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Abstract. We consider the use of default priors in the Bayes approach for
obtaining information concerning the true value of a parameter. As ini-
tiated by Bayes (1763) and pursued by Laplace (1812), Jeffreys (1961),
Bernardo (1979), and many more, this has recently been viewed as
“potentially dangerous” (Efron, 2013), or “potentially useful” (Fraser,
2013). We obtain the existence of a Bayes type prior that does satisfy re-
producibility properties as proposed by Fisher (1930), Neyman (1937),
and implicitly Laplace (1812). For this, we use large-sample likelihood
analysis and find that full information on a typical scalar parameter of
interest can be found on a corresponding profile contour of the likeli-
hood function; and then if possible priors are expanded to include dis-
crete components, the full information can be extracted. The required
prior however is usually data-dependent and interest-parameter depen-
dent, which falls outside the common Bayes approach. In addition, the
use of such priors typically involves substantially more analysis than
direct frequency calculations, which in turn have higher accuracy.

We provide simple examples involving extensions of Jeffreys priors.
These serve as counter-examples to the general claim that Bayes ac-
complishes statistical inference. To obtain more accurate results from
Bayes, more effort is required compared to recent likelihood methods,
while resulting in lesser accuracy. And for vector interest parameters,
accuracy beyond first order is routinely not available, as an increase in
parameter curvature causes Bayes and frequentist values to change in
opposite direction, yet frequentist itself is fully reproducible!

An alternative is to view default Bayes as an exploratory technique
and then can ask does it do as it overtly claims? Is it reproducible
as understood in contemporary science? Does a β-posterior quantile
in repetitions actually have β-coverage of the true? If so, then the
approach is providing an approximate route to confidence. And if not,
then what is it? No one has an answer although verbal claims abound.
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rameter, two theories, Vioxx, Welch-Peers.

1. INTRODUCTION

1.1 Preview

Being aware of conditional probability, Bayes realized that by combining the
model for the data variable together with a hypothesized prior distribution for
the parameter, he would obtain a joint model for both parameter and variable.
This procedure then makes available a posterior distribution for the parameter
of interest. With this in mind, he then supposed the presence of a random source
for his parameter, which led to the widely promoted Bayes procedures. Making
up a missing input to a theorem however leads to a legitimate concern about
the validity of the conclusion arising from that theorem. Nonetheless, these wor-
ries aside, we can still wonder whether the Bayes procedure somehow works, or
whether there exists a prior that cancels the effect of this subjectiveness?

Suppose we instigate a default Bayesian calculation with a prior π(θ) on the
full parameter to obtain the β-level quantile ψ̂β for ψ, the parameter of inter-

est. We can certainly ask whether pr{ψ ≤ ψ̂β} = β, in the common usage of
probability, also called reproducibility. In other words, does the procedure do as
it says? Indeed as the procedure is well defined and repeatable we can simulate
and see whether and in what manner it is reproducible. In the eventuality that
it is not, the procedure is subject to potentially serious consequences, such as
the standard process of publication retraction. In some cases however, we may
uncover repetition properties, the reproducibility proposed later by Fisher (1930)
and Neyman (1937), yet also implicitly present in Laplace (1812). This thus pro-
vides meaning to the “potentially dangerous” and “potentially useful” attributes
discussed earlier.

1.2 Reproducibility.

Reproducibility is widely acknowledged and affirmed in the sciences; see for
example, the editorial by Marcia McNutt (2014), the Editor-in-Chief of the pres-
tigious journal Science and nominee as the next president of the US National
Academy of Sciences: She praises the role of reproducibility in science and more
broadly the role of statistics in science. And in her role of Editor-in-Chief has
recently had to administer the retraction of articles in Science (McNutt, 2015).
And now, for a Bayesian who asserts that pr{ψ ≤ ψ̂β} = β as mentioned in the
Abstract, we can reasonably require that reproducibility apply: Thus the actual
probability should be β as in ordinary usage, not the “made-up” usage offered
by the improperly invoked conditional probability lemma.

1.3 Bayes, Statistics, and Science.

Also in the journal Science, Efron (2013) discusses the role of Bayes theorem in
the present century and offers a classification of prior densities: “genuine priors“,
for those representing an empirical or theoretically based distribution that de-
scribes the sourcing of the true value of the parameter in the application; “Laplace
priors”, for those providing some form of noninformative weight function, such as
those of Laplace; and then, by omission, “opinion or subjective priors” as some-
times promoted for applications. He describes the first as “genuine”, the Laplace
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priors as “troublesome” or “potentially dangerous”, and the opinion priors, by
omission, as perhaps not deserving comment. In response Fraser (2013) offers
the view that Laplace priors can provide “a route to approximate confidence”.
And then, separately, the above mentioned editorial in Science (2014 January 17)
praises the role of reproducibility in science and more broadly the role of statistics
in science.

1.4 It’s tough to make Bayes reproducible!

In this paper we use large-sample likelihood theory to determine where and in
what form the likelihood function provides information concerning a parameter
of interest. We then determine how and to what degree that information can be
extracted by Bayes type arguments. As part of this we find that the Jeffreys-
Laplace prior is essential input but needs to be differentially applied in order
to give reproducible information on the parameter of interest. These modified
Bayes type priors are usually data dependent and interest parameter dependent,
thus falling outside the usual Bayes framework. Although this modified Bayes is
informed by large-sample likelihood methods, the frequency-based higher-order
likelihood methods themselves produce parameter information with higher ac-
curacy and lower computational overhead. So what does Bayes contribute other
than an exploration option that separately needs reproducibility verification?

