72) [2.5] 62.7 (2.03) [2.5] 60.9 (1.99) [2.5] 67.9 (2.13) 68.8 (2.74) [2.5]

200 45.1 (1.16) [3.5] 39.2 (1.13) [2] 37.1 (1.05) [1] - 45.9 (1.34) [3.5]

500 31.7 (0.517) [3.5] 25.7 (0.553) [2] 24.8 (0.529) [1] - 32.3 (0.623) [3.5]

0.1 100 135 (2.89) [3.5] 114 (2.62) [2] 112 (2.62) [1] 121 (2.65) 135 (3.46) [3.5]

200 110 (1.8) [3.5] 94.2 (1.74) [2] 92.6 (1.69) [1] - 109 (1.94) [3.5]

500 90.1 (0.894) [3.5] 81 (0.937) [2] 79.6 (0.922) [1] - 88.5 (0.901) [3.5]

averaged rank [3.06] [2.22] [1.67] [3.06]

Table 4: Averaged MSE values (×10), standard errors (×10, in parentheses) and paired

t-test rankings (in square brackets) from the simulation setting with Test Function t1 and

Poisson data.

Fitting Method

p n gamAIC rgamRAIC rgamRBIC rgamRCV Croux et al.

0 100 29.5 (0.761) [1] 84 (8.22) [3.5] 82.9 (7.87) [3.5] 29.4 (0.767) 38.3 (0.945) [2]

200 16 (0.371) [1] 19.8 (1.41) [3] 20.1 (0.934) [3] - 21.7 (0.439) [3]

500 6.72 (0.146) [2.5] 7.98 (0.547) [2.5] 9.05 (0.602) [2.5] - 9.23 (0.18) [2.5]

0.05 100 312 (20.5) [4] 95.8 (10.4) [2] 103 (10.7) [2] 62.1 (8.82) 76.3 (11.5) [2]

200 165 (9.82) [2.5] 31.9 (4.17) [2.5] 33.5 (4.18) [2.5] - 36.7 (4.54) [2.5]

500 76.1 (2.84) [4] 12.1 (0.918) [2] 13.5 (1) [2] - 11.4 (0.256) [2]

0.1 100 631 (30.8) [4] 171 (25.1) [2] 181 (24.8) [2] 112 (17.6) 126 (16.9) [2]

200 363 (16.9) [4] 50.7 (7.37) [2] 51.5 (7.37) [2] - 52.5 (7.42) [2]

500 182 (6.09) [4] 18.1 (1.37) [2] 18.5 (1.34) [2] - 14.8 (0.759) [2]

averaged rank [3] [2.39] [2.39] [2.22]

8 Real Data Example

Here we apply our methodology to analyze a two-covariate data set originated from a

study conducted by the Deutsche Forschungsgemeinschaft (German research foundation).

It was collected during the years 1960 to 1977 in a mechanical engineering plant in Munich,

Germany. The aim is to study the relationship between chronic bronchitis and dust concen-
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Table 5: Similar to Table 4 but for Test Function t2.

Fitting Method

p n gamAIC rgamRAIC rgamRBIC rgamRCV Croux et al.

0 100 23.3 (1.01) [1.5] 24.8 (1.1) [3] 22.1 (0.994) [1.5] 27.1 (1.2) 42.2 (1.47) [4]

200 11.1 (0.485) [2.5] 11.6 (0.484) [2.5] 10.3 (0.435) [1] - 21.3 (0.685) [4]

500 4.19 (0.193) [1.5] 4.57 (0.209) [3] 4.07 (0.198) [1.5] - 9.35 (0.296) [4]

0.05 100 804 (77.6) [4] 32.2 (2.66) [2] 25.6 (1.19) [1] 32.5 (2.13) 48.6 (2.55) [3]

200 573 (58.2) [4] 15.9 (0.812) [2] 13.9 (0.689) [1] - 27.5 (1.05) [3]

500 246 (14.8) [4] 5.54 (0.236) [2] 4.87 (0.214) [1] - 11.2 (0.335) [3]

0.1 100 1930 (151) [4] 121 (50.3) [2] 75.7 (38.1) [2] 44.2 (2.17) 127 (42) [2]

200 991 (71.1) [4] 22.6 (2.53) [2] 16.7 (0.933) [1] - 35.1 (3.65) [3]

500 562 (24.5) [4] 7.62 (0.335) [2] 6.54 (0.297) [1] - 14.1 (0.444) [3]

averaged rank [3.28] [2.28] [1.22] [3.22]

tration. For more details, see for examples Kuchenhoff and Carroll (1997) and Kauermann

and Opsomer (2004).

