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fiducial inference 

 

Fiducial inference introduced the pivotal inversion that is central to modern 

confidence theory.  Initially this provided confidence bounds but later was 

generalized to give confidence distributions on the parameter space. For this it 

came in direct conflict with the then prominent Bayesian approach called 

inverse probability. Confidence distributions are now however widespread in 

modern likelihood theory.  Recent results from this theory indicate that the 

developed fiducial confidence approach is giving a consistent statement of 

where the parameter is with respect to the data, and indeed is consistent with 

recent Bayesian approaches that allow data dependent priors. 
  

 

In a seminal paper, R. A. Fisher (1930) introduced the notion of fiducial inference as 

an alternative to what was then called inverse probability. The key step in fiducial 

inference is pivotal inversion, which is now standard in all of confidence theory. 

Fisher’s example involved four pairs of observations with a concern for the 

correlation coefficient ρ between observations in a pair. He had available the 

distribution function F(r; ρ) for the sample correlation coefficient r, which depends 

only on the population correlation ρ; and he had an observed correlation value  

r0 = .99. He did numerical calculations with the distribution function F(r; ρ), which he 

had himself previously derived. And he then reported (.765, 1) as a 95 per cent 

interval for ρ. This is fully in accord with current confidence interval theory. In 

present notation we would write  

 Lˆ( 99 ) 95 ( ) { in ( 1) }P r P P Lˆρ ρ ρ ρ ρρ ρ< . ; = . = < ; = , ; ,   

where the solution of F(r; ρ) = .95 for ρ to obtain the parameter lower bound 

L Lˆ ˆ ( )rρ ρ=  is standard confidence or pivotal inversion applied to the pivot  

u = F(r; ρ), which of course has a Uniform (0,1) distribution. 

 But Fisher (for example, 1930; 1933; 1935; 1956) went further and presented 

a distribution, called a fiducial distribution, for the parameter ρ, which as a density 

can be used for calculations such as  
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and where for the example the density has the form  
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 fid ( ) ( ) ( )f r F rρ ρ ρ; = − ∂/∂ ; ;   

this density agrees with what in recent likelihood theory would be called a confidence 

distribution. 

 But Fisher went still further and spoke of fiducial probability rather than just 

statements for an interval such as confidence level that we would commonly use. This 

attribution of probability that a parameter lies in the interval (.765, 1) attracted attack 

from both the inverse probability community at the time and from the more 

conventional community that would now be called the frequentist, and includes those 

having philosophical persuasions. As a consequence, many have viewed fiducial 

probability as wrong, and strong stigmata have been attached to it. This is rather 

extraordinary, given that the papers by Fisher are seminal for all of confidence theory 

and differ only in small deviations of presentation and development. 

 The key aspects of fiducial that evoked criticism are (a) that different pivots 

can lead to different distributions and thus different intervals, (b) that marginalization 

of a parameter distribution to a component parameter can give a distribution that 

depends on data in a way different from the obvious that would come from that data, 

and (c) that constraints on the parameter can give a distribution without total 

probability being equal to 1. 

 The alternative culture when Fisher (1930) introduced fiducial inference was 

inverse probability (Bayes, 1763). For this, the probability at a data point y0, given as 

f(y0; θ) and now called likelihood (Fisher, 1922) and written L(θ; y0), is adjusted by a 

weight function w(θ) to give the composite  

 0( ) ( )w L yθ θ ;   

which is then treated as an unnormed density for the parameter. The weight function 

w(θ) is chosen based on properties of the model and called by various names, with 

default prior being the most unassuming. The present rather large community using 

this approach is a subgroup of the Bayesian community and the approach has come to 

be called default Bayesian inference rather than inverse probability analysis; it can 

also be viewed as a routine frequentist use of the frequentist likelihood function 

coupled with an ad hoc weight function.  

 This commonly called default Bayesian approach offers great freedom for the 

development of statistical techniques: take an observed likelihood L(θ; y0) based on 

Fisher’s (1922) proposal; attach a convenient weight function w(θ) to it; and use the 
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composite for inference for θ. With available high-powered computers and Markov 

Chain Monte Carlo this leads to a wealth of possible analyses, in contrast to rather 

limited results from earlier frequentist approaches.  

 But this leads to perhaps the most influential criticism of the fiducial method 

(Lindley, 1958): (d) that a fiducial distribution is typically not an inverse probability 

or default Bayesian posterior.  

 Curiously, one finds that the default Bayesian approach is subject to precisely 

the same criticisms (a), (b), (c) that have been attached to the fiducial approach (for 

example, concerning (b), see Dawid, Stone and Zidek, 1973; see also Fraser, 1961; 

1995). So the fact (d) that a fiducial analysis is not in general a default Bayesian 

analysis seems a rather hollow criticism by Lindley (1958). And of course default 

Bayes typically does not lead to intervals that have the confidence property. 

Moreover, a recently dominant interest within the current Bayesian community 

(Fraser and Reid, 2002) is to have methods that do reproduce in repeated sampling as 

do confidence intervals. Perhaps the default Bayesian community is rushing in where 

the frequentist community neglected its own likelihood function.  

 But perhaps Fisher and his fiducial approach should be given credit for the 

fundamental contribution of the pivotal inversion, and of giving rise to the universal 

confidence procedures. The change of name from fiducial to confidence and then the 

derogation of fiducial seem a rather heavy historical penalty to Fisher and his 

profound and seminal developments in statistics. Perhaps ‘fiducial’ did move too 

quickly, certainly for the times, and did neglect to develop some fine details. But the 

results are profound; and the default Bayesian community is finding that it cannot  

ignore in substance the fiducial criticisms (a), (b), (c); and can’t avoid the repeated 

sampling reproducibility that is the foundation of confidence theory (d).  

 But then, how does fiducial inference work in more general contexts, 

particularly in the light of recent likelihood theory? For each independent coordinate, 

say, yi, a pivot ( )i i iz h y θ= ;  is needed that describes with full deference to continuity 

how the coordinate yi measures or provides information on the parameter θ; this pivot 

needs to be of the same dimension as the variable yi and of course as implied by its 

name has a fixed distribution free of θ. If a coordinate is scalar, the pivot is 

necessarily equivalent to the distribution function Fi(yi; θ) for that coordinate; if it is 

vector then the choice of pivot represents an explicit statement of how that coordinate 
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variable affects the parameter and is taken as a given for the inference process.  

Likelihood theory then shows that the full pivot can be re-expressed to third-order 

accuracy in the moderate deviations region by an equivalent pivot in which the 

parameter θ of, say, dimension p appears in only p coordinates of the new pivot. The 

conditional distribution of these p coordinates given the remaining pivot coordinates 

(which are of course directly observable) gives effectively a new pivot with of course 

the same dimension as the parameter. This allows for the standard confidence pivotal 

inversion to produce confidence regions.  

 If inference focuses on a particular parameter component ψ(θ) of interest with 

dimension d, then the recent likelihood theory shows that the interest parameter can 

be isolated to third order in a d dimensional component of an equivalent pivot, and the 

marginal model for that pivot is otherwise free of the full parameter and provides 

third-order confidence regions for the interest parameter. For some background see 

Fraser and Reid (2001), Fraser, Reid and Wu (2001), and Fraser (2004).  

 

D. A. S. Fraser 

See also 
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