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summary

The quantity r∗(ψ, y) was introduced by Barndorff-Nielsen, in part as a distri-
butional refinement of the signed likelihood root r(ψ, y), a refinement that can
also be approximated by a mean and standard deviation adjustment of the root
r(ψ, y). We clarify: that r∗ is not linear in r; that r∗ achieves large distributional
improvement on r(ψ, y); and that r∗ provides the definitive separation of infer-
ence information concerning scalar component parameters of a statistical model.
These distributional and inference properties deserve broader awareness.
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1 Introduction

Is r∗ linear in r? Well, Yes and No! If the variable is held fixed then to third order r∗ is

linear in r. And if the parameter is held fixed then to third order r∗ is linear in r. But

collectively r∗ is not linear in r. More specifically we have linearity to the third order, if

and only if the Bayes posterior has a confidence interpretation, that is, if and only if the

variable is location related to the parameter.

The signed likelihood root r = r(ψ, y) for a scalar parameter ψ(θ) is a normal-quantile

re-expression of the rise of log likelihood from the value ψ to the maximum likelihood value

ψ̂; thus if we set the rise `(θ̂; y) − `(θ̂ψ; y) equal to r2/2 and solve for r we obtain

r = sign(ψ̂ − ψ)[2{l(θ̂; y) − l(θ̂ψ; y)}]1/2,
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where θ̂ and θ̂ψ are the maximizing values generally and subject to the constraint ψ(θ) = ψ.

Central limit theorem conditions then show that r is standard normal to first order; and

thus show that p(ψ, y) = Φ{r(ψ, y)} is Uniform (0, 1), where Φ(z) is the standard normal

distribution function. Accordingly, if the value y = y0 is substituted in p(ψ; y) we obtain to

first order the observed p-value function p0(ψ) that records the percentage position of the

data relative to a value of interest ψ. The quantity r(ψ, y) can arguably be viewed as the

intrinsic likelihood based measure of departure of data from a scalar parameter, and the

observed p0(ψ) can be viewed as the intrinsic first order interpretation of where the data

point is with respect to the parameter. So why r∗?

The modified likelihood ratio quantity r∗(ψ, y) uses additional likelihood information in

the form of an appropriate maximum likelihood departure q = q(ψ, y); r∗ then has the form

r∗ = r − r−1log(r/q) (1.1)

and was introduced by Barndorff-Nielson (1991) as a refinement of r. Under moderate

regularity r∗ is standard normal to the third order and is thus pivotal to the third order; it

leads to a corresponding third order p-value p(ψ, y) = Φ{r∗(ψ, y0)} that provides a highly

accurate statistical position of the location of data y0 relative to an interest value ψ.

Central to this however is the definition of the maximum likelihood departure q(ψ, y),

and it uses a re-calibration of the parameter somewhat paralleling the use of suitable default

prior in Bayes analysis. If the model is exponential with scalar canonical parameter ϕ(θ)

then q(θ, y) can be written

q(θ, y) = (ϕ(θ̂) − ϕ)ĵ1/2ϕϕ , (1.2)

as the maximum likelihood departure of ϕ(θ̂) from the canonical parameter value ϕ = ϕ(θ)

but standardized by observed information ĵϕϕ = (−∂2/∂ϕ2)`(θ)|θ̂; this follows from Daniels

(1987), but the same q(θ, y) also leads (Lugannani & Rice, 1980) to an asymptotically

equivalent version of r∗:

r∗ = Φ−1

{

Φ(r) + ϕ(r)

(

1

r
−

1

q

)}

.