The data set contains records of 1,246 workers. The response cbr is binary: occurrence

of chronic bronchitis (cbr = 1 for yes, cbr = 0 for no). The covariates are dust, dust

concentration in mg/m3, and expo, duration of exposure in years. This data set is plotted

in Figure 1. A reasonable model is

g{E(cbr)} = f1(dust) + f2(expo),

where f1 and f2 are smooth functions and g is the logit link.

A quick inspection of Figure 1 reveals a few potential high leverage observations (those

with dust > 13). These high leverage observations may induce undesirable effects on our

estimation, and the idea discussed by Cantoni and Ronchetti (2001) can be used to reduce

such effects. We follow this idea and modify the robust score function (5) by replacing

ζ(µi) with ζ∗(µi,xi) = ζ(µi)ξ(xi), where ξ is chosen to down-weigh those high leverage

observations. We used ξ(xi) = {1 + (xi − µ̂T
x Ŝxµ̂x)}(−1/2) where µ̂ and Ŝx are robust

estimates of the mean and variance of xi’s respectively. For other choices of ξ(xi), see

Rousseeuw and Leroy (1987, pp. 258).
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Figure 1: The Bronchitis data set.

We applied the proposed robust fitting method rgamRBIC to estimate f1 and f2. For

comparative purposes, we also estimated f1 and f2 with gamAIC (i.e., nonrobust fitting).

The choice of basis functions and other user-specific parameters such as knot locations are

the same as those used in Section 7. The resulting fitted functions are displayed in Figure 2.

The left panel of Figure 2 shows a counter-intuitive phenomenon in the nonrobust fit: it

seems to suggest that the higher the dust concentration, the lower the chance of contracting

chronic bronchitis. By inspecting Figure 1, this counter-intuitive phenomenon is most likely

due to the 4 observations with dust > 13. For the proposed robust fitting method, however,

the effects of these 4 observations have been down-weighted. The corresponding fitted

surface does provide a reasonable qualitative conclusion: the chance of contracting chronic

bronchitis increases with both expo and dust.
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Figure 2: Fitted surfaces for the Bronchitis data set. Left: nonrobust fit. Right: robust fit.

9 Concluding Remarks

The methodology proposed in this paper provides automatic methods for fitting GAMs

in the presence of high leverage points and outliers. It contains three main ingredients:

the use of robust estimating equations to define robust estimates, a practical algorithm for

calculating these estimates, and three new selection methods for choosing the smoothing

parameter. Overall rgamRBIC is the recommended default procedure if estimation of the

dispersion function is not needed. It is relatively fast, backed up with theoretical justification

for equivalence results, and gave promising empirical performance in both simulations and

real data analysis. R codes implementing rgamRBIC can be obtained from the authors.
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A Auxiliary Lemmas and Proofs

The proof of Theorem 1 partially follows the idea in Oh et al. (2007), with substantial

changes made for the GAM framework. It is worth mentioning that the basic probability

inequalities in Lemma A2 are required to hold uniformly over all neighborhoods of f . Major

effort was devoted to prove the stronger uniform result. In fact the same technique used in

this paper can be adopted to fix the proof of Oh et al. (2007) without altering the conclusion.

For convenience we abuse notation so that f is used to denote both the unknown function

and the vector of function values sampled at the xi’s. Confusion should not arise as the

correct interpretation can be clearly determined from the context. Similar abuses also exist

for other symbols, such as f̂ and f̃w. We first present three lemmas and recall that f̃w is the

penalized least squares estimate of fw obtained by applying the smoothing matrix H(λ) to

z̃w,i’s.