2. BACKGROUND

2.1 The scalar location-model with flat prior gives reproduciblility.

For a location or measurement model f(y−θ) with observed data y0, consider a
comparison of the frequency approach and the Bayes approach using the flat prior
favoured by Laplace. The frequency approach is essentially descriptive: it records
in essence the statistical position of the data relative to a possible parameter
value θ,

p(θ) =

∫ y0

−∞
f(y − θ)dy;(2.1)

this is just F (y0; θ) = F 0(θ) or the observed distribution function. Meanwhile the
Laplace assessment based on transformation invariance or noninformative scaling
uses the flat prior π(θ) = c and gives the nominal posterior survivor value

s(θ) =

∫ ∞
θ

f(y0 − θ′)dθ′(2.2)

for the parameter value θ. These are numerically equal, p(θ) = s(θ), as is ob-
vious by elementary calculus, or by seeing one as a reflection of the other, or
by looking left from the data or right from the parameter value and seeing the
same functional shape. The equality says that the Bayes survivor value has merit
in being just the lower confidence bound. Clearly we have here that frequency
and Bayes are equivalent or that Laplace was just anticipating Fisher but didn’t
quite formulate his proposal for a confidence generalization. We now examine
Laplace-based Bayes more generally in relation to reproducibility.

The preceding can be reexpressed in terms of corresponding quantile functions.
Let θ̂β be the solution of β = s(θ) for this special location case; then θ̂β = s−1(β) is
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the β-level lower quantile of the posterior distribution with the frequency property
that

pr{θ̂β ≤ θ; θ} = β,

thus just pure reproducibility. Indeed for say the Normal(µ;σ0/n
1/2) in obvious

notation we have s(µ) = Φ{(ȳ0 − µ)/(σ0/n
1/2)}, µ̂β = ȳ0 − zβσ0/n

1/2 where
zβ is the usual β-level quantile of the Normal (0, 1) with distribution function
Φ(z), and ȳ is the usual sample average. It follows routinely that µ̂β is the Bayes,
the frequency, the confidence, the fiducial lower β-level quantile and has full
reproducibility, call it confidence or call it probability or other appropriate term.

2.2 The scalar Jeffreys, where Bayes gives approximate reproducibility

The location property can also arise as an approximation: Jeffreys (1946) rec-
ommended the use of an invariant prior, being the square root of the expected in-
formation or expected information determinant. For this, in some wide generality
indicated in §3.3, we begin with a general exponential model with p-dimensional
u and p-dimensional ϕ: f(y; θ) = exp{ϕ′(θ)u(y) + k(θ)}H(y). This can be reex-
pressed in terms of the essential u(y) and ϕ(θ) as

f(u;ϕ) = exp{ϕ′u− κ(ϕ)}h(u) = exp{`(ϕ;u)}h(u)(2.3)

where the log-likelihood `(ϕ;u) = a+log f(u;ϕ) with the usual additive constant
can be replaced by a representative, log f(u;ϕ)− log f(u; ϕ̂) that has maximum
value 0. Let ϕϕ = −`ϕϕ(ϕ;u) = κϕϕ(ϕ) be the observed information function
with subscripts denoting differentiation; it is also the expected information. The
standard Jeffreys prior is

πJ(ϕ) = |ϕϕ(ϕ)|1/2(2.4)

which is free of u; it also provides a measure element πJ(θ)dθ that is parameter-
ization invariant.

For the scalar parameter case the role of the prior is easily seen from a second-
order log-density expansion about the observed (u0, ϕ̂0) where coordinates have
been re-centered at the observed data values and then rescaled with respect to
root observed information (Cakmak et al., 1998):

g(s;ϕ) = (2π)−1/2 exp{−(s− ϕ)2/2− a(ϕ3 − s3)/6n1/2}{1 +O(n−1)}.(2.5)

This has observed information (ϕ; s) = 1 + aϕ/n1/2 and as written is normed
to the second order. If we integrate the root information adjusted parameter
increment, (1 + aϕ/n1/2)1/2dϕ = dβ, we obtain

β =

∫ ϕ

0
(1 + aϕ/2n1/2)dϕ = ϕ+ aϕ2/4n1/2,

with inverse transformation ϕ = β − aβ2/4n1/2. Calculating ϕ̂ and β̂ and substi-
tuting in (2.5) then gives

(2π)−1/2 exp{−(β̂ − β)2/2− a(β̂ − β)3/12n1/2}dβ̂,(2.6)

which now describes a location model to second order accuracy. And if we then
switch from dβ̂ to dβ as from §2.1 to §2.2, we find that the density for β is just
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the likelihood with the Jeffreys prior. It follows then that quantiles and intervals
calculated using the scalar Jeffreys prior have second-order reproducibility. This
was established by Welch and Peers (1963) using transforms and analysis in the
complex plane. For vector parameters, however, Jeffreys (1961) indicated that
there were problems with his prior in the regression model context and suggested
an alternative; we are now examining this problem.

2.3 Vector Laplace and vector Jeffreys do not give reproducibility

Consider a Normal location model on the plane, say φ(y1 − θ1, y2 − θ2) where
φ(z1, z2) is the bivariate standard Normal; let (y0

1, 0) be the data and ψ = θ1 be
the interest parameter; the Laplace or Jeffreys prior is the flat prior π(θ) = c.

First consider the linear parameter ψ = θ1. By the previous subsections, the
Bayes posterior survivor value is s(ψ) = Φ(y0

1 − ψ). This is in full accord with
the usual confidence p-value and thus gives reproducibility.

