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SUMMARY

We have a statistic for assessing an observed data point relative to a statistical model but find
that its distribution function depends on the parameter. To obtain the corresponding p-value, we
require the minimally modified statistic that is ancillary; this process is called Studentization. We
use recent likelihood theory to develop a maximal third-order ancillary; this gives immediately a
candidate Studentized statistic. We show that the corresponding p-value is higher order Un(0, 1),
is equivalent to a repeated bootstrap version of the initial statistic and agrees with a special
Bayesian modification of the original statistic. More importantly, the modified statistic and
p-value are available by Markov chain Monte Carlo simulations and in some cases, by higher
order approximation methods. Examples, including the Behrens–Fisher problem, are given to
indicate the ease and flexibility of the approach.

Some key words: Ancillary; Bayesian; Behrens–Fisher problem; Bootstrap; Conditioning; Departure measure; Likeli-
hood; p-value; Studentization.

1. INTRODUCTION

Third-order highly accurate p-values are routinely available for assessing scalar parameters in
a statistical model having moderate regularity; see, for example, Fraser et al. (1999). We consider
here the case where only a null model is available, together with a pragmatically chosen departure
measure. We derive third-order p-values by frequentist, Bayesian and bootstrap analyses, and
then show them to be equal to the third order: a choice among them would typically depend on
the ease of implementation in an application.

Suppose, we have a null model f (y; θ) for a statistical context and wish to judge the accept-
ability of the model in the presence of data y0; the null model may exist on its own, or could be
a restriction of a larger embedding model. Also suppose, we have a scalar statistic t(y) that has
been proposed as a plausible signed measure of departure of data from the model; the statistic
might have arisen pragmatically based on physical properties in the context, or could be a simple
departure measure, perhaps of the form estimate-minus-parameter, in an embedding model.

We would naturally expect the departure t(y) to have a distribution that depends on the
parameter θ in the null model, and then want to construct a modified departure, t̃(y) say, that is
ancillary, and thus with a θ-free distribution, but still with as much as possible of the structure
of the original measure. One would also want to have the corresponding distribution function
H (t̃), so as to obtain the observed p-value, p0 = H (t̃ 0), being the percentage position of the data
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2 D.A.S. FRASER AND JUDITH ROUSSEAU

with respect to the null model. In this formulation, the only suggestion of possible alternatives
to the null is to be found in the choice of the departure statistic t(y). We do not here address this
important issue, which may be strongly guided by the physical context. In this paper, we develop
p-values for t(y), but based directly on the modified version t̃(y).

As a simple example, consider a sample purportedly from a normal model with mean µ0,

together with a proposed departure measure t(y) = ȳ: we might reasonably hope that the indicated
p-value would be p0 = Hn−1(t̃ 0), where Hν is the Student distribution function with ν degrees of
freedom and t̃ 0 is the observed value of the usual t-statistic; this p-value is, of course, the Student
value recording the percentage position of the data with respect to the normal model located
at µ0.

The process of developing a valid t̃(y) from t(y) is here called general Studentization, a
generalization of the Student (1908) conversion of ȳ or ȳ − µ0 into the familiar t-statistic with
its tn−1 distribution function as just described. This general problem has had extensive recent
discussion in the literature, particularly the Bayesian literature (Bayarri & Berger, 2000; Robins
et al., 2000).

Frequentist theory gives a simple first-order p-value called the plug-in p-value,

p0
plug = G(t0; θ̂0), (1·1)

where G(t ; θ) = pr{t(y) < t ; θ} is the distribution function for t(y) and the parameter has been
replaced by its observed maximum-likelihood value. This p-value is known to be remarkably
unreliable in many contexts (Bayarri & Berger, 2000; Robins et al., 2000).

Bootstrap theory directly addresses (Beran, 1988) the general Studentization problem: one
samples from the null model distribution using the observed maximum-likelihood value for the
parameter. As such, the bootstrap is calculating the plug-in p-value p0

plug by simulations, and
typically centres an initial statistic.

