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Abstract

Recent likelihood theory gives complete inference for scalar parameters in continu-

ous statistical models; the methodology involves conditioning at an initial stage, and

marginalization at a subsequent stage. Using three simple examples we outline this

general route from model with data to likelihood and p-value function for assessing an

arbitrary scalar parameter. In wide generality the results are unique in the context of

combining general components, but not of course for combining normal components

with their multiple inherent symmetries. This gives an inference presentation, from

which standard tests, estimates and confidence intervals are immediately available.

Extensions for the vector parameter case are discussed.

1 Introduction

A simple example with an observed likelihood function and a special reparameterization
illustrates the route to accurate p-values; the needed general case formulas are then described:
see Sections 2, 3, and 4. A second example in Section 5 then illustrates the elimination of
nuisance parameter e↵ect and the related theory is described in Section 6. A third example
in Section 7 then illustrates the elimination of data information that pertains to known error
patterns; the corresponding general case formulas are then described in Section 8. These
three examples with theory thus describe a standardized route to p-values for arbitrary scalar
parameters. Section 9 then indicates how the methodology applies to the familiar Box &
Cox (1964) problem, with the related theory outlined in Section 10. Section 11 then gives a
brief overview and indicates the extension to the vector interest parameter case.
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2 A simple example: the needed ingredients

Consider a scalar variable y providing measurement information on an unknown ✓ with an
extreme-value error distribution; and suppose there is a single observed value. The model is

f(y; ✓) = exp{�(y � ✓)� e

�(y�✓)}. (1)

and the observed data value is y

0 = 21.5.

Our position is that the total inference information concerning ✓ is given by two functions
L(✓) and p(✓) which record probability AT the observed data point and probability LEFT
of the observed data point. For the first it is often convenient to record it in logarithmic
form `(✓). Thus for the example we have

`(✓) = a + ✓ � e

✓�21.5
,

p(✓) = exp(�e

✓�21.5) (2)

where the constant a can be viewed as arbitrary. In Figure 1a we record the probability L(✓)
at the data point 21.5, scaled so the maximum value is 1; and in Figure 1b we record the
probability LEFT of the data point 21.5. We view the probability LEFT of the data given
by p(✓) as recording where the data point lies in the distribution with parameter value ✓,
that is, as recording the PERCENTILE POSITION of the data point in the ✓ distribution.

In general contexts `(✓) is typically available immediately while p(✓) is often analytically
intractable in various ways not evident in the example. Fortunately highly accurate approx-
imations to p(✓) are available in wide generality from recent likelihood theory. The approx-
imations are computationally routinely and mechanically available from the log-likelihood
function `(✓) together with a typically easily accessible canonical reparameterization '(✓).
For this example the reparameterization is

'(✓) = exp(✓ � 21.5)� 1. (3)

The corresponding exact p-value function p(✓) and the approximate p-value function say
p̃(✓) are plotted as the solid and dotted curves in Figure 1b. The high accuracy of the
approximation is the familiar and surprising result in applications.
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The reparameterization (3) in the case of a scalar variable is obtained as the gradient of
likelihood at the observed data:

'(✓) =
@

@y

`(✓; y)

�����
y

0

, (4)

and in the particular case of a full exponential model is given by any version of the canonical
parameter. We will see that the basic ingredients `(✓) and '(✓) lead quite generally to
p-values for scalar interest parameter.

3 Familiar inference summaries

A model with data and an interest parameter say ✓ lead quite generally to the log-likelihood
`(✓) describing log-probability AT the data and to the p-value p(✓) describing probability
LEFT of the data. We view these as recording the total inference information concerning
the interest parameter as provided by the model with data. Conventionally however, simple
inference summaries are wanted, and these are available immediately.

For example consider the total inference given by (2). A central 95% confidence interval is
given as

(✓̂
L

, ✓̂

U

) = {p�1(0.975), p�1(0.025)}
which has the value (17.824, 22.805). A median-type estimate is given as

✓̃ = p

�1(0.5)

which has the value 21.133. If a particular parameter value ✓ = ✓0 is to be assessed, the
corresponding p-value is given as

p(✓0);

if ✓0 = 22 the percentile position of the data point is 19.2%. An upper 99% bound for ✓ is
given as

p

�1(0.01),

which for the numerical example has the value 23.027.