But now suppose we add curvature to the interest parameter, so ψc = θ1+γθ2
2/2

and have γ positive so that the contours of ψc are cupped to the left. Then with
increasing γ the p-value decreases from that s(ψ) = Φ(y0

1 − ψ) under linear-
ity, and the Bayes survivor s-value increases from that under linearity (Fraser,
2011). They change in opposite directions from the neutral linearity! Of course
the frequency p-value has full reproducibility from its construction. It follows
then that Bayes or Jeffreys does not have reproducibilitiy. This is a shocking
result! And the Bayes approach should not hide the failure. Earlier versions of
this phenomenon (Dawid et al., 1973) were attributed to marginalization, but
the present example is more specific and attributes it to marginalization in the
presence of a curved interest parameter.

In this paper we determine where the information concerning an interest pa-
rameter is to be found in the likelihood function and in what form. This leads
us to determine what sort of prior would extract this information concerning an
interest parameter. We use a simple and familiar model, the gamma model, as
counter example to Bayes, to illustrate the needed calculations and to see that
they can only achieve second order accuracy and that this is at most for scalar
interest parameters. More complex examples are not needed to demonstrate this
failure. And in addition to this mitigated accuracy, the method requires intensive
analysis and greater computational overhead than the routine frequency proce-
dures. Of course the Bayesian calculations lead to nominal probabilities for a
parameter and such does have appeal. But the price of that appearance of prob-
ability may be too high, when faced with its failures.

2.4 Statistics and highest professional standards.

Statistics, at the centre of science and community, deserves the highest pro-
fessional standards for accuracy, precision, and reliability, as appropriate to the
context. Of course there have been huge professional developments in methods
for exploration and for discovery, and this is of immense value. But also there has
been false discovery, and a need for verifications, along with the potential risks.
Can these be serious? And is it more than just having liability insurance? Can
things go wrong with statistics centrally involved?

The risks can be serious and the consequences immense. An earthquake at
L’Aquila, Italy on January 5, 2009 caused an estimated 300 deaths. But it had
been preceded by many small seismic shocks that alarmed people. A government
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authority appointed a committee of seismologists with statistical expertise that
reported that there was no strong reason for a major quake. The people were
reassured and returned to their usual activities but the major quake arrived and
a legal court charged the committee members with manslaughter.

The pain killer Vioxx was approved by the US Food and Drug Administration
(FDA) in 1999 and then withdrawn by the pharmaceutical company Merck in
2004 after an acknowledged excess of cardiovascular thrombotic (CVT) events
with Vioxx, in a placebo controlled study. However the available evidence for life-
threatening risks had long been overwhelming and some 40,000 died as indicated
by an FDA estimate; and Merck paid over five billion dollars in penalties and in
settlements to benefit the injured and their survivors.

And Statistics itself has two theories (Fraser, 2014b) that can give contradic-
tory results and each is strongly promoted: this could provide powerful fuel for
any legal action concerning disputed results. Should the basics of statistical in-
ference then be decided in a court of law? Or should Science with reproducibility,
and Mathematics with logic directly address the lack of coherence in the disci-
pline of statistics? We start by examining this in the context of a regular model
with observed data.

3. HOW MODEL CHARACTERISTICS AFFECT ANALYSIS

3.1 Continuity and sample size effects.

Not all statistical models have continuity in how interest parameters affect
the model, and not all have clear data-size effects. But those models with these
properties can reasonably be expected to have analyses that also respect these
properties; otherwise they are not using important and relevant information. Re-
cent likelihood sample-size methods show that models, in wide generality, can be
analyzed at very high accuracy as if they were exponential models, see §3.4. Con-
tinuity shows that the assessment of components interest parameters of dimension
d often d = 1 is fully and uniquely available in a specified marginal model; see
§3.3. This has had profound effects on the directions of recent inference theory,
and striking results for default Bayes analysis.

3.2 Exponential models.

Consider an exponential model (2.3). For any data value u, the likelihood
function with arbitrary additive constant can of course be replaced by the rep-
resentative `(ϕ;u) − `(ϕ̂;u) where the usual arbitrary additive constant for log-
likelihood is chosen so the representative has maximum value 0. Meanwhile the
curvature ̂ϕϕ at the maximum value gives the observed information. These sta-
tistical quantities, {`(ϕ;u)−`(ϕ̂;u), ̂ϕϕ} at points u make available the following
highly accurate reexpression of the model (Daniels, 1954):

f̃(u;ϕ) =
ek/n

(2π)p/2
exp{`(ϕ;u)− `(ϕ̂;u)}|̂ϕϕ|−1/2.(3.1)

This approximation provides impressive third-order accuracy subject to the renor-
malization implied by the constant ek/n. It also has the highly attractive property
that at each point u it offers the same likelihood as the initial model; and in ad-
dition quite strikingly it has the underlying density approximation |̂ϕϕ|−1/2, a
simple highly accurate Fourier inverse.
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3.3 What continuity says about component parameters.

To find a prior to extract information on a component parameter ψ(ϕ) we
should want to know where the relevant information is located in an observed like-
lihood function. For this in wide generality consider an interest parameter ψ(ϕ)
of dimension d, initially with a particular interest value ψ0. When ψ(ϕ) = ψ0 we
have of course the approximation (3.1) for u. Also from recent likelihood theory,
for example Fraser et al. (2010), we have that there is a uniquely defined marginal
variable that is second-order free of ϕ given ψ(ϕ) = ψ0. The corresponding con-
ditional distribution can have a complementing parameter say λ with variable t.
This allows a p∗-approximation

h̃(t;λ) =
ek/n

(2π)(p−d)/2
exp{`(ϕ;u)− `(ϕ̂ψ0 ;u)}|(λλ)(ϕ̂ψ0)|−1/2(3.2)

that uses the nuisance information |(λλ)(ϕ̂ψ0)| = |λλ(ϕ̂ψ0)||ϕλ(ϕ̂ψ0)|−2 where the
Jacobian ϕλ of ϕ with respect to λ for fixed ψ = ψ0 in effect gives a reexpressed
nuisance parameter that is locally scaled, designated as (λ) and is in accord with
the full canonical variable u.

