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Is Bayes Posterior just Quick
and Dirty Confidence?
D. A. S. Fraser

Abstract. Bayes [Philos. Trans. R. Soc. Lond. 53 (1763) 370–418; 54 296–
325] introduced the observed likelihood function to statistical inference and
provided a weight function to calibrate the parameter; he also introduced
a confidence distribution on the parameter space but did not provide present
justifications. Of course the names likelihood and confidence did not appear
until much later: Fisher [Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng.
Sci. 222 (1922) 309–368] for likelihood and Neyman [Philos. Trans. R. Soc.
Lond. Ser. A Math. Phys. Eng. Sci. 237 (1937) 333–380] for confidence. Lind-
ley [J. Roy. Statist. Soc. Ser. B 20 (1958) 102–107] showed that the Bayes
and the confidence results were different when the model was not location.
This paper examines the occurrence of true statements from the Bayes ap-
proach and from the confidence approach, and shows that the proportion of
true statements in the Bayes case depends critically on the presence of linear-
ity in the model; and with departure from this linearity the Bayes approach
can be a poor approximation and be seriously misleading. Bayesian integra-
tion of weighted likelihood thus provides a first-order linear approximation
to confidence, but without linearity can give substantially incorrect results.

Key words and phrases: Bayes, Bayes error rate, confidence, default prior,
evaluating a prior, nonlinear parameter, posterior, prior.

1. INTRODUCTION

Statistical inference based on the observed likeli-
hood function was initiated by Bayes (1763). This was,
however, without the naming of the likelihood function
or the apparent recognition that likelihood L0(θ) =
f (y0; θ) directly records the amount of probability at
an observed data point y0; such appeared much later
(Fisher, 1922).

Bayes’ proposal applies directly to a model with
translation invariance that in current notation would
be written f (y − θ); it recommended that a weight
function or mathematical prior π(θ) be applied to the
likelihood L(θ), and that the product π(θ)L(θ) be
treated as if it were a joint density for (θ, y). Then
with observed data y0 and the use of the conditional
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probability lemma, a posterior distribution π(θ |y) =
cπ(θ)L0(θ) was obtained; this was viewed as a de-
scription of possible values for θ in the presence of
data y = y0. For the location model as examined by the
Bayes approach, translation invariance suggests a con-
stant or flat prior π(θ) = c which leads to the poste-
rior distribution π(θ |y0) = f (y0 −θ) and, in the scalar
case, gives the posterior survival probability s(θ) =∫ ∞
θ f (y0 − α)dα, recording alleged probability to the

right of a value θ .
The probability interpretation that would seemingly

attach to this conditional calculation is as follows: if
the θ values that might have been present in the ap-
plication can be viewed as coming from the frequency
pattern π(θ) with each θ value in turn giving rise to
a y value in accord with the model and if the result-
ing y values that are close to y0 are examined, then the
associated θ values have the pattern π(θ |y0).

The complication is that π(θ) as proposed is a math-
ematical construct and, correspondingly, π(θ |y0) is
just a mathematical construct. The argument using the
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conditional probability lemma does not produce prob-
abilities from no probabilities: the probability lemma
when invoked for an application has two distributions
as input and one distribution as output; and it asserts
the descriptive validity of the output on the basis of
the descriptive validity of the two inputs; if one of the
inputs is absent and an artifact is substituted, then the
lemma says nothing, and produces no probabilities. Of
course, other lemmas and other theory may offer some-
thing appropriate.

We will see, however, that something different is
readily available and indeed available without the spe-
cial translation invariance. We will also see that the
procedure of augmenting likelihood L0(θ) with a mod-
ulating factor that expresses model structure is a pow-
erful first step in exploring information contained in
Fisher’s likelihood function.

An alternative to the Bayes proposal was introduced
by Fisher (1930) as a confidence distribution. For the
scalar-parameter case we can record the percentage po-
sition of the data point y0 in the distribution having pa-
rameter value θ ,

p(θ) = p(θ;y0) =
∫ y0

−∞
f (y − θ) dy.

This records the proportion of the θ population that
is less than the value y0. For a general data point y

we have of course that p(θ;y) is uniformly dis-
tributed on (0,1), and, correspondingly, p(θ) from
the data y0 gives the upper-tail distribution function
or survivor function for confidence, as introduced by
Fisher (1935). A basic way of presenting confidence
is in terms of quantiles. If we set p(θ) = 0.95 and
solve for θ , we obtain θ = θ̂0.95 which is the value
with right tail confidence 95% and left tail confidence
5%; this would typically be called the 95% lower confi-
dence bound, and (θ̂0.95,∞) would be the correspond-
ing 95% confidence interval.

For two-sided confidence the situation has some sub-
tleties that are often overlooked. With the large data
sets that have come from the colliders of High Energy
Physics, a Poisson count can have a mean at a back-
ground count level or at a larger value if some proposed
particle is actually present. A common practice in the
High Energy Physics literature (Mandelkern, 2002) has
been to form two-sided confidence intervals and to al-
low the confidence contributions in the two tails to be
different, thereby accommodating some optimality cri-
terion; see also some discussion in Section 4. In prac-
tice, this meant that the confidence lower bound shied

away from the critical parameter lower bound describ-
ing just the background radiation. This mismanaged
the detection of a new particle. Accordingly, our view
is that two-sided intervals should typically have equal
or certainly designated amounts of confidence in the
two tails. With this in mind, we now restrict the dis-
cussion to the analysis of the confidence bounds as
described in the preceding paragraph and view confi-
dence intervals as being properly built on individual
confidence bounds with designated confidence values.

As a simple example consider the Normal(μ,σ 2
0 ),

and let φ(z) and �(z) be the standard normal density
and distribution functions. The p-value from data y0 is

p(μ) =
∫ y0

−∞
φ

(
y − μ

σ0

)
dy = �

(
y0 − μ

σ0

)
,

which has normal distribution function shape dropping
from 1 at −∞ to 0 at +∞; it records the probabil-
ity position of the data with respect to a possible pa-
rameter value μ; see Figure 1(a). From the confidence
viewpoint, p(μ) is recording the right tail confidence
distribution function, and the confidence distribution is
Normal(y0, σ 2

0 ).
The Bayes posterior distribution for μ using the

invariant prior has density cφ{(y0 − μ)/σ0}; this is
Normal(y0, σ0). The resulting posterior survivor func-
tion value is

s(μ) =
∫ ∞
μ

φ

(
y0 − α

σ0

)
dα = �

(
y0 − μ

σ0

)

and its values are indicated in Figure 1(b); the func-
tion provides a probability-type evaluation of the right
tail interval (μ,∞) for the parameter. For this we have

(a)

(b)

FIG. 1. Normal(μ,1) model: The density of y given μ in (a); the
posterior density of μ given y0 in (b). The p-value p(μ) from (a)
is equal to the survivor value s(μ) in (b).
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used the letter s to suggest the “survivor” aspect of the
Bayes analogue of the present one-sided frequentist p-
value.

