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Abstract: The need to combine likelihood information is common in analyses of

complex models and in meta-analyses, where information is combined from several

studies. We work to first order, and show that full accuracy when combining scalar

or vector parameter information is available from an asymptotic analysis of the score

variables. Then we use this approach to combine p-values for scalar parameters of

interest.
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1. Introduction

Statistical models presented in the form of a family of densities {f(y; θ); y ∈
Rd, θ ∈ Θ ⊂ Rp} are usually analyzed using the likelihood function L(θ) ∝
f(y; θ), or equivalently the log-likelihood function `(θ) = log{L(θ)}. Evaluated

at the observed data, this provides all data-dependent information required for a

standard Bayesian analysis, and almost all data-dependent information required

for frequentist-based analysis. In the latter case as described in Fraser and Reid

(1993), a full third-order inference also requires sample-space derivatives of the

log-likelihood function.

However, in some modeling situations, the full joint density, and hence the

likelihood function, may not be available. In such cases, workarounds have been

developed using, for example, marginal models for single coordinates or pairs

of coordinates. Other variants include pseudo-likelihood or composite likelihood

functions, as studied in Lindsay (1988) and reviewed in Varin, Reid and Firth

(2011). For example, the composite pairwise log-likelihood function is

`pair(θ) =
∑
r<s

log{f2(yr, ys; θ)},

where f2(yr, ys; θ) is the marginal model for a pair of components (yr, ys), ob-

tained by marginalizing the joint density f(y; θ). If we consider what is called

the independence likelihood, we have `ind(θ) = Σr log{f1(yr; θ)}.
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Our approach is to assume that the model is sufficiently smooth that the

usual asymptotic theory for composite likelihood inference applies; see, for ex-

ample, the summary in Varin, Reid and Firth (2011, Sec. 2.3). In particular,

we assume that the likelihood components have the property that their score

functions are asymptotically normal, with finite variances and covariances. This

can arise if we have a fixed number of components, each constructed from an

underlying sample of size n. It can also occur if we have an increasing number

of components with appropriate short-range dependence, such that information

accumulates at a rate proportional to the number of components. The latter can

arise, for example, in a time series or spatial setting in which the correlations

decrease with distance.

We denote an arbitrary composite log-likelihood function by
∑m

i=1 `i(θ); for

the pairwise log-likelihood function above, we have m = d(d − 1)/2. We let θ0
be some trial or reference value of the parameter, and then examine the first

derivative of the model about θ0; we see that to first order the model has a

simple linear regression form that is invariant to the starting point. In practice,

the starting value could be any consistent estimate, such as that obtained by

maximizing the unadjusted composite likelihood function.

We assume that each component log-likelihood function admits an expansion

of the form

`i(θ) = a+ (θ − θ0)Tsi −
1

2
(θ − θ0)T i(θ − θ0) + o(||θ − θ0||), (1.1)

where si = si(θ0) = (∂/∂θ)`i(θ)|θ0 is the component score variable and i = i(θ0)

is the corresponding negative second derivative. The Bartlett identities hold for

each component log-likelihood function:

E(si; θ0) = 0, var(si; θ0) = E(i; θ0) = vii, (1.2)

where vii is the p×p expected Fisher information matrix from the ith component.

We also have the moment relations (Cox and Hinkley (1974)),

E(si; θ) = vii(θ − θ0) + o(||θ − θ0||), var(si; θ) = vii + o(||θ − θ0||). (1.3)

Then we stack the m score vectors s = (sT

1 , . . . , s
T

m)T, and write

E(s; θ)
.
= V (θ − θ0), var(s; θ)

.
= W, (1.4)

where V = (v11, . . . , vmm)T is an mp× p matrix of stacked information matrices

vii, and W is an mp × mp matrix with vii on the diagonal and off-diagonal

matrix elements vij = cov(si, sj). Expression (1.4) enables us to construct the

optimally weighted score vector using Gauss–Markov theory, as described in the
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next section. Because the error of the approximation is o(||θ−θ0||), the mean and

variance results (1.2) and (1.3), respectively, are valid for any θ0 within moderate

deviations of the true value.