Then dividing the joint distribution (3.1) by the conditional distribution (3.2)
we obtain the marginal model

g̃(s;ψ0) =
ek/n

(2π)d/2
exp{`(ϕ̂ψ0 ;u)− `(ϕ̂;u)}|̂ϕϕ|−1/2|(λλ)(ϕ̂ψ0)|1/2(3.3)

=
ek/n

(2π)d/2
exp{`(ϕ̂ψ0 ;u)− `(ϕ̂;u)}|̂P(ψψ)|

−1/2 |(λλ)(ϕ̂ψ0)|1/2

|(λλ)(ϕ̂)|1/2
.(3.4)

The interest parameter profile information ̂P(ψψ) uses the interest parameter ψ

but in a rescaled form (ψ) that is in accord with the canonical variable u, as
implied by the two versions (3.3) and (3.4). The preceding is available in Fraser
(2014a).

The distribution g̃(s;ψ0) is defined on the plane L0 that goes through the data
point u0 and is perpendicular to ψ(ϕ) = ψ0 at the constrained ϕ̂ψ0 ; the variable
s provides d rotated coordinates obtained from u on L0. At a point u on L0

the exponent is the profile log-likelihood for ψ = ψ0 and has observed profile
information such that |̂ϕϕ| = |(λλ)(ϕ̂)||̂P(ψψ)|. The density g̃(s;ψ0) provides full
third order information for ψ = ψ0 and has uniqueness given the requirement
that the model be continuous in the parameter and the variable.

The preceding distribution for assessing ψ = ψ0 is a marginal distribution of
an ancillary under ψ = ψ0, and is unique although the expression for the ancillary
variable itself is not unique; the uniqueness follows from requiring the parameter
continuity in the initial model to be respected in the derived model (Fraser et al.,
2010).

3.4 What continuity says about regular models with data.

More generally consider a regular model f(y; θ) with continuous parameter and
observed y0. The observed log-likelihood is widely available `(θ) = log f(y0; θ).
Also, the coordinate distribution functions are often available and can be inverted
to give quantile functions, and then combined to give a vector quantile function
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say y(z; θ). The latter can be used for simulations, of course, but also to examine
how changes in θ at the observed maximum likelihood value θ̂0 affect data points
near the observed value y0:

V = (v1, . . . , vp) =
∂y(z; θ)

∂θ

∣∣
y0,θ̂0

.(3.5)

This shows that a change dθ at θ̂0 produces a change dy = V dθ at the data
y0; or equivalently the change dy corresponds to the related change dθ at the
maximum likelihood value. It follows that there is an ancillary contour through
the data of dimension p and the conditional distribution on the contour is the
indicated distribution for assessing the parameter θ (Fraser et al., 2010), (Brazzale
et al., 2007); then the gradient of likelihood on the ancillary contour ϕ(θ) =
d`(θ; y)/dV |y0 gives the canonical parameter for the exponential model which
is fully equivalent to the given model for third order inference. We thus have
that the exponential model {`(θ), ϕ(θ)} provides full third-order inference for the
initial model (Fraser and Reid, 1995; Reid and Fraser, 2010); we call this model
the tangent exponential model. It follows that very general regular models can
be examined entirely within the framework of the exponential model yet retain
third-order accuracy.

4. A SCALAR WELCH-PEERS EXAMPLE FOR BAYES.

As a first example with an extremely small sample size consider a scalar param-
eter gamma model with density f(y;α) = Γ−1(α)yα−1 exp{−y} on (0,∞) plus
an observation y0 = 0.5. Exact frequency inference gives the p-value function,
p(α), as described at (2.1). A quick and dirty approximation can be obtained
from first order Normal approximations using say the maximum likelihood de-
parture or the signed likelihood root (SLR) departure. And posterior survivor
probability functions s(α) can be obtained from say the Jeffreys (1946) prior
discussed in §2.2, and from the reference prior (Bernardo, 1979). Both involve
targeting the parameter of interest, but achieve the goal differently: the Jeffreys
uses the parameterization invariant prior π(ϕ) = | − `ϕϕ(ϕ;u)|1/2, while the ref-
erence prior aims at maximizing the Kullback-Leibler divergence between prior
and posterior. In this present scalar parameter example, these two priors are the
same and given by π(α) = {d2 log Γ(α)/dα2}1/2, leading to a common posterior
distribution, π(α|y) ∝ Γ−1(α)yα{d2 log Γ(α)/dα2}1/2.

Figure 1 compares the exact p-value function p(α) (solid line) to popular fre-
quentist evaluations (the maximum-likelihood departure represented by points,
and the signed log-likelihood root r depicted by a dash-dotted line). It also fea-
tures a posterior survivor function obtained with Jeffreys prior (dashed line).
The p-value function has been obtained exactly in R, while the posterior survivor
values were obtained by running 100,000 iterations of a random walk Metropolis
algorithm with a Gaussian proposal distribution and a proposal standard devia-
tion of σ = 1.5.

As expected from the Welch and Peers (1963) result, the Bayes approach with
Jeffreys prior features second-order reproducibility.