The recent Bayesian literature has developed many p-values for the general Studentization
problem, but from a different viewpoint. As mentioned in Bayarri & Berger (2000), ‘Bayesians
have a natural way to eliminate nuisance parameters: integrate them out.’ With a prior π(θ) added
to the present context, the Bayesian averaged density for y, called the prior predictive density, is

m(y) = c
∫

f (y; θ)π(θ)dθ

as appropriately normalized, and gives the prior-based p-value

p0
prior = pr{t(y) < t(y0); m(·)};

see Box (1980). The prior predictive density m(y) can, however, be improper as the normal
example using π(µ, σ ) = cσ−1 indicates. An alternative Bayesian analogue of the plug-in
p-value is the posterior p-value,

p0
post =

∫
�

pr{t(y) � t0; θ}dπ(θ | y0);

this also has disadvantages (Bayarri & Berger, 2000; Robbins et al., 2000), but for the normal
example is first-order equivalent to the plug-in or bootstrap p-value.

For the normal example, the full plug-in or bootstrap distribution is that of a sample from a
normal with mean µ0 and standard deviation σ̂ 0 = {∑(yi − µ0)2/n}1/2, and the derived distri-
bution of ȳ is correspondingly normal with mean µ0 and standard deviation σ̂ 0/n1/2; the plug-in
p-value is then p0 = �{n1/2(ȳ0 − µ0)/σ̂ 0}. This is centred, but underestimates departure from
the centre. However, if we examine this p-value as a statistic, as a function of the original data,
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Studentization and deriving accurate p-values 3

we can see that it is one-to-one equivalent to the ordinary Student statistic t̃ = n1/2(ȳ − µ0)/sy .
Thus, if the plug-in or bootstrap approach were to be reapplied to the modified statistic, we would
obtain the observed p-value p0 = Hn−1(t̃0), up to the accuracy of the sampling simulations used.

In § 3, we use recent likelihood theory (Fraser & Reid, 1995, 2001; Fraser et al., 1999; Fraser,
2003) to develop a definitive p-value. This is obtained from a full (n − p)-dimensional third-
order ancillary a(y) with density g(a) and requires mild regularity, namely asymptotic properties,
p-dimensional continuous parameter and smoothness of the maximum-likelihood statistic θ̂(y).
While the choice of ancillary is not unique, the corresponding distribution g(a) is unique to third
order; the device for demonstrating this uses convenient, but non-standard coordinates for the
ancillary a. To be specific, the coordinates are taken to be points on the observed maximum-
likelihood surface; a fixed choice of maximum-likelihood surface is also a viable option and will
be discussed briefly.

The frequentist p-value is then obtained from the full ancillary density g(a) and its value from
observed data is

p0
anc = prg{t(a) < t0} = Gg(t0; θ̂0) =

∫
t(a;θ̂0)<t0

g(a)da, (1·2)

where prg designates probability using the ancillary density g(a), and Gg(t ; θ̂0) designates the
related distribution function for t(y). Interestingly, following Fraser & Reid (1995), we have an
explicit and computable expression for p0

anc to third order.
We also obtain, in § 3, a Bayesian ancillary density g̃(a) by prior averaging, as for m(y), but

with the model examined on a region having θ̂ in a small interval (±δ/2) about the observed
maximum-likelihood value, or even examined just on the observed maximum-likelihood surface.
We find that this modified Bayesian ancillary is equal to the frequentist ancillary to third order, so
that g̃(a) = g(a). This gives a Bayesian p-value p0

B that is equal to the frequentist p-value p0
anc

to third order. Section 4 shows that the Bayesian-frequentist ancillary is Un(0, 1) to third order
under general regularity and to second order under more relaxed conditions. Section 5 shows that
three levels of the plug-in or bootstrap procedure lead to the same third-order p-value.

2. SOME BACKGROUND ON BOOTSTRAP p-VALUES

The difficulties with the direct Bayesian p-values pprior and ppost have led to more refined and
incisive methods for using prior densities, leading to some preference for two versions designated
ppost and pcpred. In this direction (Bayarri & Berger, 2000; Robins et al., 2000), a posterior density
for θ is derived from some aspect of the data designated D1,

π(θ | D1) = cL(θ ; D1)π(θ),

and then used to eliminate θ from the distribution function G2 for t(y) derived from some other
aspect of the data D2,

p0 =
∫

G2(D2; θ)π(θ | D1)dθ ·

If the full data y0 are used in both places, there is a clear conflict in the probability calculations,
often described as double use of the data. Some obvious difficulties with the double use of data
can be avoided by having D1 in some sense distinct from D2. Bayarri & Berger (2000) and Robins
et al. (2000) study the case where D1 is the conditional maximum-likelihood estimator, given the
test statistic t(y); for this, Robins et al. (2000) show that pcpred is asymptotically uniform to first
order, provided that t(y) is asymptotically normal.
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4 D.A.S. FRASER AND JUDITH ROUSSEAU