We examine the connection between r∗ and r for the scalar full parameter case. The more

general connection between r∗ and r can then be obtained as an adjustment to the scalar

case using Cheah et al (1995). Thus, if the model is a p-dimensional full exponential model

and θ
′

= (ψ, λ′) with canonical parameter ϕ(θ) then an appropriate q(ψ, y) giving third

order for the p-value is available (Barndorff-Nielson, 1986; Fraser & Reid, 1993). And if the

model is general with dim y=n and with appropriate pivots for independent coordinates then

a data dependent canonical ϕ(θ, y0) with related q(ψ, y) similarly gives third order accuracy

(Fraser & Reid, 1995). Also if the model involves discrete data such as with contingency

tables then again an appropriate ϕ(θ, y0) is available (Davison et al, 2006), but this however

yields only second order accuracy due to the discreteness.

Accordingly, for comparing r∗ with r it suffices to consider a statistical model f(y; θ)

with scalar variable and scalar full parameter, and with asymptotic properties inherited
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from some antecedent context with a sample-size parameter n. It is well known that r can

be mean and variance corrected,

r∗ ≈
r −E(r)

SD(r)
, (1.3)

to give a variable that is third order standard normal and third order equivalent to r∗. This

suggests that r∗ is linear or more correctly affine, as a function of r. Details however show

that the mean correction depends on the parameter, so strict linearity is not present in

general. And also we note that while versions (1.1) and (1.3) are both third order, the first

(1.1) which can be viewed as a functional expression is found typically to have numerical

accuracy far exceeding that of the other (1.3). While this appears to be linear, it does need

more than the term involving r(θ, y), it requires the extra term involving r(θ̂0, y) which

corresponds to the Taylor series reference value (θ̂0) that underlay the definition of the

meta-parameters.

In Guanajuato on March 22, 2006, a conference was held to honour Barndorff-Nielson’s

many major contributions to statistical inference. As part of the discussion during a like-

lihood theory session, it was suggested by Donald Pierce that in regards to the inferential

basis for r∗ it may be difficult, perhaps impossible, to go beyond the points that: (a) to

second order it gives the same ordering of datasets against the hypothesis as does r, and

hence that, in obvious notation, (b) Φ(r∗) = pr(R < r;ψ, λ) + Op(n
−1) (Pierce & Bellio,

2006; DiCiccio, Martin & Stern, 2001). Accordingly, to clarify the focus, we examine the

linearity just mentioned and argue that r∗ was a major advance on r as input to statistical

inference. Our principal tool involves the Taylor expansion of the logarithm logf(y; θ) of

the statistical model to third order in terms of appropriate y and θ.

For fixed data value y = y0, we find in Section 2 that r∗(θ, y0) can be expressed in terms

of r(θ, y0) to third order as

r∗(θ, y0) =
α3

6n1/2
+

(

1 −
3α4 − 4α2

3

72n

)

r(θ, y0) (1.4)

where α3 and α4 are mathematical or meta parameters of the model of exponential type,

as expanded relative to the data value y0, and the effect of the sample size parameter n

on the coefficients is made explicit; in particular α3 and α4 are specially standardized third

and fourth derivatives of observed likelihood. This describes the r∗ to r relationship on the

y0-section of the sample-cross-parameter space.

Then for fixed parameter value θ = θ0 we find in Section 3 that r∗(θ0, y) can be expressed

in terms of r(θ0, y) to third order as

r∗(θ0, y) =
α̃3

6n1/2
+

(

1 +
9α̃4 + 13α̃2

3 + 18γ̃

72n

)

r(θ0, y) (1.5)

where α̃3, α̃4, γ̃ are exponential type meta parameters relative to the θ0-section on the

sample-cross-parameter space; in particular α̃3 and α̃4 are special standardized derivatives

of log-density and γ̃ is a similarly standardized measure of nonexponentiality. Then also in
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Section 3 we use a connection between the two types of meta parameters with θ0 set equal

to θ̂0 to show that (1.5) can be rewritten as

r∗(θ̂0, y) =
α3

6n1/2
+

(

1 −
3α4 − 4α2

3

72n

)

r(θ̂0, y) −
1

12n
(3α2

3 − 2α4 + 6γ)r(θ̂0, y). (1.6)

Comparing (1.4) and (1.6) we see clearly that r∗ is not in general linear in r.