5. VECTOR PARAMETER: REPRODUCIBILITY WITH BAYES.

Consider a regular statistical model f(u;ψ, λ) as recorded at (3.1). We seek
a prior to extract information concerning a scalar interest parameter ψ and use
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Fig 1. Comparison of p-value functions, p(α), and survivor posterior functions, s(α), in terms
of α for the scalar parameter distribution Γ(α, 1). The exact p-value function is represented by
the solid line, the mle departure by points, and the SLR approximation by the dash-dotted line.
The dashed line represents the survivor posterior function obtained with Jeffreys prior.

theory from §3 to inform us as to where this information can be found in the
observed likelihood function. First we have from §3 that the full model can loosely
be expressed as

f(u;ϕ) = h(t|s;λ) g(s;ψ0)(5.1)

involving a nuisance parameter distribution h(t|s;λ) at (3.2) and an interest
component g(s;ψ) at (3.4); this focuses on testing ψ = ψ0; further details are
given in §3.3.

For the prior to acquire full information on ψ from the likelihood based on (5.1)
it needs in part to eliminate any contribution from the first factor in (5.1). As seen
from (3.2) the first factor has a constant |(λλ)(ϕ̂ψ)|−1/2 involving ψ which can

be removed by a prior that includes the corresponding reciprocal |(λλ)(ϕ̂ψ)|1/2.
The first factor also has an exponential, that is equal to 1 if the prior is restricted
to the profile contour C0

ψ = {ϕ̂0
ψ}, the trajectory of the constrained maximum
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likelihood value under various ψ. Then combining these components concerning
λ gives just |(λλ)(ϕ̂ψ)|1/2, but fully restricted of course to the profile contour
C0
ψ = {ϕ̂0

ψ} for the parameter of interest ψ and clearly avoiding likelihood points
that involve the nuisance λ. Alternatively one could use a Jeffreys type prior
to eliminate the nuisance parameter and be more conventionally Bayesian but
this is unnecessary when the nuisance parameter is already eliminated by the
restriction to the profile; and this occurs with no loss of information to third
order. We choose not to pursue this alternative here.

For the second factor in (5.1), as displayed at (3.4) concerning ψ, a Welch-Peers
prior contribution can address the profile information factor {̂P(ψψ)(ϕ̂ψ)}−1/2 as

well as the marginalization factor |(λλ)(ϕ̂ψ)|1/2. In the absence of the marginal-
ization factor the model is exponential and thus subject to Welch-Peers; this re-
quires the prior contribution {P(ψψ)(ϕ̂ψ)}1/2. But there is also the marginalization
factor, and from the Appendix §8.1 we have that the Welch-Peers contribution
remains second-order reproducible in the presence of such factor.

Combining these components gives the new prior (5.2), which is the Jeffreys
prior |ϕϕ(ϕ)|1/2 but now just on the profile contour for ψ. This comes with an
adjustment factor soon seen to involve a measure of interest parameter curva-
ture, and of course with a Jacobian k(ψ) that arises with parameter rotation, as
described in §6.3 and Appendix §8.2:

πN (ψ) dϕdir = {P(ψψ)(ϕ̂ψ)}1/2|(λλ)(ϕ̂ψ)|1/2 k(ψ) dψ(5.2)

= |ϕϕ(ϕ̂ψ)|1/2
{
|(λλ)(ϕ̂ψ)|
|[λλ](ϕ̂ψ)|

}1/2

k(ψ) dψ.(5.3)

Here |[λλ](ϕ̂ψ)| = |ϕϕ(ϕ̂ψ)|/P(ψψ)(ϕ̂ψ) is the nuisance information determinant
given the linear parameter χ tangent to ψ at the profile point ϕ̂ψ; this can be
obtained by expressing negative log-likelihood in terms of the standardized pa-
rameters (χ̃, λ̃) and differentiating twice with respect to λ̃ for fixed χ̃; see §6.3.

This prior is targeted on ψ and is defined on the one-dimensional profile con-
tour C0

ψ using directed increments in the standardized version of ϕ; see §6.3. In
nonlinear cases it needs a Jacobian k(ψ) to accommodate the parameter change
of variable from the directed ϕ to the interest parameter ψ itself. The curvature
adjustment {|(λλ)(ϕ̂ψ)|/|[λλ](ϕ̂ψ)|}1/2 is evaluated for the observed data and
depends on ψ along the profile contour for ψ.

This is a remarkable simplification, essentially back to Jeffreys but used with
an indicator function to restrict to the relevant profile contour; in other words, use
the historic prior but precisely just where the relevant information is fully located,
on the appropriate profile contour. Of course there are minor technical details
concerning change of variable and rotation of parameter that need attention,
but change of variable is reasonably to be expected in any marginalization, see
§8.2. These details do not arise for the linear interest parameter case, first to be
examined.

6. MODIFIED JEFFREYS GIVES REPRODUCIBILITY

6.1 Linear parameter.

Now suppose that ψ(ϕ) = a′ϕ = Σaiϕi is linear in the canonical parameteri-
zation ϕ. All the sample space contours for assessing ψ are then parallel to the
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vector a and thus the line L0 is given as u0 + L(a) which is fixed in direction,
that is, does not change under ψ0 change.

6.2 Linear parameter example.

Let us consider a gamma model with shape α and rate β, both canonical and
both unknown, and take α as the parameter of interest and β as a free nuisance
parameter. The density model is

f(y;α, β) =
βα

Γ(α)
yα−1 exp{−βy} ,

with observed values say y0 = (1, 4); thus n = 2, the minimum number for
identifying two parameters. The Fisher information function is(

nD′′(α) −n/β
−n/β nα/β2

)
,

where

D
′′
(x) =

d2 log Γ(x)

d2x
.(6.1)

is the trigamma function, the second derivative of log Γ(x).
For the p-value function p(α) we use the signed log-likelihood root approach for

a simple approximation and the third-order as a very accurate approximation.
These are then compared to posterior survivor functions, s(α), obtained using
three prior distributions: the regular Jeffreys, the reference, and the new Jeffreys-
style prior.