In many settings, however, the preceding conditional maximum-likelihood estimator is ex-
tremely difficult to work with, as it can require an explicit expression for the density of t(y),
which is often unavailable. Here, following a University of Paris-Dauphine technical report
by C.P. Robert and J. Rousseau, we take D1 to be θ̂ and D2 to be y | θ̂ . For this, Robert
and Rousseau prove that the resulting p-value pcpred is first-order equivalent to the frequentist
p-value pr{t(y) < t | θ̂ ; θ}, for any statistic t(y). Here, we accept this pcpred as a plausible con-
tender, examine it with other p-values using recent higher order likelihood theory and find that it
is third-order equivalent to the frequentist panc and the direct Bayesian pB, and is thus distributed
as Un(0, 1) to third order.

Now consider three repetitions of the plug-in or bootstrap procedure. For this, we let Gi (t ; θ)
designate the distribution function for a variable indexed by i, as calculated from the model
f (y; θ). Then, with p0 designating some initial function t(y) and with the iteration pi+1 =
Gi (pi ; θ̂), we have that p1 = pplug is the plug-in p-value, and that p3 = pbs is a proposed three-
level bootstrap or plug-in p-value. Section 4 shows that this bootstrap p-value pbs is third-order
equivalent to the ancillary p-value panc under mild asymptotic and regularity conditions.

This paper, in part, thus extends Robins et al. (2000) in several ways: first, by working with
a specialized version of pcpred; secondly, by relaxing the hypotheses on the statistic t(y); and
thirdly, by obtaining higher order results. The first and second aspects are important, as a test
statistic can often be complicated with no available asymptotic distribution; see, for instance,
the goodness-of-fit tests described by Robert and Rousseau or in Rousseau (2007). Moreover, a
p-value provides a universal scale for a test procedure and can be considered from a Bayesian
perspective as a calibration of such test procedures; it is, thus important to be as close as possible
to the uniform distribution.

Our results based on large sample likelihood theory for a continuous model with regularity show
that general Studentization can be obtained by a frequentist ancillary approach, by a Bayesian
ancillary approach or by a three-level bootstrap approach, and that the results are equivalent to
third order. We also see, in § 3, that the Bayesian and frequentist p-values are available by direct
Markov chain Monte Carlo simulations, while the bootstrap p-values could require double or
triple levels and perhaps, not have the same numerical accessibility.

3. THE BAYESIAN AND FREQUENTIST ANCILLARY

Third-order highly accurate p-values initially for exponential models (Lugannani & Rice,
1980) and for exact-ancillary contexts (Barndorff-Nielsen, 1986) are now available for quite
general continuous-model contexts (Fraser et al., 1999; Fraser & Reid, 2001), and have been
extended to give third-order marginal likelihoods (Fraser, 2003). From this, we use the existence
of an approximate ancillary which is second order (Fraser & Reid, 1993, 1995, 2001), but can
be upgraded to third order. In addition, for the calculations here, we assume that a particular
choice of third-order ancillary has been made; details of such are not needed nor are they readily
available. The maximum-likelihood estimator θ̂ of dimension p provides coordinates, given the
ancillary and the ancillary has dimension (n − p). An observed maximum-likelihood surface,

Sθ̂0 = {y : θ̂(y) = θ̂0},
will intersect each ancillary contour in a point, and with regularity gives a one-to-one correspon-
dence between ancillary contours and points on Sθ̂0 , for fixed θ̂0.

This allows us to use points on S0 = Sθ̂0 to index or label the ancillary contours. Thus, if A(y) is
a third-order ancillary statistic in familiar form, then our choice of coordinates means that a point y
with A(y) = A is projected on to the surface S0 along its ancillary contour {z : A(z) = A} to give
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Studentization and deriving accurate p-values 5

the point a = a(y) on the surface, and a is used in place of A. Accordingly, we take the ancillary
variable to be a(y), where a now designates the point on the surface S0, and correspondingly, we
take da to be Euclidean measure on S0. This rather non-standard choice of coordinates has large
benefits, but does need special care. A reason for the special coordinates is that we do not have
easy information about what an ancillary contour looks like and as we shall see, we do not need
such information.