In Section 4 we reexpand about a modified data point and find that for third order

accuracy free of both y and θ in moderate deviations an additional term can be appended

to give:

r∗(θ, y) =
α3

6n1/2
+

(

1 −
3α4 − 4α2

3

72n

)

r(θ, y) −
1

12n
(3α2

3 − 2α4 + 6γ)r(θ̂0, y); (1.7)

while this appears to be linear it does need not only the term r(θ, y) but also the term r(θ̂0, y)

corresponding to the expansion point that led to the definition of the meta-parameters.

2 Taylor Expansion at the Observed Data Point

Taylor series are an incredibly powerful tool in statistics and seem essential for obtaining

distribution theory results concerning likelihood methods. We go beyond the usual expan-

sion of the log-model in terms of the parameter, and expand in terms of both variable and

parameter, and for this we can draw on extensive calculations that are available in the liter-

ature. The form of an expansion in the two variables can depend heavily on the expansion

point say (y0, θ0) as we will see. If our focus is on the model near a data point y0, we

would rather naturally use (y0, θ0) = (y0, θ̂0) where θ̂0 = θ̂(y0) is the observed maximum

likelihood value, and the expansion then would use observable characteristics of the model

with data; we address this in the present section. Then in the next section we focus on dis-

tributional properties when θ has some value θ0 of interest; we then would rather naturally

use (y0, θ0) = (ŷ0, θ0) where ŷ0 = ŷ(θ0) is the maximum density point of the θ0 distribution.

For the expansion of logf(y; θ) about (y0, θ̂0) we use results from the extensive calcula-

tions in Cakmak et al (1998). First, the variable is centered; thus y−y0 is taken algorithmi-

cally to be the new y. Then the parameter is centered and scaled by the observed information

ĵ = −∂2/∂θ2logf(y0; θ)|θ̂0 ; thus ĵ1/2(θ− θ̂0) is taken to be the new parameter θ. And then,

the variable is rescaled so that the cross derivative (∂/∂θ)(∂/∂y)logf(y; θ)|(y0,θ̂0) = 1. So

far this can be viewed as an attempt to fit a standard normal, and in the new coordinates

the model would have an expansion beginning as

logf(y; θ) = a−
1

2
θ2 + θy,

to first derivative in y and second derivative in θ.

But we can do more than this to obtain a simple form for the Taylor expansion. As

with Taylor series in general the form of the expansion depends heavily on the variables
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used for the expansion and we are of course free to choose those variables to obtain an easily

understood model form. But then what target form would be helpful for our understanding?

Two types come quickly to mind, the location model and the exponential model.

Following the first pattern in Cakmak et al (1998) we examine an expansion that is

targetted on exponential model form. Our data point now is y0 = 0 and θ̂0 = 0, ĵ0 = 1

and the cross derivative ˆ̀0
θ;y = (∂/∂θ)(∂/∂y)`(θ; y)|(y0,θ̂0) = 1 where `(θ; y) = logf(y; θ).

With an exponential model in canonical form the only nonzero cross derivative is ˆ̀0
θ;y which

here is equal to 1. Accordingly we reexpress the parameter to get (∂2/∂θ2)(∂/∂y)` = 0,

(∂3/∂θ3)(∂/∂y)` = 0 at the expansion point; and also we similarly reexpress the variable

taking account of Jacobian effects to get (∂/∂θ)(∂2/∂y2)` = 0, (∂/∂θ)(∂3/∂y3)` = 0 at

the expansion point. The details for this are extensive and have been verified by computer

algebra; and the steps themselves are recorded in Fraser & Wong(2002). For our purposes

here the existence of the steps and the reality of the final model are the primary interest. As

a result with the final choice of standardized variable and standardized parameter we have

a model expressed as logf(y; θ) =
∑

i+j≤4

aijθ
iyi/i!j! to order O(n−3/2). The terms drop off

with increasing order as powers of n−1/2 and only terms that are O(1), O(n−1/2), O(n−1)