The regular Jeffreys prior treats both parameters as of equal interest; it is
obtained as the root Fisher information determinant πJ(α, β) ∝ {αD′′(α) −
1}1/2/β. The reference prior targets the interest parameter α and is expressed as
πR(α, β) ∝ {D′′(α)− 1/α}1/2/β; see Yang and Berger (1996), for instance.

The new Jeffreys prior targets the interest parameter α by computing the usual
Jeffreys prior but using it fully restricted to the profile contour for α. For a given
α, the constrained maximum likelihood estimate for β is β̃α = nα/

∑n
i=1 yi; this

leads to the prior

πN (α) = πJ(α, β̃α) ∝ {αD′′(α)− 1}1/2/α ,

but on the profile only; the Jacobian k(α) is of course constant. The posterior dis-
tribution is obtained by combining the latter prior with the profile log-likelihood
function

`P(α|y) = α
n∑
i=1

log(yi)− nα− n log Γ(α) + nα logα− nα log(n/
n∑
i=1

yi) ;

it is given as
πN (α|y) ∝ exp{`P(α|y)}πN (α) ,

but examined strictly on the profile curve for the parameter of interest.
Figure 2 examines the third-order p-value function p(α) (solid line) taken as the

exact and the Normal approximation for the signed log-likelihood root r (dash-
dotted line). The graph also features a comparison with posterior survivor values
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Fig 2. Comparison of p-value functions, p(α), and survivor posterior functions, s(α), for the
interest α using a Γ(α, β) model. The third-order p-value function is represented by the solid
line and the SLR approximation by the dash-dotted line. Survivor posterior values obtained with
Jeffreys, reference and new prior are represented, in order, by dashes, dots, and discs. The
maximum likelihood value for α is also depicted.

obtained with Jeffreys prior (dashed line), the reference prior (dotted line), and
the new Jeffreys (discs). Approximations of the p-value function have been ob-
tained in R, while the posterior survivor values were obtained by running 100,000
iterations of a random walk Metropolis algorithm with a Gaussian proposal dis-
tribution (also in R). In the current example, the new Jeffreys offers second-order
reproducibility, which is not available from the regular Jeffreys. Results from
the new Jeffreys prior are as convincing as those based on the present Bayesian
benchmark which is the reference prior.

6.3 Rotating parameter

The line L0 in some examples can change direction with different ψ0 values
under test. As just noted this does not happen in the special case with ψ(ϕ)
linear in ϕ, where the sample space contours for various fixed ψ(ϕ) values are all
parallel and thus the corresponding lines L0 all have the same direction. More
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generally however L0 can rotate through an angle of order O(n−1/2) and thus
the model scaling on the line can also change O(n−1/2); this arises when ̂ϕϕ is
not an identity matrix or a constant times such. We refer to such parameters as
rotating, and this even happens with µ in a Normal(µ;σ2) analysis. We examine
this in this section, and then examine curved parameters in the next section §6.5.

Towards determing effects from a lack of rotational symmetry, let B be a
p× p right square root of the observed information ̂0ϕϕ = B′B and define a new
canonical parameter as ϕ̄ = Bϕ. Then in the new parameterization the observed
information ̂0ϕ̄ϕ̄ = I is the identity, and the related information scaling of the
distribution under different ψ0 remains constant. We then also have that the
cubic term of order O(n−1/2) is constant when examined just to the second order.
Thus the model to that order is fully unaffected by the rotation coming from the
direction change of L0; and thus we have a single underlying reference model for
the data, to the given order O(n−1). It follows that any Bayes procedure with
second order accuracy must be free of the rotational characteristics of parameters.
For some similar considerations see Fraser (2003).

6.4 Rotating parameter example.

As a third example, we still consider the gamma model with shape α and rate
β, but this time with interest in the mean µ = α/β. The density in terms of the
parameter of interest µ and nuisance α is thus

f(y;α, µ) = Γ−1(α)

(
α

µ

)α
yα−1 exp{−αy/µ} .

We consider a sample of n = 5 observations, y0 = (0.20, 0.45, 0.78, 1.28, 2.28)
as used in Brazzale et al. (2007) at page 13. As in Example 2, the third-order
and signed log-likelihood root versions of the p-value functions are compared
to the Bayesian posterior survivor functions obtained with three different prior
distributions.

Jeffreys prior, which is invariant under bivariate parameter transformations,
can be obtained from πJ(α, β)dαdβ in Example 2 by change of variable:

πJ(α, µ) ∝ 1

µ
{αD′′(α)− 1}1/2 ,

where D′′(α) is as in (6.1).
Finally, the new prior is the full regular Jeffreys prior calculated in the ro-

tationally symmetric ordinates ϕ̄ but examined exclusively on the profile curve
C0
µ = {ϕ̂µ} and with a Jacobian k(µ) that gives the change-of-variable from ϕ̄ to

µ as recorded in §8.2:

πN (µ) =
1

µ
{α̂µD′′(α̂µ)− 1}1/2 k(µ) .

As explained in Section 5, the new posterior distribution is then obtained by com-
bining this prior with the profile likelihood function, LP(µ) and integrating on the
one dimensional profile contour for the parameter µ of interest. For comparison
the reference prior targeting µ is given (Ghosh, 2011) as

πR(α, µ) ∝ 1

µ
{D′′(α)− 1/α}1/2 .
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Fig 3. Comparison of p-value functions, p(µ), and survivor posterior functions, s(µ), in terms of
µ for a Γ(α, µ) with interest in the parameter µ. The third-order p-value function is represented
by the solid line and the SLR approximation by the dash-dotted line. Survivor posterior values
obtained with Jeffreys, reference and new Jeffreys priors are represented, in order, by dashes,
dots, and discs. The maximum likelihood value for µ is also depicted.