4 From the basic ingredients to p-values

For the case of a scalar parameter ✓ with an available log likelihood `(✓) and an available
canonical parameter '(✓), the p-value function p(✓) is obtained as

p(✓) = �(r) +

 
1

r

� 1

q

!

�(r) (5)

= �(r � r

�1 log
r

q

). (6)
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Figure 1: Data 21.5 from the extreme value model (1): (a) probability AT the data point
21.5 scaled so the maximum value is 1; (b) probability LEFT of the data point 21.5 with
exact value p(✓) as solid line and approximation p̃(✓) as dotted line (these are essentially
superimposed on each other).
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where r is the signed likelihood ratio quantity and q is the Wald quantity in the ' parame-
terization,

r = sign(✓̂ � ✓)[2{`(✓̂)� `(✓)}]1/2 (7)

q = sign(✓̂ � ✓)|'̂� '|ĵ1/2
''

; (8)

for this, ✓̂ and '̂, are maximum likelihood values for ✓ and '(✓), and ĵ

''

= (�@2
/@'

2)`(✓)|
✓̂

available as (�@2
/@✓

2)`(✓)|
✓̂

(@'/@✓)�2|
✓̂

is the observed information. Formulas (5) and (6)
are third order accurate and third order equivalent.

For an exponential family model, the reparameterization '(✓) is just the regular canonical
parameter. The third order calculation of p(✓) by numerical integration of a density is
available from Daniels (1954) and the explicit formula (5) is given in Lugannani and Rice
(1980); the alternate formula (6) that avoids the risk of values outside [0, 1] is given in
Barndor↵-Nielsen (1986, 1991). In this exponential model context, these formulas correspond
to saddlepoint approximations..

For much more general statistical models with asymptotic properties, the same high accuracy
is available widely extending the saddlepoint point type approximation approach. This uses
formula (4) for '(✓) and is discussed in Fraser (1990) with various examples of its application.
Its use can be based on Taylor series expansions; see Cakmak et al. (1998). And it can be
derived also from Barndor↵-Nielsen (1986); see for example Fraser and Reid (1995).

5 A simple example with nuisance parameter

Consider the gamma model with mean µ and shape parameter �

f(y; �, µ) = ��1(�)

 
�

µ

!
�

y

��1 exp(��
µ

y);

and suppose we have an extremely small sample n = 2 with data (y0
1, y

0
2) = (1, 4); see Fraser,

Reid and Wong (1997).

The observed log-likelihood and reparameterization are given in the following array:

`(�, µ) = 1.38629(� � 1)� 5
�

µ

+ 2� log
�

µ

� 2 log �(�), (9)

'

0(�, µ) = (�, �/µ); (10)

the reparameterization is the canonical parameter of the model, which is exponential. The
two parameter functions `(✓) and '(✓) lead quite generally to highly accurate p-values for
any parameter of interest.
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Table 1: Third order p̃(µ) and exact p(µ) from ` and ' in (9) and (10).

µ 1 3 5 7 9
p̃ .910 .466 .291 .230 .200
p .901 .464 .318 .256 .225

For assessing a parameter say µ, the recent third order likelihood methods use formula (5) or
(6) together with modified versions of r and q that are recorded in the next section. Exact
values for the p-value function are available by numerical integration. Table 1 records the
approximate and exact values for the following five values 1,3, 5, 7 and 9 for µ.

The actual distributions underlying these p-values for this very small sample n = 2 example
have a U or bathtub shaped density, as reported for various values of µ in Fraser, Reid and
Wong (1997). What is quite remarkable is that the use of the standard normal distribution
function with (5) or (6) can give the substantial accuracy indicated in the table. The
moderate departures are not particularly serious but we do note that the exact values were
obtained by numerical integration that was not fine-tuned to the unusual bathtub density
shape of the distribution for this VERY small sample case. Experience with the third order
procedures suggests that the third order values may be more reliable here than the nominal
exact values; and simulations with N = 100, 000 provide approximations to the exact with
standard error less than .0016 and confirm the accuracy.