Thus, in a moderate-deviations neighbourhood of the surface S0, we have that, a point y is now
represented as (a, θ̂), where a is the point on S0 with the same ancillary value and θ̂ is just θ̂(y);
and we make no direct use of the n-dimensional coordinates on Sθ̂(y)·

Now following Fraser & Reid (1995) and with �(θ ; y) designating log-density, we use the
Jacobian of the change of variable for a point y on S0 and obtain the probability differential

f (y; θ̂0)dy = exp{�(θ̂0; a)} | �θ ;y(θ̂0; a) | −1 | ĵθθ (θ̂0; a) | dad θ̂ , (3·1)

where | �θ ;y | −1 | ĵθθ | is the Jacobian. We next divide by the conditional density value f (θ̂0 | a; θ̂0),
expressed as ec/n(2π)−p/2 | ĵθθ (θ̂ ; y) | 1/2 by Barndorff–Nielsen’s p∗ formula. This gives the
marginal density for the ancillary to third order:

g(a)da = (2π)p/2

ec/n
exp{�(θ̂0; a)} | �θ ;y(θ̂0; a) | −1 | ĵθθ (θ̂0; a) | 1/2da, (3·2)

which is an O(n−1/2) adjustment to the expression in (3·1). Although a third-order ancillary does
not have uniqueness to third order, we do have from the above, that the corresponding density
g(a) has such uniqueness (Fraser & Reid, 1995, 2001), up to the labelling of the ancillary partition
sets. In other words, if A(y) is an ancillary variable, then

pr{A(y) ∈ B} =
∫

A(a,θ̂0)∈B
g(a)da{1 + O(n−3/2)}·

We also have (Fraser & Reid, 1995) that the ancillary a(y) recorded with n-dimensional coor-
dinates can be represented equivalently to third order by a finite number of coordinates; this
facilitates the use of Laplace integration techniques.

The simple normal example illustrates some aspects of this, and for notational ease, we take
the null value µ0 to be zero. The observed maximum-likelihood surface has σ̂ = σ̂ 0 and is
the sphere with 
y2

i equal to the observed sum of squares; an obvious ancillary is the unit
direction y/ | y | , but there are many others, such as O( | y | )y/ | y|, where O(s) is some rotation
matrix chosen as a smooth function of radial distance s. If, however, we project probability along
ancillary contours to the observed maximum-likelihood sphere, we obtain a unique distribution,
which here is uniform on a sphere. This unique distribution on a maximum-likelihood surface is a
general likelihood result and is the basis for the third-order p-values and the marginal likelihoods.

While the distribution of the ancillary as recorded on any chosen cross section S0 is unique
to third order, subject, of course, to the coordinate labelling, there still can be various ancillaries
as noted for the simple normal example. Thus, when we write a(y), we are implicitly assuming
a particular choice of ancillary and thus, a particular linking of points from one maximum-
likelihood surface to another. This can raise certain technical issues and can lead to different
parameter inference statements, not of interest here. We do note, however, that with independent
scalar coordinates and continuity in the parameter-to-variable relationship, the inference issue
does not arise, and that for independent vector variables, the inference statements can depend
on how the parameter is related to the variables, as given typically by coordinate distribution
functions or other sensible pivotal quantities.
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6 D.A.S. FRASER AND JUDITH ROUSSEAU

Now, consider a Bayesian ancillary density: we average the model density with respect to the
prior and then normalize the resulting expression over a small neighbourhood of the observed
maximum-likelihood surface S0. For this, let f (θ̂ ; θ) denote the marginal density of θ̂ , given θ ;
then the proposed Bayesian ancillary density is

g̃(a | θ̂0) =
∫
� f (a, θ̂0; θ)π(θ)dθ∫

� f (θ̂0; θ)π(θ)dθ

= exp{�(θ̂0; a)} | �θ :a(θ̂0; a) | −1 | ĵθθ (θ̂0; a) | ∫
� exp{�(θ ; a) − �(θ̂0; a)}π(θ)dθ∫

S
θ̂0

exp{�(θ̂0; a)} | �θ :a(θ̂0; a) | −1 | ĵθθ (θ̂0; a) | ∫
� exp{�(θ ; a) − �(θ̂0; a)}π(θ)dθda