Lemma A1. (Consistency of roughness penalty and Cn). There exists K1 > 0 such that

E
{
J(f̃)

}
≤ J(f) +

K1tr {H(λ)}
λ

and
E
{
‖f̃w − fw‖2

}
2λ

≤ J(f) +
K1tr{H(λ)}

λ
,

which also implies that E{‖f̃ − f‖2n} → 0 as n→∞.

Proof of Lemma A1. It is sufficient to show that var(z̃w,i) < K1 for all i = 1, . . . , n, and

the remaining arguments used in Oh et al. (2007) are valid. The assumption that |fi| is

bounded from above implies that µi is bounded away from the singularities of 1/V 1/2(·),

including ±∞, and thus wii’s are uniformly bounded. From the relationship zw,i − fw,i =

(yi − µi)/V 1/2(µi) = ri and by the definition of ρ, it is easy to check E{ρ(zw,i − fw,i)} = 0

and var{ρ(zw,i−fw,i)} <∞ due to (A.1). By further noting that z̃w,i−fw,i = ρ(zw,i−fw,i),

it follows that E(z̃w,i) = fw,i and there exists K1 such that var(z̃w,i) < K1.
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As f̃ is the penalized least squares estimator,

n∑
i=1

(z̃w,i − f̃w,i)2 + 2λJ(f̃) ≤
n∑
i=1

(z̃w,i − fw,i)2 + 2λJ(f)

⇒ ‖{I−H(λ)} z̃w‖2 + 2λJ(f̃) ≤ ‖z̃w − fw‖2 + 2λJ(f).

Taking expectation on both sides, we have

tr
[
{I−H(λ)}2 var(z̃w)

]
+ ‖{I−H(λ)} fw‖2 + 2λE

{
J(f̃)

}
≤ tr {var(z̃w)}+ 2λJ(f)

⇒ tr
{
H2(λ)var(z̃w)

}
+ ‖{I−H(λ)} fw‖2 + 2λE

{
J(f̃)

}
≤ 2tr {H(λ)var(z̃w)}+ 2λJ(f)

⇒ tr
{
H2(λ)var(z̃w)

}
+ ‖{I−H(λ)} fw‖2 + 2λE

{
J(f̃)

}
≤ 2K1tr {H(λ)}+ 2λJ(f).

By omitting the first and the second term on the left hand side, we prove the first inequality.

Next writing ‖f̃w−fw‖2 = ‖(f̃w−H(λ)fw)−{I−H(λ)}fw‖2 and taking expectations after

expanding the r.h.s. lead to E
{
‖f̃w − fw‖2

}
= tr

{
H2(λ)var(z̃w)

}
+‖{I−H(λ)} fw‖2, then

the second inequality follows. Therefore, given (A.1), (A.3) and (A.4) and some constant

K11, we arrive at

E{‖f̃ − f‖2n} ≤ 2K11

[
J(f) +

K1tr{H(λn)}
λn

]
λn
n
−→ 0.

Lemma A2. (Score function approximation). Let FL = {h ∈ C : ‖h− f‖n ≤ L} for L > 0.

For any ε > 0, L0 > 0, there exists an N such that for n > N ,

Pr

[
sup
h∈FL

∥∥W−1H(λ)
{
ψ(hw; zw)− ψ̌(hw; z̃w)

}∥∥
n
> εL

]
< ε, (17)

Pr

[
sup
h∈FL

∥∥∥W−1H(λ)
1
2
{
ψ(hw; zw)− ψ̌(hw; z̃w)

}∥∥∥
n
> εL

]
< ε, (18)

hold uniformly for 0 < L ≤ L0.
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Proof of Lemma A2. Write hw,i = w
1/2
ii hi and fw,i = w

1/2
ii fi. Denote

ψ̌(hw; z̃w)i −ψ(hw; zw)i = w
1/2
ii {(z̃w,i − hw,i)−ρ(zw,i − hw,i)} ≡ g(−hw,i).