2. First-order Combination of Component Log-likelihood Functions

We express (1.4) to first order using the regression model,

s = V (θ − θ0) + e, (2.1)

where e ∼ N(0,W ). From this approximation, we obtain the log-likelihood

function

`∗(θ) = a− 1

2
{s− V (θ − θ0)}TW−1{s− V (θ − θ0)},

= a− 1

2
(θ − θ0)TV TW−1V (θ − θ0) + (θ − θ0)TV TW−1s, (2.2)

with score function s∗(θ) = V TW−1{s − V (θ − θ0)}, which has expected value

zero and variance V TW−1V . This log-likelihood function is maximized at

θ̂∗ = θ0 + (V TW−1V )−1V TW−1s,

which has expected value θ and variance (V TW−1V )−1 = W̄ , say. Then we can

equivalently write

`∗(θ) = a− 1

2
(θ − θ̂∗)TV TW−1V (θ − θ̂∗) = c− 1

2
(θ − θ̂∗)TW

−1
(θ − θ̂∗), (2.3)

which makes the location form of the log-likelihood more transparent.

If θ is a scalar parameter then from (2.2)

`∗(θ) = a− 1

2
V TW−1V (θ − θ0)2 + V TW−1s(θ − θ0) (2.4)

.
= V TW−1`(θ), (2.5)

where `(θ) is the vector of components `i(θ), equivalent to first order to a −
(1/2){si − vii(θ − θ0)}2v−1ii .

In (2.5), we have an optimally weighted combination of component log-

likelihood functions, that agrees with (2.4) or (2.3) up to quadratic terms. How-

ever this is usually different in finite samples, because the individual component

log-likelihood functions are not constrained to be quadratic.

The linear combination (2.5) is not, in general, available for the vector pa-

rameter case as different combinations of components are needed for the different

coordinates of the parameter, as indicated by the different rows in the matrix V T

in (2.3).

Lindsay (1988) studied the choice of weights for a scalar composite likeli-
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hood function by seeking an optimally weighted combination of score functions

∂`i(θ)/∂θ (in his notation, Si(θ)), where the optimal weights depend on θ. Our

approach is to work within moderate deviations of a reference parameter value.

Then we use the first-order model for the observed variables si, leading directly

to a first-order log-likelihood function.

This is closely related to indirect inference, which is widely used in econo-

metrics. For this, a set of estimating functions {g1(θ), . . . , gK(θ)} is available,

and the goal is to estimate θ based on an optimal combination of these functions.

Combining estimating functions into a quadratic form is explored in Jiang and

Turnbull (2004), who refer to the result as an indirect log-likelihood function.

In indirect inference the model for the data is often specified by a series of dy-

namic equations. In such cases it is feasible to simulate from the true model, but

not to write down the true log-likelihood function. Estimation of the model pa-

rameters proceeds by matching the simulated data to the indirect log-likelihood

function. In the present setting, we are instead concerned with optimal combi-

nations of given components, where we assume that each component is a genuine

log-likelihood function that satisfies (1.3) and (1.2).

For a scalar or vector parameter of interest ψ of dimension r, with nuisance

parameter λ such that θ = (ψT, λT)T, we have from (2.3) that the first-order

log-likelihood function for the component ψ is

`∗(ψ) = c− 1

2
(ψ − ψ̂∗)TW

ψψ
(ψ − ψ̂∗), (2.6)

where W
ψψ

is the ψψ submatrix of W̄−1 and ψ̂∗ = ψ(θ̂∗) is the relevant compo-

nent of θ̂∗. Pace, Salvan and Sartori (2016) consider using profile log-likelihood

components for scalar parameters of interest.

3. Illustrations

The first illustrations use latent independent normal variables, because these

capture the essential elements and make the role of correlation in the re-weighting

clear. The basic underlying densities are assumed to be independent responses x

from a N(θ, 1) distribution, with corresponding log-likelihood function −θ2/2 +

θx; here we take θ0 = 0.