·

The Bayesian integration over the p-dimensional parameter space can be accomplished by the
usual Laplace integration and for example, the denominator integration would take the form∫

�
exp{�(θ ; a) − �(θ̂0; a)}π(θ)dθ = (2π)p/2 | jθθ (θ̂0; a) | −1/2π(θ̂0) exp{H (θ̂0, a)/n}

to third order. For this, exp H (θ̂0, a)/n is the fraction of the Laplace normal integral that re-
produces the initial integral and it has no O(n−1/2) component, as such, terms cancel in the
usual Laplace manner. As noted earlier in this section, the ancillary a can be represented by a
finite number of coordinates with other coordinates distribution free of θ to the third order. It
follows then, that when H (θ̂0, a)/n, already of second order, is further expanded in terms of
these simplified coordinates, there will be no dependence on them to the next order, which is the
third order that we are working to.

Thus, the H terms in the numerator and denominator of the expression for g̃(a | θ̂0) cancel
and we obtain,

g̃(a | θ̂0) = exp{�(θ̂0; a)} | �θ :a(θ̂0; a) | −1 | ĵθθ (θ̂0; a) | 1/2∫
S
θ̂0

exp{�(θ̂0; a)} | �θ :a(θ̂0; a) | −1 | ĵθθ (θ̂0; a) | 1/2da

= g(a)·
We, thus, have the significant result that Bayesian averaging of probability in an interval

region about the observed maximum-likelihood surface generates a distribution g̃(a) on that
surface which is equal to the ancillary distribution recorded on that surface. Alternatively, from
a somewhat different perspective, we can use the prior π(θ) to integrate the density function of y
for fixed θ̂0, leading to g(a)da to third order. Thus, in effect, we have without loss interchanged
the order, in which we do a θ̂ -sectioning and a θ-marginalization. Either way, we obtain the
distribution g(a) = g̃(a), which is the marginal distribution of the ancillary statistic a.

Now consider the Bayesian p-value proposed by Robert and Rousseau in their report. The
posterior distribution from the marginal for θ̂ at the observed θ̂0,

π(θ | θ̂0) = c f (θ̂0; θ)π(θ),

is combined with the conditional distribution for y | θ̂0, producing π(θ) f (y0; θ); this is then
averaged over θ , which, as we have noted, just gives cg̃(a). We, thus, have that the proposed
modified Bayesian pcpred,

p0
cpred =

∫
�

pr{t(y) < t0 | θ̂0; θ}π(θ | θ̂0)dθ =
∫

t(a,θ̂0)<t0
g̃(a | θ̂0)da,

is equal to the ancillary and the direct Bayesian p-values, to third order.
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From this, we have the intriguing result that the present p-values can be obtained by Markov
chain Monte Carlo sampling: we use Markov chain Monte Carlo to obtain a sample sequence
{θ t : t = 1, . . . , T } from π(θ) f (θ̂0; θ); then for each θ t , we obtain a sample sequence {ytl : l =
1, . . . , L} from the density of y for given θ̂0, l = 1, . . . , L; and then for each of these ytl , we
calculate t(ytl). This gives the Bayesian p-value approximation,

p̂ = 1

T

T∑
t=1

1

L

L∑
l=1

1It(ytl )<t0 ·

A similar algorithm can be used to obtain panc as it has a similar form.

4. THE BAYESIAN-FREQUENTIST p-VALUE IS ASYMPTOTICALLY UNIFORM

4·1. The effective statistic

In § 1, for a statistic t(y), we used a distribution on an observed maximum-likelihood surface
to calculate a p-value; however, the distribution was a marginal distribution projected on to that
surface and the statistic was examined only on that surface. We now define a modified statistic
t̃(y) that links from one possible maximum-likelihood surface to another such surface; the linkage
is by using contours of t(y) having the same p-value. For this, consider a particular surface S0,
corresponding to some maximum-likelihood value θ̂0, and on S0 , take t̃(y) to be the value of
the given statistic t(y), and on any other maximum-likelihood surface at point y, do the p-value
calculation for that surface and take t̃(y) to be the value of t(·) on S0 that has the same p-value;
thus,

t̃(y) = G−1
g [Gg{t(y); θ̂(y)}; θ̂0]·

We have immediately, that t̃(y) agrees with t(y) on S0, but may differ everywhere else; that on
any maximum-likelihood surface, its partition agrees with that of t(y); and that on the full space,
its partition is independent of the choice of initial surface S0.