are recorded with terms of order O(n−3/2) omitted and marked as -; this conforms to recent

likelihood analysis. The drop off is made explicit by showing the dependence on n. Thus

we have

(aij) =





















a+ k/n k01/n
1/2 −{1 + k02/n} α3/n

1/2 (α4 − 3α2
3 − 6γ)/n

0 1 0 0 −

−1 0 γ/n − −

−α3/n
1/2 0 − − −

−α4/n − − − −





















to order O(n−3/2) where a = −(1/2)log(2π), k = (3α4 − 5α2
3 − 12γ)/24, k01 = −α3/2,

k02 = (α4 − 2α2
3 − 5γ)/2, and α3, α4, and γ are critical model characteristics that we call

mathematical or meta parameters. An intriguing property is that α3, α4, and γ uniquely

determine the elements in the first row to the given order; this derives directly from the

assumed norming property
∫

f(y; θ)dy ≡ 1. The model to first order is standard location

normal f(y; θ) = φ(y − θ); and to second order is exponential

f(y; θ) = φ(y − θ)exp{−α3θ
3/6n1/2 + α3y

3/6n1/2 − α3y/2n
1/2};

and to third order is an expanded exponential with an added cross term γθ2y2/4n and

related compensating extras as shown in the first row.

How can we use this canonical model? An observed likelihood function is of course

available immediately from data, `0(θ) = a + logf(y0; θ). But also the special defined

canonical parameter of the above exponential type model can be directly extracted by

calculating a first derivative of log-likelhood at the data; thus if designating the canonical
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parameter by ϕ(θ) we have

ϕ(θ) =
∂

∂y
logf(y; θ)|y0 ;

however, to be exactly equal to a given canonical parameter, we would need to differentiate

with respect to the corresponding score variable; here differentiating with respect to an

original data variable gives the same result save for a constant factor. Thus the magic of

the sample space derivative of likelihood, or at least part of the magic! We can thus write

our canonical model as

f(y; θ) =
ek/n

(2π)1/2
exp{`0(θ) + (ϕ(θ) − ϕ̂0)s}h(s)

where s is a score type variable with observed value s0 = 0 and ϕ(θ) is the just defined

likelihood gradient. The standard saddlepoint expansion (Daniels, 1954) then gives

f(y; θ)dy =
ek/n

(2π)1/2
exp{−

r2(θ, y)

2
}

∣

∣

∣ĵϕϕ(s)
∣

∣

∣

−1/2

ds

as the third order version of the approximated model at the data point s0 = 0; this uses

observed information calculated relative to the reexpressed parameter and it ignores the

form of the original variable other than near the data. The reexpression has the role of a

third order Fourier inversion of likelihood at the data point.

At the data point we can calculate q(θ; y0) = −θ and also calculate r = r(θ; y0) and

r∗(θ; y0); for details see Cakmak et al (1998). From these we obtain formula (1.4) immedi-

ately which expresses r∗ in terms of r when y = y0. Our interest however is in the more

general dependence of r∗ on r.

3 Taylor expansion at a parameter value θ0

Now in order to explore r∗ and r under change in the data variable we first expand logf(y; θ)

about a parameter value θ0 of interest, together with a natural value y0 which we take to be

ŷ(θ0), the value with maximum density when the parameter value is θ0. For this we now use

the extensive calculations in Abebe et al (1995). First the parameter is centered; thus θ−θ0

is taken for notational convenience to be a new θ. Then the variable is centered at ŷ(θ0)

and scaled by the negative second derivative of the log-density under θ = θ0 following the

related pattern in the preceding section. And then the variable is rescaled so that the cross

derivative (∂/∂θ)(∂/∂y)logf(y; θ)|ŷ(θ0),θ0 = 1. Again this can be viewed as a standardization