For a second example consider the model y = θ + z,
where z has the standard extreme value distribution
with density g(z) = e−z exp{−e−z} and distribution
function G(z) = exp(−e−z). The p-value from data y0

is

p(θ) =
∫ y0

−∞
g(y − θ) dy = G(y0 − θ)

= exp
{−e−(y0−θ)},

which records the probability position of the data in
the θ distribution; it can be viewed as a right tail dis-
tribution function for confidence. The posterior distri-
bution for θ using the Bayes invariant prior has den-
sity g(y0 − θ) and can be described as a reversed ex-
treme value distribution centered at y0. The posterior
survivor function is

s(θ) =
∫ ∞
θ

g(y0 − α)dα = exp
{−e−(y0−θ)},

and again agrees with the p-value p(θ); see Figure 2.
Of course, in general for a location model f (y − θ)

as examined by Bayes, we have

p(θ) =
∫ y0

−∞
f (y − θ) dy =

∫ y0−θ

−∞
f (z) dz

=
∫ ∞
θ

f (y0 − α)dα = s(θ),

and, thus, the Bayes posterior distribution is equal
to the confidence distribution. Or, more directly, the
Bayes posterior distribution is just standard confidence.

Lindley (1958) presented this result and under suit-
able change of variable and parameter showed more:
that the p-value and s-value are equal if and only if the
model f (y; θ) is a location model f (y − θ). In his per-
spective then, this argued that the confidence approach
was flawed, confidence as obtained by inverting the p-
value function as a pivot. From a different perspective,
however, it argues equally that the Bayes approach is
flawed, and does not have the support of the confidence
interpretation unless the model is location.

Lindley objected also to the term probability being
attached to the original Fisher word for confidence,
viewing probability as appropriate only in reference
to the conditional type calculations used by Bayes. By
contrast, repetition properties for confidence had been
clarified by Neyman (1937). As a consequence, in the
discipline of statistics the terms probability and distri-
bution were then typically not used in the confidence

(a)

(b)

FIG. 2. The extreme value EV(θ,1) model: the density of y given
θ in (a); the posterior density of θ given y0 in (b). The p-value p(θ)

from (a) is equal to the survivor value s(θ) in (b).

context, but were in the Bayes context. The repetition
properties, however, do not extend to the Bayes calcu-
lation except for simple location cases, as we will see;
but they do extend for the confidence inversion. We
take this as strong argument that the term probability
is less appropriate in the Bayesian weighted likelihood
context than in the frequentist inversion context.

The location model, however, is extremely special
in that the parameter has a fundamental linearity and
this linearity is expressed in the use of the flat prior
with respect to the location parameter. Many exten-
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sions of the Bayes mathematical prior have been pro-
posed trying to achieve the favorable behavior of the
original Bayes, for example, Jeffreys (1983, 1946) and
Bernardo (1979). We refer to such priors as default pri-
ors, priors to elicit information from an observed likeli-
hood function. And we will show that if the parameter
departs from a basic linearity, then the Bayes poste-
rior can be seriously misleading. Specifically, we will
show that with moderate departures from linearity the
Bayes calculation can give an acceptable approxima-
tion to confidence, but that with more extreme depar-
ture from linearity or with large parameter dimension
it can give unacceptable approximations.

John Tukey actively promoted a wealth of simple sta-
tistical methods as a means to explore data; he referred
to them as quick and dirty methods. They were cer-
tainly quick using medians and ranges and other easily
accessible characteristics of data. And they were dirty
in the sense of ignoring characteristics that in the then
currently correct view were considered important. We
argue that Bayes posterior calculations can appropri-
ately be called quick and dirty, quick and dirty confi-
dence.

There are also extensions of the Bayes approach al-
lowing the prior to reflect the viewpoint or judgment
or prejudice of an investigator; or to reflect the elicited
considerations of those familiar with the context be-
ing investigated. Arguments have been given that such
a viewpoint or consideration can be expressed as prob-
ability; but the examples that we present suggest other-
wise.

There are of course contexts where the true value of
the parameter has come from a source with a known
distribution; in such cases the prior is real, it is objec-
tive, and could reasonably be considered to be a part
of an enlarged model. Then whether to include the
prior becomes a modeling issue. Also, in particular
contexts, there may be legal, ethical or moral issues as
to whether such outside information can be included. If
included, the enlarged model is a probability model and
accordingly is not statistical: as such, it has no statisti-
cal parameters in the technical sense and thus predates
Bayes and can be viewed as being probability itself not
Bayesian. Why this would commonly be included in
the Bayesian domain is not clear; it is not indicated in
the original Bayes, although it was an area neglected
by the frequentist approach. Such a prior describing
a known source is clearly objective and can properly be
called an objective prior; this conflicts, however, with
some recent Bayesian usage where the term objective

is misapplied and refers to the mathematical priors that
we are calling default priors.

In Section 2 we consider the scalar variable scalar
parameter case and determine the default prior that
gives posteriors with reliable quantiles; some details
for the vector parameter case are also discussed. In
Section 3 we argue that the only satisfactory way to as-
sess distributions for unobserved quantities is by means
of the quantiles of such distributions; this provides the
basis then for comparing the Bayesian and frequentist
approaches.

In Sections 4–6 we explore a succession of exam-
ples that examine how curvature in the model or in the
parameter of interest can destroy any confidence reli-
ability in the default Bayes approach, and thus in the
Bayesian use of just likelihood to present a distribution
purporting to describe an unknown parameter value.

In Sections 7 and 8 we discuss the merits of the con-
ditional probability formula when used with a mathe-
matical prior and also the merits of the optimality ap-
proach; then Section 9 records a brief discussion and
Section 10 a summary.

2. BUT IF THE MODEL IS NONLINEAR

With a location model the confidence approach gives
p(θ) and the default Bayes approach gives s(θ), and
these are equal. Now consider things more generally
and initially examine just a statistical model f (y; θ)

where both y and θ are scalar or real valued as op-
posed to vector valued, but without the assumed linear
relationship just discussed.

Confidence is obtained from the observed distribu-
tion function F 0(θ) and a posterior is obtained from
the observed density function f 0(θ). For convenience
we assume minimum continuity and that F(y; θ) is
stochastically increasing and attains both 0 and 1 under
variation in y or θ . The confidence p-value is directly
the observed distribution function,

p(θ) = F 0(θ) = F(y0; θ),

which can be rewritten mechanically as

p(θ) =
∫ ∞
θ

−F;θ (y0;α)dα;
the subscript denotes partial differentiation with re-
spect to the corresponding argument. The default
Bayes s-value is obtained from likelihood, which is
the observed density function f (y0; θ) = Fy(y

0; θ):

s(θ) =
∫ ∞
θ

π(α)Fy(y
0;α)dα.



IS BAYES JUST CONFIDENCE?

STS stspdf v.2011/04/19 Prn:2011/04/27; 10:53 F:sts352.tex; (Svajune) p. 5

5

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

If p(θ) and s(θ) are in agreement, then the direct
comparison of the integrals implies that

π(θ) = −F;θ (y0; θ)

Fy(y0; θ)
.