and note that g(−fw,i) = w
1/2
ii {(z̃w,i − fw,i)− ρ(zw,i − fw,i)} = 0. Applying Taylor’s theo-

rem to expand g(−hw,i) around (−fw,i) with the remaining term in an integral form,

g(−hw,i) = g(−fw,i) + (fw,i − hw,i)g′(−fw,i) + (fw,i − hw,i)2

×
∫ 1

0

∫ 1

0
tg′′{−hw,i + ts(fw,i − hw,i)}dsdt

= w
1
2
ii

[ {
ρ′(ri)− 1

}
(fw,i − hw,i) + (fw,i − hw,i)2

×
∫ 1

0

∫ 1

0
tρ′′(ri + ts(fw,i − hw,i))dsdt

]
= wii

{
ρ′(ri)− 1

}
(fi − hi) + w

3
2
ii(fi − hi)

2

×
∫ 1

0

∫ 1

0
tρ′′(ri + tsw

1
2
ii(fi − hi))dsdt

≡ wiiu1,i + w
3
2
iiu2,i.

Then W−1H(λ){ψ̌(hw; z̃w) − ψ(hw; zw)} = H(λ)u1 + W1/2H(λ)u2, and let T1(h) =

‖H(λ)u1‖n and T2(h) = ‖W1/2H(λ)u2‖n.

We first consider E{T 2
1 (h)}. It is easy to see that wii, ζ(µi) and thus var{ρ′(ri)} =

var{φ′(ri)}ζ(µi)
2 are uniformly bounded given (A.1) and (A.2), and that the eigenvalues

of H(λ) are always between 0 and 1 implying H2(λ)ii < H(λ)ii and aTH2(λ)a ≤ aTa for

any a ∈ <n. Hence we have, for some K21 > 0, noting Eρ′(ri) = Eφ′(ri)ζ(µ)i = 1 by the

definition ζ(µi) = 1/Eφ′(ri),

nE{T 2
1 (h)} = E{uT

1 H2(λ)u1} = tr
{

cov(u1,u1)H2(λ)
}
≤ K21

{ n∑
i=1

H(λ)ii(hi − fi)2
}
, (19)

which leads to E{T 2
1 (h)} ≤ K22dn‖h− f‖2n for some K22, where dn = max1≤i≤n H(λ)ii.

We are now ready to characterize suph∈FL T1(h). First fix L0 > 0 and ε > 0. Since

H(λ) has eigenvalues restricted to [0, 1] and ρ′(·) is bounded, there exists K23 such that
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|T1(h1)−T1(h2)| < K23‖h1−h2‖n. Choose a fixed r0 > 0 such that r0/L0 < ε/(4K23), and

find a collection of open balls {Bs}s∈S0 defined by Bs = {h ∈ H : ‖h− hs‖n < r0} centered

at hs such that C ⊆
⋃
s∈S0
Bs. Since C is compact from (A.4), there exists a finite subset

S1 ⊆ S0 such that FL0 ⊆ C ⊆
⋃
s∈S1
Bs. Define S2 = S1\{s ∈ S1 : Bs ∩ FL0 = φ} and

denote the number of elements in S2 by N0. It is easy to see that ‖hs − f‖n < r0 + L0 for

all s ∈ S2 and f ∈ FL0 . By FL0 ⊆
⋃
s∈S2
Bs,

sup
h∈FL0

|T1(h)| ≤ max
s∈S2

sup
h∈Bs

|T1(h)| ≤ max
s∈S2

sup
h∈Bs

{|T1(h)− T1(hs)|+ |T1(hs)|}

≤ max
s∈S2

|T1(hs)|+ max
s∈S2

[
sup
h∈Bs

{|T1(h)− T1(hs)|}
]
. (20)

Consider the first term of (20), using Bonferroni’s inequality, Markov’s inequality and the

bounds on E{T 2
1 (h)} and ‖hs − f‖n,

Pr

{
max
s∈S2

T1(hs) <
εL0

4

}
≥ 1−

∑
s∈S2

Pr

{
T1(hs) ≥

εL0

4

}
≥ 1−

∑
s∈S2

4E {T1(hs)}
εL0

≥ 1− 4(K22dn)
1
2N0‖hs − f‖n
εL0

> 1− 4(K22dn)
1
2N0(r0 + L0)

εL0
.

The second term of (20) is obvious, maxs∈S2

[
suph∈Bs{|T1(h)− T1(hs)|}

]
< K23r0. Recall

that r0 is chosen by K23r0 < εL0/4. Find an N1 such that 4(K22dn)1/2N0(r0 +L0)/εL0 < ε

for n > N1, it follows that Pr
{

suph∈FL0
T1(h) < εL0/2

}
> 1− ε.