Figure 3 compares the third-order p-value function p(µ) (solid line) to the
signed log-likelihood root r (dash-dotted line). The graph also features a com-
parison with posterior survivor values obtained with the regular Jeffreys prior
(dashed line), the reference prior (dotted line), and the new Jeffreys (discs). Ap-
proximations of the p-value function have been obtained in R, while the poste-
rior survivor values were obtained by running 100,000 iterations of random walk
Metropolis algorithms with a Gaussian proposal distribution (also in R). Once
again, the new Jeffreys offers results that compete with the reference prior and
that are much more accurate than those obtained with the regular Jeffreys and
of course the SLR.

6.5 Curved parameter example

As a very simple example with curvature, we now consider two independent
variables N (χ, 1) and N (λ, 1) with observed data say (0, 0) and curved interest
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parameter ψ = χ+ 1
2aλ

2 with fixed curvature a. The log-likelihood function from
the pair of observations (y1, y2) is

`(χ, λ) = −1

2
χ2 − 1

2
λ2 + χy1 + λy2 ;

the corresponding maximum likelihood estimate is θ̂ = (χ̂, λ̂) = (y1, y2).
It is possible to reparameterize from (χ, λ) to (ψ − 1

2aλ
2, λ) and obtain the
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Fig 4. Comparison of p-value functions, p(ψ), and posterior survivor functions, s(ψ), in terms
of ψ for a bivariate Normal model with interest in the parameter ψ. The third-order p-value
function is represented by the solid line and the SLR approximation by the dash-dotted line.
Posterior survivor values obtained with Jeffreys and new priors are respectively represented by
dashes and circles. The maximum likelihood value for ψ is also depicted.

log-likelihood function in terms of ψ and λ:

`(ψ, λ) = −1

2
(ψ − 1

2
aλ2)2 − 1

2
λ2 + (ψ − 1

2
aλ2)y1 + λy2 ,

with information matrix

j(ψ, λ) =

(
1 −aλ
−aλ ay1 − aψ + 3

2a
2λ2 + 1

)
.(6.2)
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The particularity of this model lies in the curvature of the parameter ψ, and
yet the profile log-likelihood for ψ, given the observations y0 = (0, 0), is just
`P(ψ) = −1

2ψ
2.

The above can be used to determine the SLR and third-order p-value functions.
In the current case, these functions respectively are Φ(−ψ) and Φ(−ψ−a/2). Also
from the information matrix, it is not difficult to verify that the posterior survivor
function under Jeffreys prior is Φ(−ψ − a/2), as ψ = χ when the constrained
maximum likelihood for χ is 0. The new prior (5.3) simply consists of the usual
Jeffreys on the profile contour together with the nuisance information adjustment
factor but with k(ψ) = 1 thus vanishing; also the root information adjustment
factor simplifies to exp{−trAψ/2} which is just exp{−aψ/2} on the profile line;
see §8.3. The resulting posterior density for ψ is then

π(ψ|y0) ∝ Lp(ψ)|jλλ(ψ, 0)|1/2 1

= c exp{−1

2
(ψ2 + aψ)},

which gives a posterior survivor value that is identical to that of the third-order
p-value, Φ(−ψ − a/2).

Figure 4, which is similar to the figures presented in the preceding examples,
features a comparison for a curvature parameter a = 0.5. From the previous
developments, the third-order p-value and posterior survivor function obtained
with the new Jeffreys prior can be seen to exactly match.

7. CONCLUDING REMARKS

The genuine prior. In his classification of prior densities §1.3, Efron (2013)
emphasizes genuine priors, priors that describe the sourcing of the true value
of the parameter in the application and have a valid theoretical or empirical
basis. The term ‘genuine’ is to indicate that the prior is real, truly objective,
not just labeled ‘objective’ as has become common practise in recent Bayesian
literature for the mathematical priors of Bayes. Some earlier recognition of such
priors may be found in Fisher (1956), page 18, and in references therein. In this
genuine context for the prior we clearly have two models and we have the option
of combining them. There is no Bayes to this; entirely, it is a frequentist issue of
statistical modelling.

Recommendation: Record probabilistic information obtained from the ob-
jective prior; and separately record confidence information from the model with
data; and when appropriate record the confidence information from the combined
model. This would be in agreement with what is accepted scientific practice. And
has no Bayes content other than the routine use of the frequentist conditional
probability lemma.

The Laplace prior. Efron (2013) also discusses the mathematical priors pro-
posed by Bayes, and then promoted by Laplace (1812) in a context of uninforma-
tive priors. Here the prior has no objective frequency background but is viewed as
a device to nominally enable the conditional probability lemma. Efron remarks
that during his editorship of an applied statistics journal almost a quarter of
the manuscripts processed invoked Bayes conditioning and almost all of these
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then used the uninformative Laplace type prior, not the genuine priors just men-
tioned. As we have noted the conditional probability formula does not apply to
this mathematical prior context. However frequency properties may be present
and these could support confidence.

Recommendation: Any use of the Laplace type prior should be viewed as ex-
ploratory and to be assessed by simulations to determine whether the confidence
property holds (Fraser, 2013).

The opinion prior. Opinions and subjective views are sometimes assembled
as a subjective or opinion prior; see for example , Savage (1953). There are perhaps
good arguments why these are inappropriate in scientific contexts; the user can
certainly try his luck at a casino, but not as part of the process of developing
new knowledge.