The example has exponential model form. More generally with a variable and parameter of
dimension p and with asymptotic properties, we obtain the reparameterization '(✓) as the
gradient of likelihood at the observed data

'

0(✓) = r`(✓; y)|
y

0 =
@

@y

0 `(✓; y)|
y

0
. (11)

In particular for an exponential model this just recovers a version of the canonical parameter,
an a�ne function of the obvious version; either works equally well for computations.

6 From `(✓) and '(✓) to p-value; with nuisance param-

eter

For the vector parameter case with an available log-likelihood `(✓) and canonical parameter
 (✓), the p-value function p( ) for assessing a scalar interest parameter  (✓) can be obtained
using (5) or (6) together with a signed likelihood ratio r and a modified Wald type quantity
q,

r( ) = sign( ̂ �  )[2{`(✓̂)� `(✓̂
 

)}]1/2 (12)
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q( ) = sign( ̂ �  )|�̂� �̂

 

|

8
<

:
|ĵ
''

|
|j(��)(✓̂ )|

9
=

;

1/2

; (13)

for this ✓ = (�, ) has been written in terms of a nuisance parameter � that complements
the interest parameter  . The scalar parameter �(✓) is a rotated coordinate of '(✓) that
acts as a surrogate for  (✓) and has linearity in terms of '(✓). Explicit formulas for the
components in (12) and (13) are recorded in the Appendix Sections 12.1 and 12.2.

The basis for the analysis just described derives from that for a full exponential model

f(y; ✓) = exp{'0(✓)t(y)� k(✓)}h(y)

where ' and t are p-dimensional and '(✓) and ✓ are assumed to be one-one equivalent.
Early analyses of this model considered the case where the interest parameter  (✓) was a
scalar coordinate of '(✓); in this case the conditional distribution of the coordinate of t(y)
corresponding to  is examined conditional on the coordinates corresponding to � and this
conditional distribution is free of � and can be analyzed as in the example in Section 2 using
the results summarized in Section 3.

This conditional approach would seem however to require for implementation an explicit form
for the conditional distribution; however a third order approximation for the corresponding
likelihood is available as

`( ) = `

p

( ) +
1

2
log |j

��

(✓̂
 

)| (14)

which then permits the direct use of the theory in Section 3. It can also be adjusted to
handle the case where  (✓) is a ratio of canonical parameters, as is the case with the gamma
example in Section 5; we do not give details here for this pattern of analysis.

For quite general cases, where  (✓) does not have linearity in terms of '(✓), a marginal ap-
proach replaces the conditional approach. A p-value obtained from the conditional approach
when available is of course a marginal p-value and does agree with that obtained from the
marginal approach. More generally just the marginal version is available.

For the case of an interest parameter  (✓) and a nuisance parameter �(✓) of dimensions d

and p� d, a marginal distribution for assessing  (✓) is available for an appropriate variable
of dimension d. This distribution is obtained in e↵ect by integrating out a variable corre-
sponding to the nuisance parameter. If the interest parameter is scalar, then the needed r

and the q are given by (12, 13); for details see Fraser and Reid (1995, 2001).

7 Example with redundant variables

In the preceding examples we examined cases where the variable and the parameter have
the same dimension. Of course for the case of sampling from the gamma model in Section
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5 a su�ciency reduction could have provided the reduction to the two dimensions of the
gamma parameters. Now we consider the more typical case where each variable is giving
information on more than one parameter coordinate but overall with multiple variables there
is redundancy, more variables than parameters.

For an example consider the regression model y = X�+�z where z = (z1, . . . , zn

)0 is a sample
from the Student(6) distribution, a longer tailed distribution often viewed as providing a
better pattern for the error as revealed by large data sets. We suppose that the highest
order regression coe�cient �

r

is of interest.

For this example the parameter has dimension p = r + 1 and the variable y has dimension
n which we assume to be larger than p. This is an example of a transformation model; see
for example Fraser (1979) and references therein.

The likelihood function can be written as a sum `(✓) = ⌃n

1`i(✓) where

`

i

(✓) = � log � + `{(y
i

�X

i

�)��1}, (15)

`(z) = log f6(z) is the logarithm of the Student(6) density function, and X

i

is the ith row of
the design matrix X. The canonical parameter can also be written as a sum '(✓) = ⌃n

1'i

(✓)
where

'

0
i

(✓) = �

�1
s{(y

i

�X

i

�)��1}(X
i

, ẑ

i

) (16)

where ẑ

i

is the ith coordinate of the standardized residual ẑ = (y � X �̂)�̂�1 and s(z) =
d`(z)/dz. The analysis then proceeds as discussed in Sections 5 and 6. For some discussion
see Fraser, Wong and Wu (1999).