This presents π(θ) as a possibly data-dependent prior.
Of course, data dependent priors have a long but rather
infrequent presence, for example, Box and Cox (1964),
Wasserman (2000) and Fraser et al. (2010b). The pre-
ceding expression for the prior can be rewritten as

π(θ) = dy

dθ

∣∣∣∣
y0

by directly differentiating the quantile function y =
y(u, θ) corresponding to u = F(y; θ), or by tak-
ing the total differential of F(y; θ); Lindley’s (1958)
result follows by noting that the differential equa-
tion dy/dθ = a(θ)/b(y) integrates to give a location
model.

Now suppose we go beyond the simple case of the
scalar model and allow that y is a vector of length n and
θ is a vector of length p. In many applications n > p;
but here we assume that dim y has been reduced to p

by conditioning (see, e.g., Fraser, Fraser and Staicu,
2010c), and that a smooth pivot z(y, θ) with density
g(z) describes how the parameter affects the distribu-
tion of the variable. The density for y is available by
inverting from pivot to sample space:

g(z)dz = f (y; θ) dy = g{z(y; θ)}|zy(y; θ)|dy,

where the subscript again denotes partial differentia-
tion.

For confidence a differential element is obtained by
inverting from pivot to parameter space:

g(z)dz = g{z(y0; θ)}|z;θ (y0; θ)|dθ.

And for posterior probability the differential element is
obtained as weighted likelihood

g(z)dz = g{z(y0; θ)}|zy(y
0; θ)|π(θ) dθ.

The confidence and posterior differential elements are
equal if

π(θ) = |z;θ (y0; θ)|
|zy(y0; θ)| ;

we call this the default prior for the model f (y; θ) with
data y0. As dy/dθ = z−1

y (y0; θ)z;θ (y0; θ) for fixed z,
we will have confidence equal to posterior if π(θ) =
|dy/dθ |y0 , a simple extension of the scalar case. The

matrix dy/dθ |y0 can be called the sensitivity of the pa-
rameter at the data point y0 and the determinant pro-
vides a natural weighting or scaling function π(θ) for
the parameter; this sensitivity is just presenting how pa-
rameter change affects the model and is recording this
just at the relevant point, the observed data.

3. HOW TO EVALUATE A POSTERIOR
DISTRIBUTION

(i) Distribution function or quantile function. In the
scalar parameter case, both p(θ) and s(θ) have the
form of a right tail distribution function or survivor
function. In the Bayesian framework, the function s(θ)

is viewed as a distribution of posterior probability. In
the frequentist framework, the function p(θ) can be
viewed as a distribution of confidence, as introduced
by Fisher (1930) but originally called fiducial; it has
widely been a familiar theme that it is inappropriate to
treat such a function as a distribution describing possi-
ble values for the true parameter.

For a scalar parameter model with data, the Bayes
and the confidence approaches with data each lead to
a probability-type evaluation on the parameter space;
and these can be different as Lindley (1958) demon-
strated and as we have quantified in the preceding sec-
tion. Surely then, they both cannot be correct. So, how
to evaluate such posterior distributions for the parame-
ter?

A probability description is a rather complex thing
even for a scalar parameter: ascribing a probability-
type assessment to one-sided intervals, two-sided in-
tervals, and more general sets. What seems more tangi-
ble but, indeed, is equivalent is to focus on the reverse,
the quantiles: choose an amount β of probability and
then determine the corresponding quantile θ̂β , a value
with the alleged probability 1 − β to the left and with
β to the right. We then have that a particular interval
(θ̂β ,∞) from the data has the alleged amount β . Here
we focus on such quantiles θ̂β on the scale for θ . In
particular, we might examine the 95% quantile θ̂0.95,
the median quantile θ̂0.50, the 5% quantile θ̂0.05, and
others, all as part of examining an alleged distribution
for θ obtained from the data.

For the Normal(μ,σ 2
0 ) example with data y0, the

confidence approach gives the β-level quantile

μ̂β = y0 − zβσ0,

where �(zβ) = β as based on the standard normal dis-
tribution function �. In particular, the 95%,50% and
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5% quantiles are

μ̂0.95 = y0 − 1.64σ0, μ̂0.50 = y0,

μ̂0.05 = y0 + 1.64σ0;
and the corresponding confidence intervals are

(y0 − 1.64σ0,∞), (y0,∞), (y0 + 1.64σ0,∞),

with the lower confidence bound in each case recording
the corresponding quantile.

Now more generally suppose we have a model
f (y; θ) and data y0, and that we want to evaluate a
proposed procedure, Bayes, frequentist or other, that
gives a probability-type evaluation of where the true
parameter θ might be. As just discussed, we can fo-
cus on some level, say, β , and then examine the cor-
responding quantile θ̂β or the related interval (θ̂β,∞).
In any particular instance, either the true θ is in the in-
terval (θ̂β,∞), or it is not. And yet the procedure has
put forward a numerical level β for the presence of θ

in (θ̂β ,∞). What does the asserted level β mean?
(ii) Evaluating a proposed quantile. The definitive

evaluation procedure is in the literature: use a Neyman
(1937) diagram. The model f (y; θ) sits on the space
S × 	 which here is the real line for S cross the real
line for 	; this is just the plane R2. For any particular
y the procedure gives a parameter interval (θ̂β(y),∞);
if we then assemble the resulting intervals, we obtain
a region

Aβ = ⋃{y} × (θ̂(y),∞) = {(y, θ) : θ in (θ̂(y),∞)}
on the plane. For the confidence procedure in the sim-
ple Normal(θ,1) case, Figure 3 illustrates the 97.5%

FIG. 3. The 97.5% allegation for the Normal confidence proce-
dure, on the (y, θ)-space.

quantile θ̂0.975 for that confidence procedure; the re-
gion Aβ = A0.975 is to the upper left of the angled line
and it represents the β = 97.5% allegation concerning
the true θ , as proceeding from the confidence proce-
dure.

Now, more generally for a scalar parameter, we sug-
gest that the sets Aβ present precisely the essence of
a posterior procedure: how the procedure presents in-
formation concerning the unknown θ value. We can
certainly examine these for various values of β and
thus investigate the merits of any claim implicit in the
alleged levels β .

The level β is attached to the claim that θ is in
(θ̂β(y),∞), or, equivalently, that (y, θ ) is in the set
Aβ . In any particular instance, there is of course a true
value θ , and either it is in {θ̂β(y),∞} or it is not in
{θ̂β(y),∞}. And the true θ did precede the generation
of the observed y in full accord with the probabilities
given by the model. Accordingly, a value θ for the pa-
rameter in the model implies an actual Proportion of
true assertions consequent to that θ value:

Propn(Aβ; θ) = Pr{Aβ includes (y, θ); θ}.
This allows us to check what relationship the actual
Proportion bears to the value β asserted by the proce-
dure: is it really β or is it something else?

Of course, there may be contexts where in addition
we have that the θ value has been generated by some
random source described by an available prior density
π(θ), and we would be interested in the associated Pro-
portion,

Propn(Aβ;π) =
∫

Propn(Aβ; θ)π(θ) dθ,

presenting the average relative to the source density
π(θ).

(iii) Comparing proposed quantiles. For the Bayes
procedure with the special original linear model f (y −
θ) we have by the usual calculations that

Propn(Aβ; θ) ≡ β

for all θ and β: the alleged level β agrees with the
actual Proportion of true assertions that are made.
And, more generally, if the θ value has been gener-
ated by a source π(θ), then it follows that the alleged
level β does agree with the actual Proportion: thus,
Propn(Aβ;π) ≡ β .