Example 1 (Independent components). Consider component variables y1 =

x1 and y2 = x2. The m = 2 component log-likelihood functions are `i(θ; yi) =

−θ2/2 + yiθ, giving si = yi, V = (1, 1)T, and W = diag(1, 1). Thus `∗(θ) =

`1(θ) + `2(θ) is the independence log-likelihood function, as expected.
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Example 2 (Dependent and exchangeable components). Consider y1 =

x1 + x2 and y2 = x1 + x3. The component log-likelihood functions are `i(θ) =

−θ2 + θyi, giving si = yi,

V = (2, 2)T, W =

(
2 1

1 2

)
, V TW−1 =

(
2

3
,
2

3

)
, (3.1)

and the combined first-order log-likelihood function

`∗(θ) =

(
2

3
,
2

3

)
T

`(θ) = −4

3
θ2 +

2

3
θ(y1 + y2). (3.2)

In contrast, the unadjusted composite log-likelihood function obtained by

summing the marginal log-likelihood functions is

`UCL(θ) = −2θ2 + θ(y1 + y2).

Here the score variable is y1 + y2, which has variance 6 and second derivative

4. In this case the second Bartlett identity does not hold, and `UCL(θ) is not a

proper log-likelihood. We can recover the Bartlett identity by rescaling: `ACL =

a`UCL = −2aθ2 + θa(y1 + y2). This has negative second derivative 4a and score

variance 6a2, which are equal when a = 2/3. In addition the adjusted composite

log-likelihood is

`ACL(θ) =
2

3
`UCL(θ) = −4

3
θ2 +

2

3
θ(y1 + y2),

which agrees with `∗(θ). The next example shows that this agreement does not

hold in general.

Example 3 (Dependent, but not exchangeable components). Now let

y1 = x1 and y2 = x1 + x3. The individual log-likelihood functions are `1(θ) =

−θ2/2 + θy1 and `2(θ) = −θ2 + θy2, with s1 = y1 and s2 = y2. Then, we have

V T = (1, 2), the off-diagonal elements ofW are equal to one, and V TW−1 = (0, 1).

This leads to

`∗(θ) = −θ2 + θy2, (3.3)

with maximum likelihood estimate θ̂∗ = y2/2, which has variance 1/2. This log-

likelihood function reflects the fact that y2 = x1 + x3 provides all information

about θ.

In contrast, the unadjusted composite log-likelihood function is `UCL(θ) =

−(3/2)θ2 + θ(y1 + y2), with associated maximum likelihood estimate θ̂UCL =

(y1 + y2)/3. The rescaling factor to recover the Bartlett identity is a = 3/5,

giving the adjusted composite log-likelihood function
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`ACL(θ) =
3

5
`UCL(θ) = − 9

10
θ2 +

3

5
θ(y1 + y2),

which is again maximized at (y1 + y2)/3. Although the second Bartlett identity

is satisfied, the adjusted composite log-likelihood function leads to the same

inefficient estimate of θ as that of the unadjusted version. For further discussion

on this point, see Freedman (2006).

An asymptotic version of these two illustrations is obtained by having n repli-

cations of y1 and y2, or equivalently, by assuming x1, x2, and x3 have variances

1/n instead of 1.

Example 4 (Bivariate normal). Suppose we have n pairs (yi1, yi2) indepen-

dently distributed as bivariate normal with mean vector (θ, θ) and known covari-

ance matrix. The sufficient statistic is the pair of sample means (ȳ.1, ȳ.2), and the

component log-likelihood functions are taken as those from the marginal densi-

ties of ȳ.1 and ȳ.2, such that `1(θ) = −n(ȳ.1 − θ)2/(2σ21) and `2(θ) = −n(ȳ.2 −
θ)2/(2σ22). The score components s1 and s2 are, respectively, n(ȳ.1 − θ)/σ21 and

n(ȳ.2 − θ)/σ22, with variance–covariance matrix

W = n


1

σ21

ρ

(σ1σ2)
ρ

(σ1σ2)

1

σ22

 , (3.4)

giving

V TW−1 = (1− ρ2)−1
(

1− ρσ1
σ2

, 1− ρσ2
σ1

)
,

leading to

`∗(θ) = − n

2(1− ρ2)

{(
ȳ.1 − θ
σ1

)2

(1− ρσ1
σ2

) +

(
ȳ.2 − θ
σ2

)2(
1− ρσ2

σ1

)}
. (3.5)

As a function of θ this can be shown to be equivalent to the full log-likelihood

function based on the bivariate normal distribution of (ȳ.1, ȳ.2), and the maximum

likelihood estimate of θ is a weighted combination of ȳ.1 and ȳ.2.