Simulations have been used to assess this p-value procedure (Fraser, Wong and Wu, ibid).
In one case an extremely small data size was examined with n = 2 and X = (1), and
thus with a single regression coe�cient which is the mean µ. In each instance a p-value
was calculated for assessing the true µ. This was then repeated a total of N = 100, 000
times and the distribution of the p-values was examined for uniformity on the interval (0, 1).
The proportions in the intervals formed by (0, 0.005, 0.025, 0.5, 0.975, 0.999, 1.0) were then
examined relative to the nominal target values of 0.5%, 2.0%, 47.5%, 47.5%, 2.0%, 0.5%.
See Table 2 which also records the proportions for the familiar first order signed likelihood
ratio (slr) p-value �(r(µ)). In each case the two standard error limit for the N = 100, 000
simulations is recorded relative to the target probability.

The likelihood ratio values clearly di↵er substantially from the target values. The third order
likelihood values are adequate for practical purposes and are of course calculated here for an
EXTREMELY small data size n = 2.
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Table 2: Proportions of p-values in 6 intervals on (0, 1) using the signed likelihood ratio (slr),
and the third order (3rd) procedures.

Interval (0, .005) (.005, .025) (.025, .500) (.500, .975) (.975, .995) (.995, 1)
slr .05583 .05919 .38677 .38266 .05831 .05724
3rd .00707 .02463 .47018 .46502 .02522 .00788
2SE .0004 .0009 .003 .003 .0009 .0004

Nominal .005 .02 .475 .475 .02 .005

8 With redundant variables

The regression model example is a special case of a transformation model which has an exact
ancillary say a. Correspondingly the model then has the form f(y; ✓) = g(s|a; ✓)h(a) where
s and a have dimensions p and n � p. Now consider the more general case where a is an
approximate ancillary and f(y; ✓) = g(s|a; ✓)h(a) holds to the appropriate order.

For the same dimension case discussed in Sections 5 and 6 we saw that the canonical pa-
rameter '(✓) was obtained (11) as the gradient of likelihood; we also noted that it could
be replaced by an a�ne equivalent without altering the calculations of a p-value. For the
present case if we accept the use of a conditional model given the ancillary a we would then
have

'

0(✓) =
@

@s

0 `(✓; s|a)|
y

0
.

For this let V = (v1, . . . , vp

) be p linearly independent vectors tangent to a(y) = a(y0) at the
data point y = y

0. If we then take directional derivatives

'

0(✓) =
d

dV

log f(y; ✓) =
d

ds

log g(s|a; ✓)

we obtain the canonical parameter, or at least an a�ne equivalent of the obvious canonical
parameter. It is then convenient to write

'

0(✓) = `;V (✓; y0) (17)

where the subscript denotes directional derivatives taken in the directions given by V .

For the regression model in Section 7 the ancillary has level surfaces, which correspond to
the linear spaces L(X, ẑ) or L(X, y), and these have tangent vectors V = (X, ẑ) at the data
point. Thus (16) gives the gradient of the likelihood taken for fixed ancillary.
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9 An example with approximate conditioning

Box and Cox (1964) examine the use of transformations of some initial variable y to obtain a
new variable ỹ = h(y,�) that conforms more closely to the familiar linear model ỹ = X�+�z

in regard to linearity of the model, constant error variance, and error normality. They focused
on the power transformation ỹ = y

� and thus assumed in e↵ect that the statistical model
is defined on the positive real axis. The power transformations are sometimes given in the
standardized form ỹ = (y�� 1)/� but the distinction can be absorbed into the linear model
structure provided the design matrix X contains the 1-vector, either explicitly or implicitly.
We thus examine the model

y = (X� + �z)1/�

where the power transformation is applied coordinate by coordinate to the n-vector of re-
sponse values y

i

. For simplicity we consider the case of standard normal errors but other
error forms are treated easily as indicated in Section 7. And we give formulas for the case
where a single independent variable is involved.

