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Abstract
In recent years there is a growing interest in us-
ing deep representations for reinforcement learn-
ing. In this paper, we present a methodology
and tools to analyze Deep Q-networks (DQNs)
in a non-blind matter. Using our tools we re-
veal that the features learned by DQNs aggregate
the state space in a hierarchical fashion, explain-
ing its success. Moreover we are able to under-
stand and describe the policies learned by DQNs
for three different Atari2600 games and suggest
ways to interpret, debug and optimize deep neu-
ral networks in reinforcement learning.

1. Introduction
In the Reinforcement Learning (RL) paradigm, an agent
autonomously learns from experience in order to maximize
some reward signal. Learning to control agents directly
from high-dimensional inputs like vision and speech is
a long standing problem in RL, known as the curse of
dimensionality. Countless solutions to this problem have
been offered including linear function approximators
(Tsitsiklis & Van Roy, 1997), hierarchical representations
(Dayan & Hinton, 1993), state aggregation (Singh et al.,
1995) and options (Sutton et al., 1999). These methods
rely upon engineering problem-specific state representa-
tions, hence, reducing the agent’s flexibility and making
the learning more tedious. Therefore, there is a growing
interest in using nonlinear function approximators, that are
more general and require less domain specific knowledge,
e.g., TD-gammon (Tesauro, 1995). Unfortunately, such
methods are known to be unstable or even to diverge when
used to represent the action-value function (Tsitsiklis &
Van Roy, 1997; Gordon, 1995; Riedmiller, 2005).
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The Deep Q-Network (DQN) algorithm (Mnih et al., 2015)
increased training stability by introducing the target net-
work and by using Experience Replay (ER) (Lin, 1993). Its
success was demonstrated in the Arcade Learning Environ-
ment (ALE) (Bellemare et al., 2012), a challenging frame-
work composed of dozens of Atari games used to evaluate
general competency in AI. DQN achieved dramatically bet-
ter results than earlier approaches, showing a robust ability
to learn representations.

While using Deep Learning (DL) in RL seems promising,
there is no free lunch. Training a Deep Neural Network
(DNNs) is a complex two-levels optimization process. At
the inner level we fix a hypothesis class and learn it us-
ing some gradient descent method. The optimization of the
outer level addresses the choice of network architecture,
setting hyper-parameters, and even the choice of optimiza-
tion algorithm. While the optimization of the inner level is
analytic to a high degree, the optimization of the outer level
is far from being so. Currently, most practitioners tackle
this problem by either a trial and error methodology, or by
exhaustively searching over the space of possible configu-
rations. Moreover, in Deep Reinforcement Learning (DRL)
we also need to choose how to model the environment as
a Markov Decision Process (MDP), i.e., to choose the dis-
count factor, the amount of history frames that represent
a state, and to choose between the various algorithms and
architectures (Nair et al., 2015; Van Hasselt et al., 2015;
Schaul et al., 2015; Wang et al., 2015; Bellemare et al.,
2015).

A key issue in RL is that of representation, i.e., allowing the
agent to locally generalize the policy across similar states.
Unfortunately, spatially similar states often induce different
control rules (”labels”) in contrast to other machine learn-
ing problems that enjoy local generalization. In fact, in
many cases the optimal policy is not a smooth function of
the state, thus using a linear approximation is far from be-
ing optimal. For example, in the Atari2600 game Seaquest,
whether or not a diver has been collected (represented by a
few pixels) controls the outcome of the submarine surface
action (with: fill air, without: loose a life) and therefore the
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optimal policy. Another cause for control discontinuities is
that for a given problem, two states with similar represen-
tations may in fact be far from each other in terms of the
number of state transitions required to reach one from the
other. This observation can also explain the lack of pooling
layers in DRL architectures(e.g., Mnih et al. (2015; 2013);
Levine et al. (2015)).

Differnt methods that focus on the temporal structure of the
policy, has also been proposed. Such methods decompose
the learning task into simpler subtasks using graph parti-
tioning (Menache et al., 2002; Mannor et al., 2004; Şimşek
et al., 2005) and path processing mechanisms (Stolle, 2004;
Thrun, 1998). Given a good temporal representation of
the states, varying levels of convergence guarantees can be
promised (Dean & Lin, 1995; Parr, 1998; Hauskrecht et al.,
1998; Dietterich, 2000).