Now we need to prove that the above probability bound holds uniformly for all FL =

{h ∈ C : ‖h − f‖n ≤ L}, 0 < L ≤ L0, denoting dL = L0/L. Define a linear map

P(h) = f + (h − f)/dL that shrinks h towards the center f by a factor 0 < d−1
L < 1. It is

easy to verify that the image P(FL0) = {P(h) : h ∈ FL0} is FL = {h ∈ C : ‖h− f‖n ≤ L},

observing that ‖P(h) − f‖n ≤ L and J(P(h)) is finite, i.e., P(h) ∈ C. Moreover, apply

the same map P on Bs = {h ∈ H : ‖h − f‖n < r0}, s ∈ S2. The resulting image is
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B∗s = {h ∈ H : ‖h − {f + (hs − f)/dL}‖n < r0/dL} by noticing P(hs) = f + (hs − f)/dL

and ‖P(h) − P(hs)‖n = ‖h − hs‖n/dL ≤ r0/L0 for h ∈ Bs. We next verify that the finite

collection {B∗s : s ∈ S2} covers FL in the same manner as {Bs : s ∈ S2} covers FL0 . For any

h ∈ FL, ‖P−1(h)−f‖n = ‖f+dL(h−f)−f‖n = dL‖h−f‖n ≤ L0 and J(P−1(h)) is bounded,

i.e., P−1(h) ∈ C, thus P−1(h) ∈ FL0 . Then there exists some s ∈ S2 such that P−1(h) ∈ Bs,

thus ‖P−1(h)−hs‖n = ‖f+dL(h−f)−hs‖n < r0, implying ‖h−{f+(hs−f)/dL‖n < r0/dL

and thus h ∈ B∗s . Therefore we can use the same argument for Pr
{

suph∈FL T1(h) > εL
}

.

It is important to note that the choice of N1 only depends on N0, r0/L0 determined by

ε/K23, ε and K22, where N0 is the size of S2 and the radius of B∗s is r = r0/dL implying that

r/L = r0/L0. Thus N1 does not depends on L at all. Then we conclude that, for n > N1,

Pr
{

suph∈FL T1(h) < εL/2
}
> 1− ε holds uniformly for all 0 < L ≤ L0.

For T2(h), note that wii and w−1
ii and are uniformly bounded and the eigenvalues of

H(λ) are restricted in [0, 1], thus T 2
2 (h) ≤ K24‖u2‖2n, where u2,i = (fi − hi)2

∫ 1
0

∫ 1
0 tρ

′′(ri +

tsw
1/2
ii (fi − hi))dsdt. Without loss of generality, assume that φ′′(t) = 0, t /∈ ∆n, for some

∆n with its measure, denoted by |∆n|, tends to 0 as n → ∞. A typical construction is to

modify φc in (6) using cubic splines for c ≤ |t| ≤ c+ τn and set φc,n(t) = (c+ τn)sign(t) for

|t| ≥ c+τn, i.e., ∆n = [−c−τn,−c]∪[c, c+τn]. The integral
∫ 1

0

∫ 1
0 tρ

′′(ri+tsw
1/2
ii (fi−hi))dsdt

is thus bounded by K25

∫ 1
0

∫ 1
0 tI({ri + tsw

1/2
ii (fi − hi) ∈ ∆n})dsdt ≤ K25|∆n|/|hi − fi|, for

some K25 > 0. Then T 2
2 (h) ≤ K26|∆n|2‖h− f‖2n for K26, and there exists an N2 such that,

for n > N2, suph∈FL T2(h) ≤ εL/2 holds uniformly for all 0 < L ≤ L0 with probability 1.

Combining both uniform bounds with N = max(N1, N2) yields (17). The proof of (18)

follows the same arguments for (17) due to H2(λ)ii < H(λ)ii. That is, one can replace

H2(λ) by H(λ) and all the steps are still valid.