If the parameters in the covariance matrix are also unknown then the reduc-

tion by sufficiency is more complicated. In this case the vector version of the

combination described in (2.3) is needed.

Example 5 (Two parameters). Suppose that xi follow a N(θ1, 1) distribution,

and zi independently follow a N(θ2, 1) distribution. We base our component log-

likelihood functions on the densities of the vectors
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y1 =

(
x1

z2 + z3

)
, y2 =

(
x1 + x3
z2

)
,

giving the score variables s1 = (y11, y12)
T and s2 = (y21, y22)

T . The needed

variances and covariances are:

V =


1 0

0 2

2 0

0 1

 , W =


1 0 1 0

0 2 0 1

1 0 2 0

0 1 0 1

 , W−1 =


2 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 2

 ,

and V TW−1V = diag(2, 2). This gives

`∗(θ1, θ2) = −(θ1 − θ̂∗1)2 − (θ2 − θ̂∗2)2,

where θ̂∗ = (y21/2, y12/2)T. This combines the log-likelihood functions for θ based

on s12 and s21, as we might reasonably have expected from the presentations

with the latent xi and zi variables. At the same time, the usual composite log-

likelihood function derived from the sum of those for s1 and s2 contains additional

terms.

Example 6 (Two parameters, without symmetry). Within the structure

of the previous example, suppose our component vectors are

y1 =

(
x1
z1

)
, y2 =

(
x1 + x2
z2

)
.

The variances and covariances are again directly available:

V =


1 0

0 1

2 0

0 1

 , W =


1 0 1 0

0 1 0 0

1 0 2 0

0 0 0 1

 , W−1 =


2 0 −1 0

0 1 0 0

−1 0 1 0

0 0 0 1

 .

From Example 3 we have that for inference about θ1, the weights are (0, 1), and

from Example 1 the weights for θ2 are (1, 1). Clearly these are incompatible.

For the direct approach using (2.5), we have V TW−1V = diag(2, 2), giving

`∗(θ1, θ2) = −(θ1 − θ̂∗1)2 − (θ2 − θ̂∗2)2,

where θ̂∗ = (y21/2, (y12 + y22)/2)T. This simple sum of component likelihood

functions for (θ1, θ2) is to be expected, because the measurements for θ1 are

independent of those for θ2. In addition, all information about θ1 comes from

the first coordinate of y2, and all the information for θ2 comes from the second

coordinates of both y1 and y2.
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Example 7 (Time series correlation structure). As a more realistic ex-

ample, we consider that the underlying model follows a q-dimensional normal

distribution with mean zero and with correlations Rss′(θ) between pairs (ys, ys′).

We compare `∗(θ) to the unadjusted composite log-likelihood function created

from all possible pairs. In computing the elements of W , each score component

si corresponds to a pair (s, s′) and each sj corresponds to a pair (t, t′). Thus, Wij

depends on up to the fourth moments of the original components of the vector

y. Although the construction is tedious, it can be automated.

In particular, we have

`j(θ; ys, ys′) = −1

2
log(1−R2

ss′)−
y2s + y2s′ − 2ysys′Rss′

2(1−R2
ss′)

, (3.6)

and

sj =
∂lj(θ)

∂θ

∣∣
θ=θ0

=
Rss′Ṙss′

1−R2
ss′

+
ysys′Ṙss′

1−R2
ss′
− (y2s + y2s′ − 2ysys′Rss′)Rss′Ṙss′

(1−R2
ss′)

2
, (3.7)

where Rss′ = Rss′(θ0) and Ṙss′ = (d/dθ)Rss′(θ0). From this, we have

vjj = var{sj(θ0)} =
Ṙ2
ss′

1−R2
ss′

+
2R2

ss′Ṙ
2
ss′

(1−R2
ss′)

2
. (3.8)

There is a similar, but lengthy, formula for the covariance elements, that takes

into account the pairs (s, s′) and (t, t′) which have s′ = t′ and s′ 6= t′, for example.