Chen, Lockhart and Stephens (2002) give background on the Box and Cox problem and
discuss the choice of parameter to estimate, emphasizing the stability of the corresponding
estimation procedure; they then give preference to a ratio �/� of regression parameter to
error standard deviation. They also consider tests for normality and develop asymptotic
approximations to the distribution of estimators of natural parameters. Yang (2002) inves-
tigates confidence intervals for the median response for a particular choice of input variable.
Fraser, Wong and Wu (2004) consider the use of recent likelihood theory for the analysis of
an appropriate interest parameter of the model.

The likelihood function can be written as a sum `(✓) = ⌃n

1`i(✓) where

`

i

(✓) = � log � � 1

2�2
(y�

i

� ↵� �x

i

)2 + log |�| + (�� 1) log y

i

for each y

i

. The canonical parameterization is also obtained as a sum of contributions

'

i

(✓) = {��y
��1
i

�

2
(y�

i

� ↵� �x

i

) + (�� 1)y�1
i

}(v
i1, vi2, vi3, vi4)

from each y

i

where the row vector V

i

= (v1i

, v2i

, v3i

, v4i

) is given as

V

i

=
y

i

�̂y

�̂

i

(1, x
i

, ẑ

i

,�y

�̂

i

log y

i

) (18)

and ẑ

i

= �̂

�1(y�̂
i

� ↵̂� �̂x

i

).

Chen, Lockhart and Stephens (2002) consider a large data set with n = 107. For illustration
suppost we take x = 32 litres as a key input value and consider the kilometers per litre or
how distance changes with input gasoline at that fuel level:

 (✓) =
d

dx

(↵ + �x)1/�|
x=32

= ��

�1(↵ + 32�)(1/�)�1
.
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The likelihood function L

⇤( ) and p-value function p( ) are then available routinely as we
have descibed and give the essential information concerning the kilometers per litre  at the
input level x = 32 litres.

10 Method for approximate conditioning

A familiar idea in elementary probability and statistics involves probability as unit mass that
gets mapped or moved when the distribution of some new variable is wanted. For example
with the regression model of Section 7 we can write y = X� + �z giving the distribution
of the response vector y from that for the error vector, or we can use the pivotal form
z = (y�X�)��1 to consider the reverse mapping. It is then straightforward to think of how
parameter change alters the mapping of the error z to the response space. In particular if
we calculate (@2

y/@�

0
@�)|

y

for fixed z, we obtain

V =
@y

@�

0
�

= (X, z)

as indicated in Section 8.

This idea of movement of probability was used in Fraser and Reid (2001) to develop approx-
imate ancillaries in a general context. Let z = z(y, ✓) be a full n-dimensional ancillary that
typically respects properties such as continuity and independence between observations. We
can calculate how parameter change a↵ects a possible response value for fixed pivotal. This
is straightforward at the observed data y

0 with corresponding maximum likelihood value ✓̂0

and gives the directions V = (v1, . . . , vp

)

V = �z

�1
y

z;✓|(y0
,✓̂

0) (19)

where the subscripts denote partial di↵erentiation; the formula (19) is obtained from the total
derivative of the pivot z(y; ✓). Theory shows that in some reasonable generality this gives
vectors tangent to a second order ancillary and that this su�ces for third order inference.

For the regression example we have

z

y

= �

�1
I z;✓ = �

�1(�X,�(y �X�)��1)

which gives V = (X, ẑ) at the point (y0
, ✓̂

0) as discussed in Section 7.

For the Box and Cox example in Section 9 it is easier to work coordinate by coordinate. For
the ith coordinate we have the pivotal

z

i

= (y�
i

� ↵� �x

i

)��1

which can be solved giving
y

i

= (↵ + �x

i

+ �z

i

)1/�

.
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The di↵erentiation can then be done directly rather than through the total derivative and
we obtain the ith row of V

V

i

=
y

i

�̂y

�̂

i

(1, x
i

, ẑ

i

,�y

�̂

i

log y

i

)

as recorded at (18).