For the standard confidence procedure in the con-
text of an arbitrary continuous scalar model f (y; θ),
we have by the standard calculations that

Propn(Aβ; θ) ≡ Pr{(y, θ) in Aβ; θ}
≡ Pr{F(y; θ) ≤ β; θ} ≡ β
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for all θ and β . Of course, in the special Bayes lo-
cation model f (y − θ) the Bayes original procedure
does coincide with the confidence procedure: the orig-
inal Bayes was confidence in disguise.

Now for some proposed procedure having a re-
gion Aβ with alleged level β , there is of course the
possibility that the actual Proportion is less than β for
some θ and is greater than β for some other θ and yet
when averaged with a particular prior π(θ) gives a re-
vised Propn(Aβ;π) that does have the value β; the im-
portance or otherwise of this we will discuss later.

But we now ask, what is the actual Proportion for
a Bayes procedure in nonlocation models? Toward this,
we next examine a succession of examples where the
linearity is absent to varying degrees, where the param-
eter to variable relationship is nonlinear!

4. NONLINEARITY AND BOUNDED PARAMETER:
THE ERRORS ARE O(1)

We first examine an extreme form of nonlinearity,
where the range of the parameter is bounded. This is
a familiar problem in the current High Energy Physics
of particle accelerators and the related search and de-
tection of possible new particles: a particle count has
a Poisson(θ) distribution but θ is bounded below by θ0,
which represents the contribution from background ra-
diation. For some discussion see Mandelkern (2002),
Fraser and Reid (2003) and Fraser, Reid and Wong
(2004).

The critical issues are more easily examined in
a continuous context. For this, suppose that y is
Normal(θ, σ 2

0 ) and that it is known that θ ≥ θ0 with
an interest in detecting whether θ is actually larger
than θ0; let y0 be the observed data point; this con-
tinuous version was also mentioned in Mandelkern
(2002), Woodroofe and Wang (2000) and Zhang and
Woodroofe (2003). For convenience here and without
loss of generality, we take the known σ0 = 1 and the
lower bound θ0 = 0.

From a frequentist viewpoint, there is the likelihood

L0(θ) = cφ(y0 − θ)

recording probability at the data, again using φ(z) for
the standard normal density. And also there is the p-
value

p(θ) = �(y0 − θ)

recording probability left of the data. They each offer
a basic presentation of information concerning the pa-
rameter value θ ; see Figure 4(a) and (b). Also note that

(a)

(b)

(c)

FIG. 4. The Normal(θ,1) with θ ≥ θ0 = 0: (a) the likelihood
function L(θ); (b) p-value function p(θ) = �(y0 − θ); (c) s-value
function s(θ) = �(y0 − θ)/�(y0).

p(θ) does not reach the value 1 at the lower limit θ0
for θ ; of course, the p-value is just recording the sta-
tistical position of the data y0 under possible θ values,
so there is no reason to want or expect such a limit.

First consider the confidence approach. The inter-
val (0, β) for the p-value function gives the interval
{max(θ0, y

0 −zβ),∞} for θ when we acknowledge the
lower bound, or gives the interval (y0 − zβ,∞) when
we ignore the lower bound. In either case the actual
Proportion is equal to the alleged value β , regardless
of the true value of θ . There might perhaps be mild
discomfort that if we ignore the lower bound and cal-
culate the interval, then it can include parameter values
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that are not part of the problem; but nonetheless the
alleged level is valid.

Now consider the default Bayes approach. The
model f (y; θ) = φ(y0 − θ) is translation invariant
for θ ≥ θ0, and this would indicate the constant prior
π(θ) = c, at least for θ ≥ θ0. Combining the prior and
likelihood and norming as usual gives the posterior
density

π(θ |y0) = φ(y0 − θ)

�(y0)
, θ ≥ 0,

and then gives the posterior survivor value

s(θ) = �(y0 − θ)

�(y0)
, θ ≥ 0.

See Figure 4(c). The β-quantile of this truncated nor-
mal distribution for θ is obtained by setting s(θ) = β

and solving for θ :

θ̂β = y0 − zβ�(y0),

where again zγ designates the standard normal γ -
quantile.

We are now in a position to calculate the actual Pro-
portion, namely, the proportion of cases where it is true
that θ is in the quantile interval, or, equivalently, the
proportion of cases where (θ̂β ,∞) includes the true θ

value:

Propn(θ) = Pr
{
y − zβ�(y) < θ : θ

}
= Pr

{
z < zβ�(θ+z)

}
,

where z is taken as being Normal(0,1); this expres-
sion can be written as in integral

∫
S φ(z) dz with S =

{z :�(z) < β�(θ + z)} and can routinely be evaluated
numerically for particular values of θ and β . In par-
ticular, for θ at the lower limit θ = θ0 = 0 the cover-
age set S becomes S = {z :�(z) < β�(z)}, which is
clearly the empty set unless β = 1. In particular, at the
lower limit θ = θ0 = 0 the Propn(θ0) has the phenome-
nal value zero, Propn(θ0) = 0, which is a consequence
of the empty set just mentioned; certainly an unusual
performance property for a claimed Bayes coverage of,
say, β when, as typical, β is not zero.

In Figure 5 we plot this Proportion against β for the
β = 50% quantile; and we note that it is uniformly less
than the nominal, the claimed 50%. In particular, at
the lower limit θ = θ0 = 0 the Propn(θ0) = 0 has the
phenomenal value zero, as mentioned in the preced-
ing paragraph; certainly an unusual performance prop-
erty for a claimed Bayes coverage of β = 50%! Then

FIG. 5. Normal with bounded mean: the actual Proportion for
the claimed level β = 50% is strictly less than the claimed 50%.

in Figure 6 we plot the proportion for β = 90% and
for β = 10%; again we note that the actual Propor-
tion is uniformly less than the claimed value, and again
Propn(θ) has the extraordinary coverage value 0 when
the parameter is at the lower bound 0. Of course, the
departure would be in the other direction in the case of
an upper bound.

In summary, in a context with a bound on the param-
eter, the performance error with the Bayes calculation
can be of asymptotic order O(1).

FIG. 6. Normal with bounded mean: the actual Proportions for
the claimed level β = 90% and β = 10% are strictly less than the
claimed.
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5. NONLINEARITY AND PARAMETER
CURVATURE: THE ERRORS ARE O(n−1/2)

A bound on a parameter as just discussed is a rather
extreme form of nonlinearity. Now consider a very di-
rect and common form of curvature. Let (y1, y2) be
Normal(θ; I ) on R2 and consider the quadratic in-
terest parameter (θ2

1 + θ2
2 ), or the equivalent ρ(θ) =

(θ2
1 + θ2

2 )
1/2

which has the same dimensional units as
the θi ; and let y0 = (y0

1 , y0
2) be the observed data. For

asymptotic analysis we would view the present vari-
ables as being derived from some antecedent sample
of size n and they would then have the Normal(θ, I/n)

distribution.
From the frequentist view there is an observable vari-

able r = (y2
1 + y2

2)1/2 that in some pure physical sense
measures the parameter ρ. It has a noncentral chi distri-
bution with noncentrality ρ and degrees of freedom 2.