Lemma A3. (Bounds on score mapping). Let U(x) = x+W−1H(λ)×ψ(xw + fw; zw) and

Fn = {h ∈ C : ‖h − f‖n ≤ Ln} with Ln = C
1/2
n /δ for an arbitrary δ > 0 (notation abused
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for convenience). Then there is an N such that, for any n > N ,

Pr
{
U(x) ∈ Fn − f

}
> 1− δ, (21)

holds uniformly for all x ∈ Fn − f .

Proof of Lemma A3. For any h ∈ <n, denoting x = h− f , we have

U(x) = W−1H(λ)ψ(hw; zw) + (h− f)

= W−1H(λ)
{
ψ(hw; zw)− ψ̌(hw; z̃w)

}
+
{
W−1H(λ)ψ̌(hw; z̃w) + (h− f)

}
,

where the second term in r.h.s simplifies to (f̃ − f), by noticing H(λ) = (I + 2λR)−1 and

W−1H(λ)ψ̌(hw; z̃w) = W− 1
2 {H(λ)z̃w −H(λ)(I + 2λR)hw}

= W− 1
2 (f̃w − hw) = f̃ − h.

Thus ‖U(x)‖n ≤ ‖W−1H(λ){ψ(hw; zw)− ψ̌(hw; z̃w)}‖n + ‖f̃ − f‖n. Define Fn as in

Lemma A2 with Ln = C
1/2
n /δ for sufficiently large n such that Ln ≤ L0. Applying

Lemma A2 with Ln and ε = δ/2 to the first term, we have

Pr

 sup
h∈Fn

∥∥W−1H(λ)
{
ψ(hw; zw)− ψ̌(hw; z̃w)

}∥∥
n
≤ C

1
2
n

2

 > 1− δ

2
,

and recall Cn = E{‖f̃ − f‖2n}, applying Chebyshev’s inequality,

Pr

{
‖f̃ − f‖n ≤

(
2Cn
δ

) 1
2

}
> 1− δ

2
.

Combining the two probability statements, we have

Pr

 sup
x∈Fn−f

‖U(x)‖n ≤
{
δ

2
+ (2δ)

1
2

}C 1
2
n

δ

 > 1− δ.

Letting {δ/2+(2δ)1/2} strictly less than 1 leads to Pr
{

supx∈Fn−f ‖U(x)‖n ≤ C1/2
n /δ

}
> 1−δ

for sufficiently large n.
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To show U(x) + f ∈ C for x ∈ Fn − f with large probability, it remains to verify that

J{U(x) + f} is bounded. Note that J(f) = fTR∗f , R∗ = W1/2RW1/2, for some G1 > 0,

J {U(x) + f}
1
2 ≤

∥∥∥R∗ 12 W−1H(λ)
{
ψ(hw; zw)− ψ̌(hw; z̃w)

}∥∥∥+ ‖R∗
1
2 f̃‖

=
∥∥∥R 1

2 H(λ)W
1
2 W−1

{
ψ(hw; zw)− ψ̌(hw; z̃w)

}∥∥∥+ J(f̃)
1
2

≤ G1(2λ)−
1
2

∥∥∥W−1H(λ)
1
2
{
ψ(hw; zw)− ψ̌(hw; z̃w)

}∥∥∥
+J(f̃)

1
2 .

using the fact that ‖R1/2H(λ)‖ ≤ (2λ)−1/2‖H(λ)1/2‖ and wii’s are bounded. Then applying

Lemma A2 (18) with Ln = C
1/2
n /δ and ε = δ/2, for sufficiently large n, with probability

greater than (1− δ/2),

sup
x∈Fn−f

[
G1

( n
2λ

) 1
2
∥∥∥W−1H(λ)

1
2
{
ψ(hw; zw)− ψ̌(hw; z̃w)

}∥∥∥
n

]

≤ G1

2
√

2

(
nCn
λ

) 1
2

.

To bound nCn/λ, given (A.3.b), we use the second inequality in Lemma A1, for some

G2, G3 > 0,

nCn
λ

=

E

{∥∥∥W− 1
2 (f̃w − fw)

∥∥∥2
}

λ
≤

G2E
{
‖f̃w − fw‖2

}
λ

≤ 2G2

[
J(f) +

K1tr {H(λ)}
λ

]
≤ G3.