For illustration, we chose Rss′(θ) = θ|s−s
′| if |s − s′| ≤ 2, and 0 otherwise;

only pairs differing by one or two places contribute to `∗(·) and to the unadjusted

composite likelihood function `UCL(θ) = 1T`(θ). This is a time series version of

correlations between near neighbours only. Similar structures are often used in

spatial modeling. Figure 1 illustrates `UCL(θ) and `∗(θ) for sample data sets of

length 10, and compares them to the true full log-likelihood function. Simulations

from this model are summarized in Table 1. In computing the averages of the

point estimates and standard error, simulations leading to a maximum on the

boundary were removed.

Asymptotic theory is strongly tested in these simulations of a single time

series of length 11 or 21. There is some replication because correlations are

zero beyond two lags. However, we can see from Table 1 that even the full

maximum likelihood estimate has appreciable bias. The covariance matrix is

positive-definite only over a restricted range for θ, although the 2×2 submatrices

needed for the weighted and unweighted pairwise likelihood calculations do not

require a restricted range: both `∗ and `UCL can be computed if a full multivariate

normal model does not exist. Whether or not there may be another multivariate
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Figure 1. Illustrations of the the proposed combination `∗(·) (black, solid), pairwise
composite log-likelihood function (blue, dashed), and full log-likelihood function (red,
dotted) for three simulations of length 11 from the model N{0, R(θ)}. In the third
plot, the likelihood functions do not have the approximate quadratic behavior needed
for first-order theory.

model compatible with these marginal densities is not clear. This is a limitation

of composite likelihood methods from the viewpoint of modeling, but can be an

advantage from the viewpoint of robust estimation. Simulations (not shown)

suggest that both `∗ and the unadjusted composite pairwise likelihood functions

give accurate point estimates when the range of θ is expanded to (−1, 1). In

Table 2, we show the effect of using incorrect weights when computing `∗. The

simulation results do not appear to be very sensitive to changing the point at

which the weights are computed.
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Table 1. Example 7. Averages over 10,000 simulations from the model N{0, R(θ)}.
We have deleted simulation runs in which the estimates were on the boundary of the
parameter space; N∗ is the number remaining. The weights in `∗ use the true value of
θ. The theoretical standard error is based on the second derivative at the maximum.

true θ = 0.2
q = 11 q = 21

estimate simulation theoretical N∗ estimate simulation theoretical N∗

st. err. st. err. st. err. st. err.

` 0.149 0.309 9,056 0.182 0.238 9,890
`∗ 0.140 0.290 0.288 8,586 0.178 0.230 0.219 9,673
`UCL 0.135 0.278 0.304 8,551 0.172 0.225 0.187 9,604

true θ = 0.4
q = 11 q = 21

estimate simulation theoretical N∗ estimate simulation theoretical N∗

st. err. st. err. st. err. st. err.

` 0.314 0.269 8,437 0.366 0.190 9,665
`∗ 0.289 0.251 0.270 7,479 0.347 0.188 0.194 8,684
`UCL 0.279 0.246 0.295 7,504 0.340 0.187 0.152 8,658

Table 2. Example 7. Simulations from the model N{0, R(θ)}; `∗ uses weights W (θ0)
computed at a different value of θ. Simulation size is 10,000.

Weights W and V computed at θ0 = 0.2
q true θ estimate standard error
11 0.4 0.289 0.260
21 0.4 0.347 0.192
11 0.3 0.216 0.273
21 0.3 0.264 0.215
11 0.1 0.075 0.294
21 0.1 0.090 0.240
11 0.0 0.002 0.293
21 0.0 0.001 0.238
11 −0.1 −0.078 0.291
21 −0.1 −0.090 0.240

4. Comparison to Composite Likelihood

Composite likelihood inference combines information from different compo-

nents, often by adding the log-likelihood functions. Care is needed in constructing

inference from the resulting function, as the curvature at the maximum does not

give an accurate reflection of the precision. Corrections for this in the scalar

parameter setting involve either rescaling the composite log-likelihood function

or accommodating the dependence among the components in the estimate of the
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variance of the composite likelihood estimator. In the vector parameter setting,

adjustments to the composite log-likelihood function are more complex than a

simple rescaling; see Pace, Salvan and Sartori (2011).