For convenience we let χ2(ρ) designate such a variable
with distribution function H2(χ,ρ), which is typically
available in computer packages; and its square can be
expressed as χ2

2 = (z1 + ρ)2 + z2
2 in terms of standard

normal variables and it has the noncentral chi-square
distribution with 2 degrees of freedom and noncentral-
ity usually described by ρ2. The distribution of r is free
of the nuisance parameter which can conveniently be
taken as the polar angle α = arctan(θ2/θ1). The result-
ing p-value function for ρ is

p(ρ) = Pr{χ2(ρ) ≤ r0} = H2(r
0;ρ).(1)

See Figure 7(a), where for illustration we examined the
behavior for θ = y0 + 1.

From the frequentist view there is the directly mea-
sured p-value p(ρ) with a Uniform(0,1) distribution,
and any β level lower confidence quantile is available

(a)

(b)

FIG. 7. (a) The model is N(θ; I ); region for p(θ) is shown. (b) The posterior distribution for θ is N(y0; I ); region for s(θ) is shown.
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immediately by solving β = H2(r
0;ρ) for ρ in terms

of r0.
From the Bayes view there is a uniform prior π(θ) =

c as directly recommended by Bayes (1763) for a loca-
tion model on the plane R2. The corresponding pos-
terior distribution for θ is then Normal(y0; I ) on the
plane. And the resulting marginal posterior for ρ is de-
scribed by the generic variable χ2(r

0). As r is stochas-
tically increasing in ρ, we have that the Bayes analog
of the p-value is the posterior survivor value obtained
by an upper tail integration

s(ρ) = Pr{χ2(r
0) ≥ ρ} = 1 − H2(ρ; r0).(2)

The Bayes s(ρ) and the frequentist p(ρ) are actually
quite different, a direct consequence of the obvious cur-
vature in the parameter ρ = (θ2

1 + θ2
2 )1/2. The presence

of the difference is easily assessed visually in Figure 7
by noting that in either case there is a rotationally sym-
metric normal distribution with unit standard deviation
which is at the distance d = 1 from the curved bound-
ary used for the probability calculations, but the curved
boundary is cupped away from the Normal distribution
in the frequentist case and is cupped toward the Normal
distribution in the Bayes case; this difference is the di-
rect source of the Bayes error.

From (1) and (2) we can evaluate the posterior er-
ror s(ρ) − p(ρ) = 1 − H2(ρ; r0) − H2(r

0;ρ) which is
plotted against ρ in Figure 8 for r0 = 5. This Bayes
error here is always greater than zero. This happens
widely with a parameter that has curvature, with the
error in one or other direction depending on the cur-
vature being positive or negative relative to increasing

values of the parameter. Some aspects of this discrep-
ancy are discussed in David, Stone and Zidek (1973)
as a marginalization paradox.

Now in more detail for this example, consider the β

lower quantile ρ̂β of the Bayes posterior distribution
for the interest parameter ρ. This β quantile for the
parameter ρ is obtained from the χ2(r

0) posterior dis-
tribution for ρ giving

ρ̂β = χ1−β(r0),

where we now use χγ (r) for the γ quantile of the non-
central chi variable with 2 degrees of freedom and non-
centrality r , that is, H2(χγ ; r) = γ . We are now in a po-
sition to evaluate the Bayes posterior proposal for ρ.
For this let Propn(Aβ; θ) be the proportion of true as-
sertions that ρ is in Aβ = {ρ̂β(r),∞}; we have

Propn(Aβ;ρ) = Pr{ρ in (ρ̂β(r),∞);ρ}
= Pr{ρ̂β(r) ≤ ρ;ρ}
= Pr{χ1−β(r) ≤ ρ;ρ},

where the quantile ρ̂β(r) is seen to be the (1−β) point
of a noncentral chi variable with degrees of freedom 2
and noncentrality r , and the noncentrality r has a non-
central chi distribution with noncentrality ρ. The actual
Proportion under a parameter value ρ can thus be pre-
sented as

Propn(Aβ;ρ) = Pr[χ1−β{χ2(ρ)} ≤ ρ;ρ]
= Pr[1 − β < H2{ρ;χ2(ρ)}],

which is available by numerical integration on the real
line for any chosen β value.

FIG. 8. The Bayes error s(ρ) − p(ρ) with data r0 from the N(θ, I ) model with data y0 = (5,0).
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FIG. 9. Proportion with claimed level β = 50%.

We plot the actual Propn(A50%;ρ) against ρ in Fig-
ure 9 and note that it is always less than the alleged
50%. We then plot the Proportion for β = 90% and for
β = 10% in Figure 10 against ρ, and note again that
the plots are always less than the claimed values 95%
and 5%. This happens generally for all possible quan-
tile levels β , that the actual Proportion is less than the
alleged probability. It happens for any chosen value for
the parameter; and it happens for any prior average of
such θ values. If by contrast the center of curvature is
to the right, then the actual Proportion is reversed and
is larger than the alleged.

In summary, in the vector parameter context with
a curved interest parameter the performance error

FIG. 10. Proportion for claimed β = 90% and for claimed
β = 10%: strictly less than the claimed.

with the Bayes calculation can be of asymptotic order
O(n−1/2).

6. NONLINEARITY AND MODEL CURVATURE: THE
ERRORS ARE O(n−1)

(i) The model and confidence bound. Taylor series
expansions provide a powerful means for examining
the large sample form of a statistical model (see, e.g.,
Abebe et al., 1995; Andrews, Fraser and Wong, 2005;
Cakmak et al., 1998). From such expansions we find
that an asymptotic model to second order can be ex-
pressed as a location model and to third order can be
expressed as a location model with an O(n−1) adjust-
ment that describes curvature.

Examples arise frequently in the vector parameter
context. But for the scalar parameter context the com-
mon familiar models are location or scale models and
thus without the curvature of interest here. A simple
example with curvature, however, is the gamma distri-
bution model: f (y; θ) = −1(θ)yθ−1 exp{−y}.

To illustrate the moderate curvature, we will take
a very simple example where y is Normal{θ, σ 2(θ)}
and σ 2(θ) depends just weakly on the mean θ , and then
in asymptotic standardized form we would have

σ 2(θ) = 1 + γ θ2/2n

in moderate deviations. The β-level quantile for this
normal variable y is

yβ(θ) = θ + σ(θ)zβ

= θ + zβ(1 + γ θ2/2n)1/2(3)

= θ + zβ(1 + γ θ2/4n) + O(n−3/2).

The confidence bound θ̂β with β confidence above
can be obtained from the usual Fisher inversion of y =
θ + zβ(1 + γ θ2/4n): we obtain

θ = y − zβ(1 + γ θ2/4n) + O(n−3/2)

= y − zβ{1 + γ (y − zβ)2/4n} + O(n−3/2).

Thus, the β level lower confidence quantile to order
O(n−3/2) is

θ̂C(y) = y − zβ{1 + γ (y − zβ)2/4n},(4)

where we add the label C for confidence to distinguish
it from other bounds soon to be calculated. See Fig-
ure 11.