In this work we analyze the state representation learned by
DRL agents. We claim that the success of DQN should be
attributed to its ability to learn spatio-temporal hierarchies
using different sub manifolds. We show that by doing so we
can offer an interpertation of learned policies that may help
formalizing the outer optimization step. Our methodology
is to record the neural activations of the last DQN hid-
den layer, and then apply t-Distributed Stochastic Neighbor
Embedding (t-SNE) (Van der Maaten & Hinton, 2008) for
dimensionality reduction and visualization. On top of this
low dimensional representation we display features of the
policy and other hand crafted features, so that we are able
to describe what each sub-manifold represents. We also use
saliency maps to analyze the influence of different features
on the network. In particular, our main contributions are
the following:

Understanding: We show that DQNs are learning tem-
poral abstractions of the state space such as hierarchical
state aggregation and options. Temporal abstractions were
known to the RL community before as mostly manual tools
to tackle the curse of dimensionality; however, we observe
that a DQN is finding abstractions automatically. Thus, we
believe that our analysis explains the success of DRL from
a reinforcement learning research perspective.
Interpretability: We give an interpretation for the agents
policy in a clear way, thus allowing to understand what are
its weaknesses and strengths.
Debugging: We propose debugging methods that help to
reduce the hyper parameters grid search of DRL. Exam-
ples are given on game modelling, termination and initial
states and score over-fitting.

2. Related work
The goal behind visualization of DNNs is to give better un-
derstanding of these inscrutable black boxes. While some

approaches study the type of computation performed at
each layer as a group (Yosinski et al., 2014), others try to
explain the function computed by each individual neuron
(similar to the ”Jennifer Aniston Neuron” Quiroga et al.
(2005)). Dataset-centric approaches display images from
the data set that cause high activations of individual units.
For example, the deconvolution method (Zeiler & Fergus,
2014) highlights the areas of a particular image that are re-
sponsible for the firing of each neural unit. Network-centric
approaches investigate a network directly without any data
from a dataset, e.g., Erhan et al. (2009) synthesized images
that cause high activations for particular units. Other works
used the input gradient to find images that cause strong acti-
vations (e.g., Simonyan & Zisserman (2014); Nguyen et al.
(2014); Szegedy et al. (2013)).

Since RL research had been mostly focused on linear func-
tion approximations and policy gradient methods, we are
less familiar with visualization techniques and attempts
to understand the structure learnt by an agent. Wang
et al. (2015), suggested to use saliency maps and analyzed
which pixels affect network predications the most. Us-
ing this method they compared between the standard DQN
and their duelling network architecture. Engel & Mannor
(2001) learned an embedded map of Markov processes and
visualized it on two dimensions. Their analysis is based
on the state transition distribution while we will focus on
distances between the features learned by DQN.

3. Background
The goal of RL agents is to maximize its expected total
reward by learning an optimal policy (mapping states to
actions). At time t the agent observes a state st, selects an
action at, and receives a reward rt, following the agents
decision it observes the next state st+1 . We consider in-
finite horizon problems where the cumulative return is dis-
counted by a factor of γ ∈ [0, 1] and the return at time t
is given by Rt =

∑T
t′=t γ

t′−trt, where T is the termina-
tion step. The action-value function Qπ(s, a) measures the
expected return when choosing action at at state st, after-
wards following policy π: Q(s, a) = E[Rt|st = s, at =
a, π]. The optimal action-value obeys a fundamental recur-
sion known as the Bellman equation,

Q∗(st, at) = E
[
rt + γmax

a′
Q∗(st+1, a

′)
]

Deep Q Networks (Mnih et al., 2015; 2013) approximate
the optimal Q function using a Convolutional Neural Net-
work (CNN). The training objective is to minimize the ex-
pected TD error of the optimal Bellman equation:

Est,at,rt,st+1
‖Qθ (st, at)− yt‖22



Graying the black box: Understanding DQNs

yt =

rt st+1 is terminal

rt + γmax
a’
Qθtarget

(
st+1, a

′
)

otherwise

Notice that this is an off-line algorithm, meaning that the
tuples {st,at, rt, st+1, γ} are collected from the agents ex-
perience, stored in the ER and later used for training. The
reward rt is clipped to the range of [−1, 1] to guarantee
stability when training DQNs over multiple domains with
different reward scales. The DQN algorithm maintains two
separate Q-networks: one with parameters θ, and a second
with parameters θtarget that are updated from θ every fixed
number of iterations. In order to capture the game dynam-
ics, the DQN algorithm represents a state by a sequence of
history frames and pads initial states with zero frames.
t-SNE is a non-linear dimensionality reduction method
used mostly for visualizing high dimensional data. The
technique is easy to optimize, and it has been proven to out-
perform linear dimensionality reduction methods and non-
linear embedding methods such as ISOMAP (Tenenbaum
et al., 2000) in several research fields including machine-
learning benchmarks and hyper-spectral remote sensing
data (Lunga et al., 2014). t-SNE reduces the tendency to
crowd points together in the center of the map by employ-
ing a heavy tailed Student-t distribution in the low dimen-
sional space. It is known to be particularly good at creating
a single map that reveals structure at many different scales,
which is particularly important for high-dimensional data
that lies on several low-dimensional manifolds. This en-
ables us to visualize the different sub-manifolds learned by
the network and interpret their meaning.

4. Methods
Our methodology comprises the following steps:

1. Train a DQN.

2. Evaluate the DQN. For each visited state record: (a)
activations of the last hidden layer, (b) the gradient
information and (c) the game state (raw pixel frame).

3. Apply t-SNE on the activations data.

4. Visualize the data.

5. Analyze manually.

Figure 1 presents our Visualization tool. Each state is rep-
resented as a point in the t-SNE map (Left). The color
of the points is set manually using global features (Top
right) or game specific hand crafted features (Middle right).
Clicking on each data point displays the corresponding
game image and saliency map (Bottom right). It is pos-
sible to move between states along the trajectory using the
F/W and B/W buttons.

Figure 1. Graphical user interface for our methodology.

Feature extraction: During the DQN run, we collect
statistics for each state such as Q values estimates, gen-
eration time, termination signal, reward and played action.
We also extract hand-crafted features, directly from the em-
ulator raw frames, such as player position, enemy position,
number of lives, and so on. We use these features to color
and filter points on the t-SNE map. The filtered images re-
veal insightful patterns that cannot be seen otherwise. From
our experience, hand-crafted features are very powerful,
however the drawback of using them is that they require
manual work. In all the figures below we use a heat color
map (red corresponds to high values and blue to low ones).
Similar to Engel & Mannor (2001) we visualize the dynam-
ics (state transitions) of the learned policy. To do so we use
a 3D t-SNE state representation wich we found insightfull.
The transistions are displayed with arrows using Mayavi
(Ramachandran & Varoquaux, 2011).
t-SNE: We apply the t-SNE algorithm directly on the col-
lected neural activations, similar to Mnih et al. (2015). The
input X ∈ R120k×512 consists of 120k game states with
512 features each (size of the last layer). Since these data
are relatively large, we pre-processed it using Principal
Component Analysis to dimensionality of 50 and used the
Barnes Hut t-SNE approximation (Van Der Maaten, 2014).
Saliency maps: We generate Saliency maps (similar to Si-
monyan & Zisserman (2014)) by computing the Jacobian
of the network with respect to the input, and presenting it
above the input image itself (Figure 1, bottom right). These
maps helps to understand which pixels in the image affect
the value prediction of the network the most.
Analysis: Using these features we are able to understand
the common attributes of a given cluster (e.g, Figure 3 in
the appendix). Moreover, by analyzing the dynamics be-
tween clusters we can identify a hierarchical aggregation
of the state space. We define clusters with a clear entrance
and termination areas as options, and interpretat the agent
policy there. For some options we are able to derive rules
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Figure 2. Breakout aggregated states on the t-SNE map.

for initiation and termination (i.e., landmark options, Sut-
ton et al. (1999); Mann et al. (2015)).

5. Experiments
We applied our methodology on three ATARI games:
Breakout, Pacman and Seaquest. For each one we give a
short description of the game, analyze the optimal policy,
detail the features we designed, interpret the DQN’s pol-
icy and derive conclusions. We finally analyze initial and
terminal states and the influence of score pixels.

5.1. Breakout

In Breakout, a layer of bricks lines the top of the screen.
A ball travels across the screen, bouncing off the top and
side walls. When a brick is hit, the ball bounces away,
the brick is destroyed and the player receives reward. The
player loses a turn when the ball touches the bottom of the
screen. To prevent this from happening, the player has a
movable paddle to bounce the ball upward, keeping it in
play. The highest score achievable for one player is 896;
this is done by eliminating exactly two screens of bricks
worth 448 points each.
We extract features for the player (paddle) position, ball’s
position, balls direction of movement, number of missing
bricks, and a tunnel feature (a tunnel exists when there is a
clear path between the area below the bricks and the area
above it, and we approximate this event by looking for at
least one clear column of bricks).