Recommendation: Avoid opinion priors, you could be held responsible.
Summary. Priors for a conditional probability calculation: Certainly the gen-

uine priors; but possibly the mathematical priors, provided their performance has
been verified by simulations, thus providing confidence.

8. APPENDIX

8.1 Scalar Jeffreys and an adjustment factor

Consider an exponential model g(s;χ) = (2π)−1/2 exp{`(χ; s)−`(χ̂; s)}̂−1/2
χχ to

second order, and suppose a model of interest has the form f(s;χ) = g(s;χ)A(s, χ)
where the adjustment factor A is constant to first order. For the exponential
model alone, the standard Jeffreys prior combined with likelihood from the expo-
nential model gives a survivor probability that is reproducible second-order for
that exponential model; as part of this it gives a location model say h(t − τ) as
demonstrated at (2.6). Then if that same prior is used with the composite model
f(s;χ) it gives of course the posterior h(t − τ) as just described together with
the factor A(s, χ); this factor in turn can be expanded as exp{a(t − τ)/n1/2} in
terms of the t and τ . The combination then is a function of (t − τ) and thus is
also a location model and Jeffreys works to second-order for the adjusted model
f(s;χ) = g(s;χ)A(s, χ).

8.2 Jacobian concerning parameter rotation.

Consider an exponential model with canonical parameter ϕ and a scalar inter-
est parameter ψ. If ψ is linear in ϕ as discussed briefly in §6.1 then the sample
space model is defined on a line L0, and this line from the observed data is fixed
in direction under variation in ψ0. More generally if ψ(ϕ) = ψ0 is not linear
then the line L0 can change direction under variation in ψ0. If we then substitute
and use a symmetric parameterization ϕ̄ = Bϕ as in §7.1 we find that the new
version of the model in the newly defined variable remains the same to second
order on the various lines L0 from the observed data point. Accordingly we now
consider and analyze in terms of the rotationally symmetric coordinates and have
the rewritten model second-order invariant under change in ψ0.

We then need the connection between the symmetrized coordinates ϕ̄ and
the ψ parameter as part of the iterative numerical calculation of the posterior
distribution. For this let ψ0 = ψ̂0 be the observed maximum likelihood value,
and let d be a suitable small increment for the iterative calculations using ψi+1 =
ψi+d. For each ψi let ϕ̄i be the constrained maximum likelihood value for ϕ̄ given
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ψ(ϕ) = ψi, and let δi = ϕ̄i+1 − ϕ̄i be the vector increment in the symmetrized
canonical parameter ϕ̄. We also need the unit gradient vector u(ϕ̄) of ψ with
respect to ϕ̄ at each point ϕ̄i: for this let gi = g(ϕ̄i) = dψ/dϕ̄ be the gradient
vector; then ui = gi/|gi| is the corresponding unit vector and is perpendicular to
ψ(ϕ) = ψi in the ϕ̄ coordinates at ϕ̄i. Let ki = δiui. Then ki gives the Jacobian
at ϕ̄i from the ϕ̄ coordinates to the ψ coordinates for the iterative calculations
on the profile curve Cψ.

8.3 Curvature and Information.

Consider a surface defined in explicit form as y = ψ0 − Σaijxixj/2n
1/2 above

a p − 1 dimensional space, and suppose that interest focuses on properties near
x = 0. The matrix A = {aij} records curvature properties of the surface at x = 0
and is called the curvature matrix of the surface at x = 0. The determinant of the
curvature matrix is called the Gaussian curvature; and the trace of the curvature
matrix is called the mean curvature which will be of particular interest to us. The
surface can also be presented in implicit form as ψ(x) = y+Σaijxixj/2n

1/2 = ψ0.
We are interested in curvature properties of a surface when it is presented in the
implicit form, properties that are relevant to the adjustment factors in (3.4) and
(5.2).

We use the symmetrized model say f(u;ϕ) that has fixed form relative to
the symmetrized coordinates, and let `(ϕ) be the corresponding observed log-
likelihood function with ψ(ϕ) as the scalar parameter of interest. For a particular
value of the parameter, say ψ, we seek an expression for the adjustment factors in
(3.4) and (5.2), and relate them to the curvature matrix of the surface ψ(ϕ) = ψ
at the constrained maximum likelihood value ϕ = ϕ̂ψ. At ϕ̂ = ϕ(ψ̂0) we let χ
be a canonical parameter coordinate that is tangent to ψ(ϕ) = ψ at the point
ϕ̂ψ and let λ be a complementing parameter now taken to be orthogonal to χ at
ϕ̂0; accordingly we take ϕ = (ψ, λ) to be the symmetrized canonical parameter,
and for convenience assume that these coordinates have been centred at the
observed data as well as the symmetrized scaling. The interest parameter ψ can
be expanded in terms of ϕ as

ψ = χ+ Σaijλiλj/2n
1/2(8.1)

with χ = ψ − Σaijλiλj/2n
1/2, to the second order. The log-likelihood in terms

of ϕ will be −χ2/2 − Σλ2
i /2 to first order. The above change to ψ will replace

the preceding by −ψ2/2− Σλ2
i /2 plus the term ψΣaijλiλj/2n

1/2. An element of
the nuisance information matrix given χ when changed into an element of the
nuisance information given ψ will then acquire an extra term ψaij/n

1/2 and then
the ratio |(λλ)(ϕ̂ψ0)|/|(λλ)(ϕ̂)| will have the form (I − ψA/n1/2) and then the

root determinant ratio becomes 1 − trAψ/2n1/2 to first order where the n1/2 is
just a formality to keep track of data-size effects.
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