11 Discussion

For the inference analysis of a statistical model with data, various methods have been pro-
posed for e↵ectively reducing the dimension from that of the original variable to the di-
mension of the parameter, for then obtaining a pivotal quantity for assessing a parameter
of interest, for then obtaining reliable approximations for the distribution of the pivotal
quantity, and for then obtaining the observed p-value function for assessing the parameter
of interest. The examination of the general asymptotic model and its structure identifies
the general route through this process and determines its uniqueness in quite general con-
texts. Other routes that apply the conditioning and marginalization in a di↵erent pattern
require specialized model structure but in most cases agree with the general method to high
accuracy.

The reduction of the dimension of the variable to that of the parameter is in e↵ect implicit
in the extraction of the canonical or exponential reparameterization '(✓) and its availability
with the full loglikelihood `(✓).

The reduction to the dimension of the interest parameter, in the scalar interest case, is
obtained in e↵ect by the calculation of the specialized Wald quantity q( ) given as (13).
The calcualtion of the p-value function p( ) is then available from (5) or (6) as if the model
was a full exponential model with canonical parameter ' and and cumulant generating
function `('̂)� `(') where implicitly it is assumed that the original ✓ has been reexpressed
in terms of '.

With the general availability of the canonical parameterization ', using (17) and (19) this
indicates the direct availability of p-value functions for scalar interest parameters.

For a vector interest parameters  (✓) of dimension say d a third order likelihood `

⇤( )
is availble from (22) using (23). A corresponding ' type reparameterization of  has been
developed and is in preliminary form: this will enable the direct analysis of the likelihood and
'-type reparameterization exactly in the pattern discusssed above for an initial likelihood and
' parameterization. However for the calculation of the p-value for testing a vector parameter
it now seems clear that third order accuracy is unavailable without details of model structure
beyond that implicitly available with the likelihood and canonical reparameterization.
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12 Appendix

12.1 The surrogate for  (✓)

�(✓) =
 

'

0(✓̂
 

)

| 
'

0(✓̂
 

)|
'(✓); (20)

The row vector multiplying '(✓) is the unit vector version of the gradient  
'

0(✓̂
 

) and is
obtained by evaluating

 

'

0(✓) =
@ (✓)

@'

0 =
@ (✓)

@✓

0

 
@'(✓)

@✓

0

!�1

=  

'

0(✓)'�1
✓

0 (✓)

at ✓̂
 

; this gives a unit vector perpendicular to  {✓(')} at '̂
 

.

12.2 Information determinants

The information determinants are recalibrated to the ' parameterization

|ĵ
''

| = |ĵ
✓✓

||'
✓

(✓̂)|�2

|j(��)(✓̂ )| = |j
��

(✓̂
 

)||'
�

0(✓̂
 

)|�2 = |j
��

(✓̂
 

)||X|�2 (21)

where the right hand p⇥ (p� 1) determinant |X| = |X 0
X|1/2 uses X = '

�

0(✓̂
 

) which in the
regression context records the volume on the regression surface as a proportion of volume
for the regression coe�cients.

12.3 Likelihood for a component  (✓)

Consider a component parameter  (✓) of dimension d. A third order determinant of likeli-
hood for  is obtained from an asymptotic analysis (Fraser, 2003)

`

⇤( ) = `

p

( ) +
1

2
log |j(��)(✓̂ )| (22)

where `
p

( ) = `(✓̂
 

) is the profile and j(��)(✓̂ ) is a special version of the nuisance information
calculated with a canonical parameter '(✓) that has been rescaled to give an identity infor-
mation at the observed data, ĵ

0 = I; the needed information determinant can be calculated
directly as

|j(��)(✓̂ )| = |j
��

(✓̂
 

)||'0
�

(✓̂
 

)ĵ
''

'

�

0(✓̂
 

)|�1 (23)
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without the prescribed rescaling.

For the scalar case a corresponding canonical parameter is available; we designate it as '̃( ).
We do need the rescaling of the original '(✓) and assume thus that '̂ = I. Then

'̃( ) = �(�̂
 

, )� �(�̂,  ̂)

For certain uses as indicated by formulas (12) and (13) the '̃ values do need to be recentered.
This allows the analysis of a component parameter  using a likelihood `⇤( ) with canonical
parameter '̃( ) by direct calculation from `

⇤( ), '̃( ) as described in Section 4.
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