A good strategy for Breakout is leading the ball above the
bricks by digging a tunnel in one side of the bricks block.
Doing so enables the agent to achieve high reward while
being safe from losing the ball. By introducing a discount
factor to Breakout’s MDP, this strategy becomes even more
favourable since it achieves high immediate reward.

Figure 2 presents the t-SNE of Breakout. The agent learns
a hierarchical policy: (a) carve a tunnel in the left side of
the screen and (b) keep the ball above the bricks as long
as possible. In clusters (1-3) the agent is carving the left
tunnel. Once the agent enters those clusters, it will not exit
until the tunnel is carved (see Figure 4). We identify these
clusters as a landmark option. The clusters are separated
from each other by the ball position and direction. In
cluster 1 the ball is heading toward the tunnel, in cluster 2
the ball is at the right side and in cluster 3 the ball bounces
back from the tunnel after hitting bricks. As less bricks
remain in the tunnel the value is gradually rising till the
tunnel is carved where the value is maximal (this makes
sense since the agent is enjoying high reward rate straight
after reaching it). Once the tunnel is carved, the option
is terminated and the agent moves to clusters 4-7 (dashed
red line), differentiated by the ball position with regard
to the bricks (see Figure 2). In cluster 4 and 6 the ball is
above the bricks and in 5 it is below them. Clusters 8 and
9 represent termination and initial states respectively (see
Figure 2 in the appendix for examples of states along the
option path).

https://archive.org/details/ArcadeGameManualBreakout
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Figure 4. Breakout tunnel digging option. Left: states that the
agent visits once it entered the option clusters (1-3 in Figure 2)
until it finishes to carve the left tunnel are marked in red. Right:
Dynamics is displayed by arrows above a 3d t-SNE map. The
option termination zone is marked by a black annotation box and
corresponds to carving the left tunnel. All transitions from clus-
ters 1-3 into clusters 4-7 pass through a singular point.

Cluster 7 is created due to a bug in the emulator that allows
the ball to pass the tunnel without completely carving it.
The agent learned to represent this incident to its own clus-
ter and assigned it high value estimates (same as the other
tunnel clusters). This observation is interesting since it in-
dicates that the agent is learning a representation based on
the game dynamics and not only on the pixels.
By coloring the t-SNE map by time, we can identify some
policy downsides. States with only a few remaining bricks
are visited for multiple times along the trajectory (see Fig-
ure 1 in the appendix). In these states, the ball bounces
without hitting any bricks which causes a fixed reflection
pattern, indicating that the agent is stuck in a local optima.
We discuss the inability of the agent to perform well in the
second screen of the game in Section 5.5.

5.2. Seaquest

In Seaquest, the player’s goal is to retrieve as many
treasure-divers, while dodging and blasting enemy subs
and killer sharks before the oxygen runs out. When the
game begins, each enemy is worth 20 points and a res-
cued diver worth 50. Every time the agent surface with six
divers, killing an enemy (rescuing a diver) is increased by
10 (50) points up to a maximum of 90 (1000). Moreover,
the agent is awarded an extra bonus based on its remain-
ing oxygen level. However, if it surfaces with less than six
divers the oxygen fills up with no bonus, and if it surfaces
with none it loses a life.
DQN’s performance on Seaquest (∼5k) is inferior to hu-
man experts (∼100k). What makes Seaquest hard for DQN
is that shooting enemies is rewarded immediately, while
rescuing divers is rewarded only once six divers are col-
lected and rescued to sea level. Moreover, the bonus points
for collecting 6 divers is diminished by reward clipping.
This sparse and delayed reward signal requires much longer
planning that is harder to learn.
We extract features for player position, direction of move-

ment (ascent/descent), oxygen level, number of enemies,
number of available divers to collect, number of available
divers to use, and number of lives.
Figure 3 shows the t-SNE map divided into different clus-
ters. We notice two main partitions of the t-SNE clusters:
(a) by oxygen level (low: clusters 4-10, high: cluster 3 and
other unmarked areas), and (b) by the amount of collected
divers (clusters 2 and 11 represent having a diver). We
also identified other partitions between clusters such as re-
fuelling clusters (1: pre-episode and 2: in-episode), various
termination clusters (8: agent appears in black and white,
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Figure 3. Seaquest aggregated states on the t-SNE map, colored by value function estimate.