(ii) From confidence to likelihood. We are interested
in examining posterior quantiles for the adjusted nor-
mal model and in this section work from the confidence
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FIG. 11. The 97.5% confidence quantile θ̂C(y) =
y − 1.96{1 + γ (y − 1.96)2/4n}. The 97.5% likelihood quantile
θ̂L(y) = (1 + γ

2n
)[y − 1.96{1 + γ (y − 1.96)2/4n}] is a vertical

rescaling about the origin; the 97.5% Bayes quantile θ̂B(y) with
prior exp{a/n + cθ/n} is a vertical rescaling plus a lift a/n and
a tilt cy/n. Can this prior lead to a confidence presentation? No,
unless the prior depends on the data or on the level β .

quantile to the likelihood quantile, that is, to the poste-
rior quantile with flat prior π(θ) = 1; this route seems
computationally easier than directly calculating a like-
lihood integral.

From Section 3 and formula (3) above, we have
that the prior π(θ) that converts a likelihood f L(θ) =
L(θ;y0) = Fy(y

0; θ) to confidence f C(θ) =
−F;θ (y0; θ) is

dy

dθ

∣∣∣∣
y0

= 1 + γ zθ/2n|y0

= 1 + γ (y0 − θ)θ/2n + O(n−3/2)

= exp{γ (y0 − θ)θ/2n} + O(n−3/2).

Then to convert in the reverse direction, from confi-
dence f C(θ) to likelihood f L(θ), we need the inverse
weight function

w(θ) = exp{γ θ(θ − y0)/2n}.(5)

Interestingly, this function is equal to 1 at θ = 0 and
at y0, and is less than 1 between these points when
γ > 0.

(iii) From confidence quantile to likelihood quantile.
The weight function (5) that converts confidence to
likelihood has the form exp{aθ/n1/2 + cθ2/2n} with
a = −γy0/2n1/2 and c = γ . The effect of such a tilt
and bending is recorded in the Appendix. The confi-
dence quantile θ̂C

β given at (4) is a 1−β quantile of the
confidence distribution. Then using formula (10) in the

Appendix, we obtain the formula for converting confi-
dence quantile to likelihood quantile:

θ̂L = θ̂C

(
1 + γ

2n

)
− γy0/2n + γy0/2n

(6)

= θ̂C

(
1 + γ

2n

)
.

Thus, the likelihood distribution is obtained from the
confidence distribution by a simple scale factor 1 +
γ /2n; this directly records the consequence of the cur-
vature added to the simple normal model by having
σ 2(θ) depend weakly on θ .

(iv) From likelihood quantile to posterior quantile.
Now consider a prior applied to the likelihood distribu-
tion. A prior can be expanded in terms of standardized
coordinates and takes the form π(θ) = exp(aθ/n1/2 +
cθ2/2n). The effect on quantiles is available from the
Appendix and we see that a prior with tilt coefficient
a/n1/2 would excessively displace the quantile and
thus would give posterior quantiles with bad behaving
Propn(θ) in repetitions; accordingly, as a possible prior
adjustment, we consider a tilt with just a coefficient
a/n. We then examine the prior π(θ) = exp(aθ/n +
cθ2/2n). First, we obtain the Bayes quantile in terms
of the likelihood quantile as

θ̂B = θ̂L

(
1 + c

2n

)
+ a

n
+ cy

2n
;

and then substituting for the likelihood quantile in
terms of the confidence quantile (6) gives

θ̂B = θ̂C

(
1 + γ + c

2n

)
+ a

n
+ cy

2n
.(7)

For θ̂B(y) in (4) to be equal to θ̂C(y) in (7) we would
need to have c = −γ and then a = γy/2. But this
would give a data dependent prior. We noted the need
for data dependent priors in Section 3, but we now have
an explicit expression for the effect of priors on quan-
tiles.

Now consider the difference in quantiles:

θ̂B(y) − θ̂C(y) = θ̂C

(
γ + c

2n

)
+ a

n
+ cy

2n

= (y − zβ)
γ + c

2n
+ a

n
+ cy

2n

= a

n
+ y

γ + 2c

2n
− zβ

γ + c

2n
,

where we have replaced θ̂C by y − zβ , to order
O(n−3/2); Figure 12 shows this difference as the ver-
tical separation above a data value y. From the third
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FIG. 12. β-level quantiles. The difference θ̂B(y) − θ̂C(y) is the vertical separation above y between quantile curves. The difference
yC(θ) − yB(θ) is the horizontal separation between curves as a function of θ .

expression above we see that in the presence of model
curvature γ the Bayesian quantile can achieve the qual-
ity of confidence only if the prior is data dependent or
dependent on the level β .

Similarly, we can calculate the horizontal separation
corresponding to a θ value, and obtain

yC(θ) − yB(θ) = θ
γ + c

2n
+ a

n
+ c

2n
(θ + zβ)

= θ
γ

2n
+ a

n
+ c

2n
(2θ + zβ).(8)

This gives the quantile difference, the confidence quan-
tile less the Bayes quantile, as a function of θ ; see Fig-
ure 12, and observe the horizontal separation to the
right of a parameter value θ .

A Bayes quantile can not generate true statements
concerning a parameter with the reliability of confi-
dence unless the model curvature is zero, that is, unless
the model is of the special location form where Bayes
coincides confidence. The Bayes approach can thus be
viewed as having a long history of misdirection.

Now let θ designate the true value of the parame-
ter θ , and suppose we examine the performance of the
Bayesian and frequentist posterior quantiles. In repe-
titions the actual proportion of instances where y <

yC(θ) is of course β . The actual proportion of cases
with y < yB(θ) is then

Propn(θ) = β −
{
θ

γ

2n
+ a

n
+ c

2n
(2θ + zβ)

}
φ(zβ),

where for the terms of order O(n−1) it suffices to use
the N(θ,1) distribution for y. The Bayes calculation
claims the level β . The choice a = 0, c = 0 gives a flat
prior in the neighborhood of θ = 0 which is the central
point of the model curvature. With such a choice the
actual Proportion from the Bayes approach is deficient
by the amount θγ φ(zβ)/2n. For a claimed β = 50%
quantile see Figure 13 for the actual Proportion and
for a claimed β = 90% or β = 10% see Figure 14.

FIG. 13. The actual Proportion with claimed level β = 50%.
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FIG. 14. The actual Proportion with claimed levels β = 90% and
β = 10%.

Thus, the β quantile by Bayes is consistently below
the claimed level β for positive values of θ , and consis-
tently above the claimed level for negative values of θ .

In summary, even in the scalar parameter context,
an elementary departure from simple linearity can lead
to a performance error for the Bayes calculation of
asymptotic order O(n−1). And, moreover, it is impos-
sible by the Bayes method to duplicate the standard
confidence bounds: a stunning revelation!