The upper bound of J(f̃) in probability can be easily established by applying Markov’s

inequality Pr
[
J(f̃) ≤ 2E{J(f̃)}/δ

]
> 1 − δ/2. Thus, by Lemma A1 and (A.3.b), there

exists G4 > 0 such that Pr{J(f̃) ≤ G4} > 1 − δ/2. By combining the two probability

statements, we show that J{U(x) + f} is bounded and completes the proof of Lemma A3.

Proof of Theorem 1. The basic idea behind the proof is to use the fact that the difference

between the score functions for the robust estimator and the penalized least squares esti-

mator for f̃w, ψ(hw; zw) − ψ̌(hw; z̃w), is small. First we find uniform bounds on the score
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functions (11) and (12) achieved by the content of Lemma A2. Now we apply a fixed point

argument to U(x) = x+ W−1H(λ)ψ(xw + fw; zw). Recall the definition of C in (A.4), let

Fn = {h ∈ C : ‖h− f ||n ≤ C
1/2
n /δ}. Using Lemma A3 and Brouwer’s fixed point theorem,

there must exist at least one point x̂ ∈ Fn − f such that Pr{U(x̂) = x̂} > 1 − δ. Then

it is easy to verify that ψ(x̂w + fw; zw) = 0, i.e., a robust estimate f̂ = x̂ + f exists in a

neighborhood of f with probability greater than (1− δ).

It remains to bound the quantity ‖f̂ − f̃‖n. In view of f̃w = H(λ)z̃w, ψ(f̂w; zw) = 0,

f̃ = W−1/2f̃w, f̂ = W−1/2f̂w, ψ̌(f̂w; z̃w) = W1/2{(z̃w − f̂w) −2λRf̂w} and H(λ) =

(I + 2λR)−1, one has ‖W−1H(λ){ψ(f̂w; zw) − ψ̌(f̂w; z̃w)}‖n = ‖W−1H(λ)ψ̌(f̂w; z̃w)‖n =

‖W−1/2(f̃w − f̂w)‖n = ‖f̃ − f̂‖n. Therefore, for sufficiently large n such that Ln = C
1/2
n /δ ≤

L0, applying Lemma A2 with Ln = C
1/2
n /δ and ε = δ2 < δ, we have

Pr

[
‖f̂ − f̃‖n ≤ δC

1
2
n

]
> 1− δ2 ≥ 1− δ,

which completes the proof.

B Derivation of (14)

The GIC formula of Konishi and Kitagawa (1996) contains two terms: a data fidelity term

and a penalty term. For the current problem, it is straightforward to show that the data

fidelity term is −2
∑

i q(yi, µ̂iλ). To derive the penalty term, we first note that β̂ is an

M -estimator with influence function IF(y;ψ, F ) = P(ψ, F )−1ψ{y, T (F )}, where

P(ψ, F )T = −
∫

∂ψ(z,β)T

∂β

∣∣∣∣
β=T (F )

dF (z, x).

For any M -estimator, Konishi and Kitagawa (1996) provide a general mechanism for deriv-

ing the penalty term. For our β̂, the derived penalty term is

2× tr

[
P(ψ, F )−1

∫
ψ{z, T (F )}∂q(z, µ)

∂βT

∣∣∣∣
β=T (F )

dF (z, x)

]
.
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Direct calculations show that

P(ψ, F )T = −
∫

∂γ(z,β)T

∂β

∣∣∣∣
β=T (F )

dF (z, x) +
1

n
ST, (22)

where γ(z,β) = ν(z, µ)ζ(µ)∂µ/∂β − a(β). Also,∫
ψ{z, T (F )}∂q(z, µ)

∂βT

∣∣∣∣
β=T (F )

dF (z, x)

=

∫
ψ{z, T (F )}γ{z, T (F )}TdF (z, x)

=

∫
γ{y, T (F )}γ{y, T (F )}TdF (y, x). (23)

Both the first term on the right hand side of (22) and (23) are unknown. It is shown

in (Cantoni and Ronchetti, 2001) that these terms can be estimated by XTBX/n and

XTAX/n− a(β)a(β)T respectively. Combining the above results we obtain (14).
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