towards standard normal form, yielding the first terms

logf(y; θ) = a− 1/2y2 + yθ,

to first derivative in θ and second derivative in y.
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Now as in the preceding section we further reexpress y and θ so as to target on exponential

model form but work here with the first row having higher coefficients α̃3/n
1/2, α̃4/n; we

obtain

(aij) =





















a+ k/n 0 −1 α̃3/n
1/2 α̃4/n

k10/n
1/2 1 0 0 −

−{1 + k20/n} 0 γ̃/n − −

−α̃3/n
1/2 0 − − −

−(α̃4 + 3α̃2
3 + 6γ̃)/n − − − −





















to O(n−3/2), where a = −(1/2)log(2π), k = −(3α̃4 + 5α̃2
3)/24, k10 = −α̃3/2, k20 = (α̃4 +

2α̃2
3 + γ̃)/2, and α̃3, α̃4, and γ̃ are meta parameters corresponding to this parameter-based

expansion pattern; the details follow from Abebe et al (1995). Also we have here that the

coefficients in the first column are determined by the meta parameters α̃3, α̃4, and γ̃ using

the norming property. The coefficient γ̃ correspondingly is a measure of departure from

exponential model form.

With this modified exponential type expansion focussed on a parameter value θ0 we can

calculate q(θ0; y) and r(θ0; y) and r∗(θ0; y); for details see Abebe et al (1995). From these

we directly obtain formula (1.5) expressing r∗ in terms of r, when the parameter value is

held fixed at θ0. And we noted in Section 1 that r∗ was not linear in r. Our objective of

course is to obtain a general formula under variation in both y and θ.

If we compare the Taylor expansion in this section with the Taylor expansion in the

preceding section we can note a lot of similarity. We could for example examine the preceding

expansion with θ0 set equal to θ̂0. We would then have that the earlier expansion would

correspond to y0 = y0 and the present expansion would correspond to y0 = ŷ(θ0) = ŷ(θ̂0)

here. From results in Section 4 these can be seen to differ just by order O(n−1/2). Also

we can then see by substitution that this has no effect O(n−3/2) on the meta parameters.

Thus letting α̃3, α̃4, γ̃ designate the present meta parameters we can record the connection

to the earlier meta parameters:

α̃3 = α3 α3 = α̃3

α̃4 = α4 − 3α2
3 − 6γ α4 = α̃4 + 3α̃2

3 + 6γ̃

γ̃ = γ γ = γ̃

to the third order.

If we then make the relevant substitutions in formula (1.5) we obtain formula (1.6),

which demonstrates that different linearity between r∗ and r applies under y change for

fixed θ0 and under θ change for fixed y0. We next quantify this difference in the linearity

pattern.
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4 Meta-Parameters and the Data Point

In Section 2 the Taylor expansion of the log-model used coordinates standardized to expo-

nential model form relative to an observed data point. The resulting mathematical param-

eters α3, α4 and γ could then reasonably be expected to depend on that data point. And

we did mention this in the Introductory Section 1. Thus a direct approach to determining

the r∗ to r relationship would be to evaluate the dependence of the meta parameters on the

expansion point. We pursue this now.

For the Taylor expansion in Section 2 using the array (aij) we take a possible new

expansion point with y0 = a and derive the corresponding parameters say ᾱ3, ᾱ4, γ̄. In

principle this is simple. We take (y0, θ0) = (a, θ̂(a)) and carry through the various steps used

to derive the original array (aij): centre data variable at a; centre parameter at θ̂(a); scale

parameter by new observed information; scale data by cross derivative; reexpress parameter

towards exponential form; reexpress variable towards exponential form. The actual algebra

follows Cakmak et al (1998) and Fraser & Wong (2002) and has been independently derived

by two of the authors together with follow up checks. From this we obtain the following

meta parameters corresponding to the exponential expansion based on a data point y = a

ᾱ3 = α3 − (3α2
3 − 24α4 + 6γ)a/2n1/2

ᾱ4 = α4

γ̄ = γ.