https://archive.org/details/Seaquest_1983_Activision


Graying the black box: Understanding DQNs

 

 

 

1 
1b 

2b 

2 3 3b 

 

3 

3b 
3b 

1b 

Figure 5. Seaquest refuel option. Left: Option path above the t-
SNE map colored by the amount of remaining oxygen. Shaded
blue mark the clusters with a collected diver, and red arrows mark
the direction of progress. Right: 3d t-SNE with colored arrows
representing transitions. All transitions from cluster 3 are leading
to cluster 3b in order to reach the refuel cluster (1b), thus indicat-
ing a clear option termination structure.

9: agent’s figure is replaced with drops, 10: agent’s fig-
ure disappears) and low oxygen clusters characterized by
flickering in the oxygen bar (4 and 7).

While the agent distinguishes states with a collected diver,
Figure 6 implies that the agent did not understand the con-
cept of collecting a diver and sometimes treats it as an en-
emy. Moreover, we see that the clusters share a similar
value estimate that is highly correlated with the amount
of remaining oxygen and the number of present enemies.
However, states with an available or collected diver do not
raise the value estimates nor do states that are close to re-
fueling. Moreover, the agent never explores the bottom of
the screen, nor collects more than two divers.
As a result, the agent’s policy is to kill as many enemies as
possible while avoiding being shot. If it hasn’t collected a
diver, the agent follows a sub-optimal policy and ascends
near to sea level as the oxygen decreases. There, it contin-
ues to shoot at enemies but not collecting divers. However,
it also learned not to surface entirely without a diver.

If the agent collects a diver it moves to the blue shaded clus-
ters (all clusters in this paragraph refer to Figure 5), where

 

Figure 6. Salincy maps of states with available diver. Left: A
diver is noticed in the saliency map but misunderstood as an en-
emy and being shot at. Center: Both diver and enemy are noticed
by the network. Right: The diver is unnoticed by the network.

we identify a refuel option. We noticed that the option can
be initiated from two different zones based on the oxygen
level but has a singular termination cluster (3b). If the diver
is taken while having a high level of oxygen, then it enters
the option at the northern (red) part of cluster 1. Otherwise
it will enter on a point further along the direction of the op-
tion (red arrows). In cluster 1, the agent keeps following
the normal shooting policy. Eventually the agent reaches a
critical level of oxygen (cluster 3) and ascends to sea level.
From there the agent jumps to the fueling cluster (area 1b).
The fueling cluster is identified by its rainbow appearance
because the level of oxygen is increasing rapidly. How-
ever, the refuel option was not learned perfectly. Area 2 is
another refuel cluster, there, the agent does not exploit its
oxygen before ascending to get air (area 2b).

5.3. Pacman

In Pacman, an agent navigates in a maze while being
chased by two ghosts. The agent is positively rewarded
(+1) for collecting bricks. An episode ends when a preda-
tor catches the agent, or when the agent collects all bricks.
There are also 4 bonus bricks, one at each corner of the
maze. The bonus bricks provide larger reward (+5), and
more importantly, they make the ghosts vulnerable for a
short period of time, during which they cannot kill the
agent. Occasionally, a bonus box appears for a short time
providing high reward (+100) if collected.

 

 

Figure 8. t-SNE for Pacman colored by the number of left bricks
with state examples from each cluster.

https://archive.org/details/manuals-handheld-games-Coleco-PacMan
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Figure 7. Pacman aggregated states on the t-SNE map colored by value function estimates.

We extract features for the player position, direction of
movement, number of left bricks to eat, minimal distance
(L1) between the player and the predators, number of lives,
ghost mode that indicates that the predators are vulnerable,
and bonus box feature that indicate when the highly valued
box appears.

Figure 7 shows the t-SNE colored by value function, while
Figure 8 shows the t-SNE colored by the number of left
bricks with examples of states from each cluster. We can
see that the clusters are well partitioned by the number of
remaining bricks and value estimates. Moreover, examin-
ing the states in each cluster (Figure 8) we see that the clus-
ters share specific bricks pattern and agent location.

 

Figure 9. Histogram showing the time passed until each bonus
brick is collected.