7. THE PARADIGM

The Bayes proposal makes critical use of the con-
ditional probability formula f (y1|y0

2) = cf (y1, y
0
2). In

typical applications the formula has variables y1 and y2
in a temporal order: the value of the first y1 is inacces-
sible and the value of the second y2 is observed with
value, say, y0

2 . Of course, the value of the first y1 has
been realized, say, yr

1, but is concealed and is unknown.
Indeed, the view has been expressed that the only prob-
abilities possible concerning such an unknown yr

1 are
the values 0 or 1 and we don’t know how they would
apply to that yr

1. We thus have the situation where
there is an unknown constant yr

1, a constant that arose
antecedent in time to the observed value y0

2 , and we
want to make probability statements concerning that
unknown antecedent constant. As part of the tempo-
ral order we also have that the joint density became
available in the order f (y1) for the first variable fol-
lowed by f (y2|y1) for the second; thus, f (y1, y

0
2) =

f (y1)f (y0
2 |y1).

The conditional probability formula itself is very
much part of the theory and practice of probability and

statistics and is not in question. Of course, limit opera-
tions are needed when the condition y2 = y0

2 has prob-
ability zero leading to a conditional probability expres-
sion with a zero in the denominator, but this is largely
technical.

A salient concern seemingly centers on how prob-
abilities can reasonably be attached to a constant
that is concealed from view? The clear answer is in
terms of what might have occurred given the same
observational information: the corresponding picture
is of many repetitions from the joint distribution giv-
ing pairs (y1, y2); followed by selection of pairs that
have exact or approximate agreement y2 = y0

2 ; and
then followed by examining the pattern in the y1 val-
ues among the selected pairs. The pattern records
what would have occurred for y1 among cases where
y2 = y0

2 ; the probabilities arise both from the density
f (y1) and from the density f (y2|y1). Thus, the ini-
tial pattern f (y1) when restricted to instances where
y2 = y0

2 becomes modified to the pattern f (y1|y0
2) =

cf (y1, y
0
2) = cf (y1)f (y0

2 |y1).
Bayes (1763) promoted this conditional probability

formula and its interpretation, for statistical contexts
that had no preceding distribution for θ and he did
so by introducing the mathematical prior. He did pro-
vide, however, a motivating analogy and the analogy
did have something extra, an objective and real dis-
tribution for the parameter, one with probabilities that
were well defined by translational invariance. Such a
use of analogy in science is normally viewed as wrong,
but the needs for productive methodology were high at
that time.

If π(θ) is treated as being real and descriptive of how
the value of the parameter arose in the application, it
would follow that the preceding conditional probability
analysis would give the conditional description

π(θ |y0) = cπ(θ)f (y0; θ)

= cπ(θ)L0(θ).

The interpretation for this would be as follows: In
many repetitions from π(θ), if each θ value was fol-
lowed by a y from the model f (y; θ), and if the in-
stances (θ, y) where y is close to y0 are selected, then
the pattern for the corresponding θ values would be
cπ(θ)L0(θ). In other words, the initial relative fre-
quency π(θ) for θ values is modulated by L0(θ) when
we select using y = y0; this gives the modulated fre-
quency pattern cπ(θ)L0(θ). The conditional probabil-
ity formula as used in this context is often referred to
as the Bayes formula or Bayes theorem, but as a prob-
ability formula it long predates Bayes and is generic;
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for the present extended usage it is also referred to as
the Bayes paradigm (Bernardo and Smith, 1994).

The Bayes’ example as discussed in Sections 2 and 3
examined a location model f (y − θ) and the only prior
that could represent location invariance is the constant
or flat prior in the location parameterization, that is,
π(θ) = c. This of course does not satisfy the probabil-
ity axioms, as the total probability would be ∞. The
step, however, from just a set of θ values with related
model invariance to a distribution for θ has had the
large effect of emphasizing likelihood L0(θ), as de-
fined by Fisher (1935). And it has also had the effect,
perhaps unwarranted, of suggesting that the mathemat-
ical posterior distribution obtained from the paradigm
could be treated as a distribution of real probability.
If the parameter to variable relationship is linear, then
Section 3 shows that the calculated values have the
confidence (Fisher, 1935; Neyman, 1937) interpreta-
tion. But if the relationship is nonlinear, then the calcu-
lated numbers can seriously fail to have that confidence
property, as determined in Sections 4–6; and indeed fail
to have anything with behavior resembling probabil-
ity. The mathematical priors, the invariant priors and
other generalizations are often referred to in the cur-
rent Bayesian literature as objective priors, a term that
is strongly misleading.

In other contexts, however, there may be a real
source for the parameter θ , sources with a known dis-
tribution, and thus fully entitled to the term objective
prior; of course, such examples do not need the Bayes
approach, they are immediately analyzable by proba-
bility calculus. And, thus, to use objective to also refer
to the mathematical priors is confusing.

In short, the paradigm does not produce probabil-
ities from no probabilities. And if the required lin-
earity for confidence is only approximate, then the
confidence interpretation can correspondingly be just
approximate. And in other cases even the confidence
interpretation can be substantially unavailable. Thus, to
claim probability when even confidence is not applica-
ble does seem to be fully contrary to having acceptable
meaning in the language of the discipline.

8. OPTIMALITY

Optimality is often cited as support for the Bayes
approach: If we have a criterion of interest that pro-
vides an assessment of a statistical procedure, then op-
timality under the criterion is available using a proce-
dure that is optimal under some prior average of the
model. In other words, if you want optimality, it suf-
fices to look for a procedure that is optimal for the

prior-average version of the model. Thus, restrict one’s
attention to Bayes solutions and just find an appropri-
ate prior to work from. It sounds persuasive and it is
important.

Of course, a criterion as mentioned is just a numeri-
cal evaluation and optimality under one such criterion
may not give optimality under some other criterion; so
the choice of the criterion can be a major concern for
the approach. For example, would we want to use the
length of a posterior interval as the criterion or say the
squared length of the interval or some other evaluation;
it makes a difference because the optimality has to do
with an average of values for the criterion and this can
change with change in the criterion.

The optimality approach can lead to interesting re-
sults but can also lead to strange trade-offs; see, for
example, Cox (1958) and Fraser and McDunnough
(1980). For if the model splits with known probabilities
into two or several components, then the optimality can
create trade-offs between these; for example, if data
sometimes is high precision and sometimes low pre-
cision and the probabilities for this are available, then
the search for an optimum mean-length confidence in-
terval at some chosen level can give longer intervals in
the high precision cases and shorter intervals in the low
precision cases as a trade-off toward optimality and to-
ward intervals that are shorter on average. It does sound
strange but the substance of this phenomenon is inter-
nal to almost all model-data contexts.

Even with a sensible criterion, however, and with-
out the compound modeling and trade-offs just men-
tioned, there are serious difficulties for the optimality
support for the Bayes approach. Consider further the
example in Section 6 with a location Normal variable
where the variance depends weakly on the mean: y is
Normal{θ, σ 2(θ)} with σ 2(θ) = 1+γ θ2/2n and where
we want a bound θ̂β(y) for the parameter θ with relia-
bility β for the assertion that θ is larger than θ̂β(y).

From confidence theory we have immediately (4)
that

θ̂ (y) = θ̂C(y) = y − zβ{1 + γ (y − zβ)2/4n}
with O(n−3/2) accuracy in moderate deviations. What
is available from the Bayes approach? A prior π(θ) =
exp{aθ/n1/2 + cθ2/2n} gives the posterior bound

θ̂ β(y) = θ̂C(y){1 + c/2n} + a

n
+ cy

2n
.