This rescaling is not sufficient; the location of the composite log-likelihood

function is incorrect to first order, and the resulting confidence intervals are not

correctly located to first order. This is corrected by using `∗(θ) from Section 2.

As we are using only first-order log-likelihood functions, it suffices to il-

lustrate this with normal distributions. Suppose yT = (y1, . . . , ym), where the

marginal models for the individual coordinates yi are normal with mean θvii,

variance vii, and cov(yi, yj) = vij . These are all elements of the matrix W . The

unadjusted composite log-likelihood function is

`UCL(θ) = −1

2
θ2Σm

i=1vii + Σm
i=1yiθ,

with maximum likelihood estimate θ̂CL = Σyi/Σvii and curvature Σvii at the

maximum point. This curvature is not the inverse variance of θ̂CL as the second

Bartlett identity does not hold.

As indicated in Example 2, the rescaled version that recovers the second

Bartlett identity is

`ACL(θ) =
H

J
`UCL(θ) = −1

2
θ2

(Σvii)
2

Σvij
+ θ

∑
yi

Σvii
Σvij

,

where H = E{−`′′UCL(θ)} = Σivii and J = var{`′UCLθ)} = Σi,jvij ; in this context

neither H nor J depend on θ. The maximum likelihood estimate from this

function is the same, θ̂UCL; however the inverse of the second derivative gives

the correct asymptotic variance.

What is less apparent is that the location of the log-likelihood function needs

a correction. This is achieved using the weighted version from Section 2:

`∗(θ) = −1

2
θ2(V TW−1V ) + θV TW−1y,

which has maximum likelihood estimate θ̂∗ = (V TW−1V )−1V TW−1y, with vari-

ance (V TW−1V )−1. Note that the linear and quadratic coefficients for θ of `∗(θ)

are the same as those of the full log-likelihood function for the model N(θV,W ).

Computating `ACL(θ) and `∗(θ) requires variances and covariances of the score

variables.

Writing the uncorrected composite log-likelihood function as 1T`(θ), where

`(θ) is the vector {`1(θ), . . . , `m(θ)}, with `i(θ) = −(1/2)viiθ
2 + yiθ, we have

var(θ̂UCL) = (1TW )/(1TV 2), var(θ̂∗) = (V TW−1V )−1, and cov(θ̂UCL, θ̂
∗) =



12 FRASER AND REID

(V TW−1V )−1, giving

var(θ̂UCL − θ̂∗) =
1TW1

(1TV )2
− 1

V TW−1V

and
var(θ̂UCL)

var(θ̂∗)
=

(1TV )2

(1TW1)(V TW−1V )
.

5. Combining Significance or p-value Functions

In the case of a scalar parameter, we can directly link the score variable for

each component to a standard normal variable, and hence to a p-value. Using

the regression formulation given in (2.1) and taking θ0 = 0 as in Section 3, we

obtain

si − viiθ −→ zi = v
−1/2
ii (si − viiθ) −→ pi = Φ(zi),

where zi is standard normal, and pi is the first-order p-value used to assess θ = θ0.

Similarly, we can make the inverse sequence of transformations

pi −→ zi = Φ−1(pi) −→ (si − viiθ) = (vii)
1/2zi.

As we have seen, to first order, the optimal combination is linear in si−viiθ,
which allows us to combine the associated p-values:

V TW−1(s− V θ) = V TW−1V 1/2Φ−1{p(θ; s)}, (5.1)

where V 1/2Φ−1{p(θ; s)} is the vector with coordinates v
1/2
ii Φ−1{p(θ; si)}. We can

then convert this to a combined first-order p-value:

p̃(θ; s) = Φ[(V TW−1V )−1/2V TW−1V 1/2Φ−1{p(θ; s)}]. (5.2)

Example 2 continued (Dependent and exchangeable components). The com-

posite score variable relative to the nominal parameter value θ0 = 0 is

V TW−1s =
2

3

(
y1 + y2

)
,

which is the score variable from the proposed log-likelihood function `∗(θ). The

relevant quantile is

z =

(
8

3

)−1/2{2

3

(
y1 + y2

)
− 8

3
θ

}
,

which has a standard normal distribution that is exact in this case. The corre-

sponding composite p-value function is then

p̃(θ; s) = Φ(z).