From Figure 9 we also learn that the agent collects the
bonus bricks at very specific times and order. Thus, we
conclude that the agent has learned a location-based policy
that is focused on collecting the bonus bricks (similar to
maze problems) while avoiding the ghosts.

The agent starts at cluster 1, heading for the bottom-left
bonus brick and collecting it in cluster 2. Once collected, it
moves to cluster 3 where it is heading to the top-right bonus
brick and collects it in cluster 4. The agent is then moving
to clusters 5 and 6 where it is taking the bottom-right and
top-left bonus bricks respectively. We also identified clus-
ter 7 and 9 as termination clusters and cluster 8 as a hiding
cluster in which the agent hides from the ghosts in the top-
left corner. The effects of reward-clipping can be clearly
seen in the case of the bonus box. Cluster 10 comprises of
states with a visible bonus box. However these states are
assigned with a low value.

5.4. Enviroment modeling

The DQN algorithm requires specific treatment for ini-
tial (padded with zero frames) and terminal (receive target
value of zero) states, however it is not clear how to check if
this treatment works well. Therefore we show t-SNE maps
for different games with a focus on termination and initial
states in Figure 10. We can see that all terminal states are
mapped successfully into a singular zone, however, initial
states are also mapped to singular zones and assigned with
wrong value predictions. Following these observations we
suggest to investigate different ways to model initial states,
i.e., replicating a frame instead of feeding zeros and test it.



Graying the black box: Understanding DQNs

Figure 10. Terminal and initial states. Top: All terminal states
are mapped into a singular zone(red). Bottom: Initial states are
mapped into singular zones (pointed by colored arrows from the
terminal zone) above the 3d t-SNE dynamics representation.

5.5. Score pixels

Some Atari2600 games include multiple repetitions of the
same game. Once the agent finished the first screen it is
presented with another one, distinguished only by the score
that was accumulated in the first screen. Therefore, an
agent might encounter problems with generalizing to the
new screen if it over-fits the score pixels. In breakout, for
example, the current state of the art architectures achieves a
game score of around 450 points while the maximal avail-
able points are 896 suggesting that the agent is somehow
not learning to generalize for the new level. We investi-
gated the effect that score pixels has on the network pre-
dictions. Figure 11 shows the saliency maps of different
games supporting our claim that DQN is basing its esti-
mates using these pixels. We suggest to further investigate
this, for example we suggest to train an agent that does not
receive those pixels as input.

Figure 11. Saliency maps of score pixels. The input state is pre-
sented in gray scale while the value input gradients are displayed
above it in red.

6. Conclusions
In this work we showed that the features learned by DQN
map the state space to different sub-manifolds, in each, dif-
ferent features are present. By analyzing the dynamics in
these clusters and between them we were able to identify
hierarchical structures. In particular we were able to iden-
tify options with defined initial and termination rules. State
aggregation gives the agent the ability to learn specific poli-
cies for the different regions, thus giving an explanation to
the success of DRL agents. The ability to understand the hi-
erarchical structure of the policy can help in distilling it into
a simpler architecture (Rusu et al., 2015; Parisotto et al.,
2015) and may help to design better algorithms. One pos-
sibility is to learn a classifier from states to clusters based
on the t-SNE map, and then learn a different control rule
at each. Another option is to allocate learning resources to
clusters with inferior performance, for example by priori-
tized sampling (Schaul et al., 2015).

Similar to Neuro-Science, where reverse engineering meth-
ods like fMRI reveal structure in brain activity, we demon-
strated how to describe the agent’s policy with simple logic
rules by processing the network’s neural activity. We be-
lieve that interpretation of policies learned by DRL agents
is of particular importance by itself. First, it can help in the
debugging process by giving the designer qualitative under-
standing of the learned policies. Second, there is a growing
interest in applying DRL solutions to real-world problem
such as autonomous driving and medicine. We believe that
before we can reach that goal we will have to gain greater
confidence on what the agent is learning. Lastly, under-
standing what is learned by DRL agents, can help design-
ers develop better algorithms by suggesting solutions that
address policy downsides.

To conclude, when a deep network is not performing well
it is hard to understand the cause and even harder to find
ways to improve it. Particularly in DRL, we lack the tools
needed to analyze what an agent has learned and therefore
left with black box testing. In this paper we showed how
to gray the black box: understand better why DQNs work
well in practice, and suggested a methodology to interpret
the learned policies.
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