When we change the expansion point from the nominal y = 0 to the new y = a we

see that only one meta parameter changes, the α3, and it changes linearly in a. We also

note that the α3 in the expansion is used as −α3θ
3/6n1/2. Thus if we were to consider an

expansion point that differs by O(n−1/2), say y = a = b/n1/2, then the net effect would be

zero to order O(n−3/2). This then justifies the remark in Section 1 that the versions (1.4)

and (1.5) are directly comparable if θ0 for (1.5) is taken equal to the θ̂(y0) obtained for

(1.4), with the result that the new y0 value differs by just O(n−1/2).

But now let us use the new meta parameters corresponding to the expansion relative to

y0 = a to determine the general relationship between r∗(θ, y) and r(θ, y). Formula (1.4) gives

that connection when y is held fixed at say y0 and the formula uses the meta parameters

corresponding to the y0 expansion. But now we have the change in the meta parameters

that comes from the change in expansion point from y = 0 to y = a. Thus we have

r∗(θ, a) =
ᾱ3

6n1/2
+

(

1 −
3ᾱ4 − 4ᾱ2

3

72n

)

r(θ, a)

=
α3

6n1/2
+

(

1 −
3α4 − 4α2

3

72n

)

r(θ, a) −
1

12n
(3α2

3 − 2α4 + 6γ)a

where as usual terms of order O(n−3/2) are ignored. In this expression we see that a

appears only in the last term and appears with a factor n−1. For this we can rewrite a as

r(a, θ̂0) to order O(n−1/2); in this alternate form it is using an invariant reexpression. If we
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then substitute this in the above formula we obtain formula (1.7) which gives the general

expression for r∗(θ, y) in terms of r(θ, y) in moderate deviations about an expansion point

with (y0, θ0) = (y0, θ̂0).

Our general formula (1.7) shows that there is linearity in a restricted sense but that a

constant correction is needed relative to the expansion point and the resulting coefficients.

5 Cross Validation of the r
∗ to r Relationship

As discussed at the beginning of Section 2 we can examine Taylor expansion about two rather

natural points (y0, θ̂0) or (ŷ(θ0), θ0) and then use a reexpressed variable and reexpressed

parameter that are targetted on exponential model form or on location model form. In the

preceding section we worked entirely with the exponential model form relative to the two

natural expansion points. We used extensive calculations from the literature and derived

the general third order relationship between r∗ and r. To provide independent validation

of this approach we now outline the steps using the targetted location model form. For the

targetted location form we also have the option of either natural expansion point.

First consider the expansion about the data oriented point (y0, θ̂0). As before we center

the variable at y0; then center the parameter at θ̂0 with scaling from the observed informa-

tion ĵ0; and then scale the variable so the cross derivative `0θ;y becomes equal to 1. We then

reexpress the parameter to location form and reexpress the variable to location form, giving

the coefficient array

(aij) =





















a+ k/n 0 −(1 + k02/n) a3/n
1/2 (−a4 − 6c)n

0 −1 −a3/n
1/2 a4/n −

−1 a3/n
1/2 (−a4 + c)/n − −

−a3/n
1/2 a4/n − − −

−a4/n − − − −





















where the constants k and k02 are different from those used for the exponential form and are

available in Section 4 of Cakmak et al (1998); and the current meta parameters designated

as a3, a4, c are oriented towards the location model form; the connection to the earlier,

exponential parameters is also avaiable from Cakmak et al (1998) and is given as

a3 = −α3/2 (5.1)

a4 = (−4α4 + 9α2
3)/12

c = γ + (−2α4 + 3α2
3)/6

We now return to the r∗ to r relationship and record the version for fixed y = y0 which

is available from Cakmak et al (1998):

r∗(θ; y0) = −
a3

3n1/2
+

(

1 +
9a4 − 11a2

3

72n

)

r(θ; y0). (5.2)
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If we are then interested in the r∗ to r relationship for another data expansion point say a

we can follow the pattern in the preceding section and determine the new meta parameters.