Example 3 continued (Dependent, but not exchangeable components). The
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combined score variable for θ0 = 0 is V TW−1s = y2, which is the score variable

from `∗(θ). The corresponding quantile is z = 2−1/2(y2 − 2θ), and the corre-

sponding composite p-value function is

p̃(θ; s) = Φ(z) = Φ{2−1/2(y2 − 2θ)},

which agrees with the general observation that y2 provides full information on

the parameter θ.

Example 8 (Combining three p-values). Suppose three investigations of a

common scalar parameter θ yield the following p-values for assessing a null value

θ0: 1.15%, 3.01%, and 2.31%. To combine these, we need the measure of precision

provided by the information, or the variance of the score, for each component,

say, v11 = 3.0, v22 = 6.0, and v33 = 9.0. The corresponding z-values and score

values s are

z1 = Φ−1(0.0115) = −2.273 s1 − 3θ0 = 31/2(−2.273) = −3.938,

z2 = Φ−1(0.0301) = −1.879 s2 − 6θ0 = 61/2(−1.879) = −4.603, (5.3)

z3 = Φ−1(0.0231) = −1.994 s3 − 9θ0 = 91/2(−1.994) = −5.981.

First, suppose for simplicity that the investigations are independent, such

that W = diag(V ) and V TW−1 = (1, 1, 1) and that we add the scores. This gives

the combined score −14.522. Then, standardizing by the root of the combined

information 181/2 = 4.243, we obtain p̃ = Φ(−3.423) = 0.00031.

To examine the effect of dependence between the scores, we consider a cross-

correlation matrix of the form

R =

1 ρ ρ

ρ 1 ρ

ρ ρ 1

 ,

with a corresponding covariance matrix W with entries 3, 6, and 9 on the diago-

nal, and appropriate covariances otherwise. To illustrate a low level of correlation,

we take ρ = 0.2. The coefficients for combining the scores si in array (17) are

given in the following array:

V TW−1 = (3, 6, 9)

3.000 0.848 1.039

0.848 6.000 1.470

1.039 1.470 9.000


−1

= (0.510, 0.726, 0.822).

The resulting z- and p-value are −2.81 and p̃ = 0.0025, respectively, which are

an order of magnitude larger than those obtained when assuming independence.
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The combined p-value increases with ρ; for example, if ρ = 0.8, the combined

p-value is 0.075.

Fisher’s combined p-value, obtained by referring −2Σ log pi to a χ2
6 dis-

tribution, is 0.0006. This is independent of the value of ρ, because Fisher’s

method assumes that the p-values are independent. The Bonferroni p-value is

3 min(pi) = 0.0345, which, although valid under dependence, is known to be

conservative.

Many modern treatments of meta-analysis concentrate instead on combin-

ing the effect estimates, typically weighted by inverse variances. Our approach is

similar, although we work in the space of score functions. More specifically, we

combine the estimates θ̂i = −v−1/2ii zi with the weights vii. Under independence,

the combined estimate of θ is 0.807 with a standard error of 0.236, leading to the

same p-value 0.0003 under independence. Similarly weighted linear combinations

of θ̂i that incorporate correlation give the same p-values as above. The combina-

tion of point estimates here is analogous to a random-effects meta-analysis, except

that we assume that the within-study and between-study variances are known.

Here ρ plays the role of the between-study correlation. Of course, in more prac-

tical applications of meta-analysis both the within-study and the between-study

variances must be estimated.

6. Conclusion

In this study, we use likelihood asymptotics to construct a fully first-order

accurate log-likelihood function for a composite likelihood context. This requires

the covariance matrix of the score variables, which is also needed for inference

based on the composite likelihood function.

The advantage of the first-order approach is that it expresses each compo-

nent log-likelihood function as equivalent to that from a normal model with an

unknown mean and a known variance. This, in turn, provides a straightfor-

ward way to describe the optimal combination. We achieve this using a linear

combination of the score variables, which can be converted both from p-values

(for components) and to p-values (for the combination), yielding a procedure for

meta-analysis.
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