The actual Proportion for the β level confidence bound
is exactly β . The actual Proportion, however, for the
Bayes bound as derived (8) is

β −
{
θ

γ

2n
+ a

n
+ c

2n
(2θ + zβ)

}
φ(zβ);
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and there is no choice for the prior, no choice for a

and c, that will make the actual equal to the nominal
unless the model has nonzero curvature γ .

We thus have that a choice of prior to weight the like-
lihood function can not produce a β level bound. But
a β level bound is available immediately and routinely
from confidence methods, which does use more than
just the observed likelihood function.

Of course, in the pure location case the Bayes ap-
proach is linear and gives confidence. If there is non-
linearity, then the Bayes procedure can be seriously in-
accurate.

9. DISCUSSION

Bayes (1763) introduced the observed likelihood
function to general statistical usage. He also introduced
the confidence distribution when the application was
to the special case of a location model; the more gen-
eral development (Fisher, 1930) came much later and
the present name confidence was provided by Neyman
(1937). Lindley (1958) then observed that the Bayes
derivation and the Fisher (1930) derivation coincided
only for location models; this prompted continuing dis-
cord as to the merits and validity of the two procedures
in providing a probability-type assessment of an un-
known parameter value.

A distribution for a parameter value immediately
makes available a quantile for that parameter, at any
percentage level of interest. This means that the merits
of a procedure for evaluating a parameter can be as-
sessed by examining whether the quantile relates to the
parameter in anything like the asserted rate or level as-
serted for that quantile. The examples in Sections 4–6
demonstrate that departure from linearity in the rela-
tion between parameter and variable can seriously af-
fect the ability of likelihood alone to provide reliable
quantiles for the parameter of interest.

There is of course the question as to where the prior
comes from and what is its validity? The prior could be
just a device as with Bayes original proposal, to use the
likelihood function directly to provide inference state-
ments concerning the parameter. This has been our pri-
mary focus and such priors can reasonably be called
default priors.

And then there is the other extreme where the prior
describes the statistical source of the experimental unit
or more directly the parameter value being considered.
We have argued that these priors should be called ob-
jective and then whether to use them to do a sole anal-
ysis is a reasonable question.

Between these two extremes are many variations
such as subjective priors that describe the personal
views of an investigator and elicited priors that rep-
resent some blend of the background views of those
close to a current investigation. Should such views be
kept separate to be examined in parallel with objec-
tive views coming directly from the statistical investi-
gation itself or should they be blended into the com-
putational procedure applied to the likelihood function
alone? There would seem to be strong arguments for
keeping such information separate from the analysis of
the model with data; any user could then combine the
two as deemed appropriate in any subsequent usage of
the information.

Linearity of parameters and its role in the Bayesian
frequentist divergence is discussed in Fraser, Fraser
and Fraser (2010a). Higher order likelihood methods
for Bayesian and frequentist inference were surveyed
in Bédard, Fraser and Wong (2007), and an original in-
tent there was to include a comparison of the Bayesian
and frequentist results. This, however, was not feasi-
ble, as the example used there for illustration was of
the nice invariant type with the associated theoretical
equality of common Bayesian and frequentist proba-
bilities; thus, the anomalies discussed in the paper were
not overtly available.

10. SUMMARY

A probability formula was used by Bayes (1763) to
combine a mathematical prior with a model plus data;
it gave just a mathematical posterior, with no conse-
quent objective properties. An analogy provided by
Bayes did have a real and descriptive prior, but it was
not part of the problem actually being examined.

A familiar Bayes example uses a special model, a lo-
cation model; and the resulting intervals have attractive
properties, as viewed by many in statistics.

Fisher (1935) and Neyman (1937) defined confi-
dence. And the Bayes intervals in the location model
case are seen to satisfy the confidence derivation, thus
providing an explanation for the attractive properties.

The only source of variation available to support
a Bayes posterior probability calculation is that pro-
vided by the model, which is what confidence uses.

Lindley (1958) examined the probability formula ar-
gument and the confidence argument and found that
they generated the same result only in the Bayes loca-
tion model case; he then judged the confidence argu-
ment to be wrong.

If the model, however, is not location and, thus, the
variable is not linear with respect to the parameter, then
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a Bayes interval can produce correct answers at a rate
quite different from that claimed by the Bayes proba-
bility calculation; thus, the Bayes posterior may be an
unreliable presentation, an unreliable approximation to
confidence.

The failure to make true assertions with a promised
reliability can be extreme with the Bayes use of mathe-
matical priors (Stainforth et al., 2007; Heinrich, 2006).

The claim of a probability status for a statement that
can fail to be approximate confidence is misrepresenta-
tion. In other areas of science such false claims would
be treated seriously.

Using weighted likelihood, however, can be a fruit-
ful way to explore the information available from just
a likelihood function. But the failure to have even
a confidence interpretation deserves more than just
gentle caution.

A personal or a subjective or an elicited prior may
record useful background to be recorded in parallel
with a confidence assessment. But to use them to do the
analysis and just get approximate or biased confidence
seems to overextend the excitement of exploratory pro-
cedures.

APPENDIX

Tilting, Bending and Quantiles

Consider a variable y that has a Normal(θ;1) dis-
tribution and suppose that its density is subject to an
exponential tilt and bending as described by the modu-
lating factor exp{ay+cy2/2}. It follows easily by com-
pleting the square in the exponent that the new variable,
say, ỹ, is also normal but with mean (θ +a)/(1−c) and
variance 1/(1 − c). In particular, we can write

ỹ = θ + a

1 − c
+ (1 − c)−1/2z,

where z is standard normal. And if we let zβ be the β

quantile of the standard normal with β = �(zβ), then
the β quantile of ỹ is

ỹβ = θ + a

1 − c
+ (1 − c)−1/2zβ.

Thus, with the Normal(θ,1) we have that tilting and
bending just produce a location scale adjustment to the
initial variable.

Now suppose that y = θ + z is Normal(θ;1) to third
order, and suppose further that its density receives an
exponential tilting and bending described by the factor
exp{ay/n1/2 + cy2/2n}. Then from the preceding we

have that the new variable can be expressed in terms of
preceding variables as

ỹ = θ + a/n1/2

1 − c/n
+ (1 − c/n)−1/2z

= θ(1 + c/n) + a/n1/2 + (1 + c/2n)z(9)

= y(1 + c/2n) + a/n1/2 + θc/2n,

where succeeding lines use adjustments that are
O(n−3/2). The second line on the right gives quantiles
in terms of the standard normal and the third line gives
quantiles in terms of the initial variable y.

One application for this arises with posterior distri-
butions. Suppose that θ = y0 + z is Normal(y0,1) to
third order and that its density receives a tilt and bend-
ing described by exp(aθ/n1/2 +cθ2/2n). We then have
from (9) that the modified variable can be expressed as

θ̃ = y0(1 + c/n) + a/n1/2 + (1 + c/2n)z
(10)

= θ(1 + c/2n) + a/n1/2 + y0c/2n,

to order O(n−3/2).
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