This is easier than in the exponential context due to the present location structure and we

write the new meta parameters as ā3, ā4 and c̄ and obtain

ā3 = a3 + 3ca/2n1/2

ā4 = a4

c̄ = c

If we then substitute in the r∗ to r relationship we obtain

r∗(θ, a) = −
a3

3n1/2
+

(

1 +
9a4 − 11a2

3

72n

)

r(θ, a) − ca/2n.

which can then be made coordinate invariant as before

r∗(θ, a) = −
a3

2n1/2
+

(

1 +
9a4 − 11a2

3

72n

)

r(θ, a) −
c

2n
r(y; θ̂0). (5.3)

This provides an alternative version of (1.7) using the present location meta parameters

rather than the exponential meta parameters in (1.7). To check we substitute the conversion

formulas (5.1) to return to the exponential parameters; the substitutions give the formula

(1.7), thus establishing equivalence.

Abebe et al (1995) also do a location model Taylor series expansion based on a chosen

parameter value θ0. It yields the relationship

r∗(θ0, y) = −
ã3

3n1/2
+

(

1 −
9ã4 + 11ã2

3 − 18c̃

72n

)

r(θ0; y). (5.4)

The meta parameters of the two location expansions are related if we take θ0 = θ̂0

ã3 = a3 (5.5)

ã4 = −a4 + 6c (5.6)

c̄ = c (5.7)

If we then substitute (5.5), (5.6) (5.7) in (5.4) we obtain

r∗(θ, a) = −
a3

3n1/2
+

(

1 +
9a4 − 11a2

3

72n

)

r(θ̂0, y) −
c

2n
r(θ̂0, y). (5.8)

which agrees with (5.3).

Other cross validations have been checked. Perhaps the most useful of the r∗ to r

formulas are those recorded as (1.7) in the Introduction and as (5.3) and (5.8) above.
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6 Discussion

The quantity r∗(ψ, y) is a statistical refinement of the familiar signed likelihood root r(ψ, y),

a refinement of several magnitudes with respect to having a standard normal approximation,

with respect to its ability to precisely assess values ψ of the interest paraqmeter, and with

its substantial freedom from the effects of nuisance parameters λ when θ = (ψ, λ). Our

analysis in preceding sections has focussed on a technical aspect of the relationship of r∗

with r, and whether and to what degree there is linearity. And we have found that it is

linear to third order if one or the other argument for the quantities is free but not if they

are both free.

This restricted linearity has important implications for general statistical inference. From

the results in Section 5 we have that r∗ is fully linear in r to third order if and only if the

model has location structure to the third order. This curiously has close ties to current

research that shows that default Bayes has a confidence interpretation if and only if that

model has the third order location structure. Departures from location structure can be

calibrated and defined as a particular form of model curvature. Thus in summary if the

the model has appropriate linearity, then the signed likelihood root suffices for much of

statistical inference. And in the same circumstances the Bayesian use of a default prior

can give accurate results, accurate in the sense that statements concerning the parameter

in relationship to a posterior quantile can conform to the stated percentage level for the

quantile.

While our emphasis has been on the relationship of r∗ with r we do find it appropriate

to give some indication of the wide range of application of r∗ in statistical inference. Some

examples of the high accuracy of the standard normal approximation for r∗ may be found

in Barndorff-Nielsen (1986) and Fraser (1990). A general formula for the use of r∗ may be

found in Fraser, Reid & Wu (1999) and a detailed discussion of its use with regression under

normality or nonnormality and linearity or nonlinearity may be found in Fraser, Wong &

Wu (1999). In general contexts there is a need for approximate ancillarity as developed

for example in Fraser & Reid (2001). An extension that avoids the direct determination of

ancillary characteristics but is restricted to second order accuracy may be found in Skovgaard

(1996), and an extension to the case of discrete variables in Davison et al (2006).
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