However, from the construction, we have that t̃(y) satisfies

pr{t̃(y) � t̃0; θ} = pr{panc(t, θ̂) � panc(t0, θ̂0); θ}
for any t0. Thus, if we prove that

pr{t̃(y) � t̃0; θ} = panc(t0, θ̂0) + OP (n−3/2),

we obtain the required third-order uniformity.
Towards the proof to come of the uniformity property, we construct an intermediate statistic

t̄(y). From § 1, we have that there exist third-order ancillaries and we assumed a particular choice
of such an ancillary, designating it as a(y), now to be based on the present reference surface
S0; we can then replace y by the alternative coordinates (a, θ̂). The intermediate statistic t̄(y) is
taken to be equal to t(y) on S0 and otherwise to be constant on contours of the chosen ancillary.
We, thus, define t̄ by lifting from S0 in accordance with the chosen ancillary: t̄(a, θ̂) = t̄(a, θ̂0).
Thus,

pr{t̄(a, θ̂) < t ; θ} = prg{t̄(a, θ̂0) < t ; θ̂0} = panc(t ; θ̂0), (4·1)

which is distributed as Un(0, 1). This intermediate statistic is very clearly dependent on our
chosen reference surface, but it is third-order Un(0, 1) and leads us to the proof that the same
holds for t̃(y).
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8 D.A.S. FRASER AND JUDITH ROUSSEAU

For convenience, later, we let Tt = {(a, θ̂); t̄(a; θ̂) < t} be the related cylinder set and let Tt0

be the observed cylinder set. We now need more detail about the asymptotic distribution of t̄(y)
and for this, we use an embedding model.

4·2. An embedding model

Let f (y; θ, γ ) be a model with an additional scalar parameter γ that could be obtained from
the initial model by exponential tilting with factor eγ t(y); the relative density is trivially defined,
but the normalizing constant could be unavailable. With this augmented model, the ancillary will
drop dimension by unity from (n − p) to (n − p − 1), giving a modified ancillary d(y). As a
complement to d(y) to designate the reduced-dimensional space, we could use t(y), but rather
choose t̄(y) which conveniently coincides with t(y) on S0. As t̄(y) is a smooth statistic, we have
that a is also a smooth one-to-one function of (t̄, d).

Also, from likelihood theory (Fraser & Reid, 1993, 2001), we have that the conditional model,
given an ancillary depends on third order on just a finite number k of characteristics of the
ancillary; accordingly, for the analysis, we condition on the surplus characteristics and then let y
and (θ̂ , t̄, d) have fixed dimensions k and (p, 1, k − p − 1), respectively.

Consider the simple normal example with µ0 = 0: the augmented model by tilting with respect
to t(y) = ȳ is just that of a sample from the N (µ, σ 2); and the statistic d(y) corresponds to the
location-scale standardized residual and under normality has no effect on the conditional model.
We have then, that t̄(y) = ȳ/s, so that the initial y can be replaced by (θ̂ , t̄, d) with the effective
d(y) void and thus, of dimension zero.

4·3. Example

Consider the regression model y = Xβ + σ z, where z is distributed as N (0, I ) in IRn , I is
the identity matrix in IRn and X is the design matrix with full column rank r . Let t(y) = x ′

r+1 y
be a suggested test statistic, with xr+1 linearly independent of X and thus, not in the span L(X )
of the vectors X . The maximum-likelihood value is then given by (β̂, σ̂ ) = (b, s/n1/2), where b
is the least-squares estimator and s2 = ∑

i (yi − ŷi )2 is the sum of squares of residuals; let ẑ be
the unit residual as standardized by the length s. The observed maximum-likelihood surface is
Sθ̂0 = {Xb0 + s0 ẑ; ẑ ∈ S0} = Xb0 + s0S0, where S0 is taken to be the unit sphere in the (n − r )-
dimensional space L⊥(X ) orthogonal to the span of X . From normal distributional symmetry, we
have then, that the distribution of the ancillary as projected on to the maximum-likelihood surface
is uniform with respect to surface volume on the sphere and correspondingly uniform relative to
surface volume on S0. Any contour {y; x ′

r+1 y = t} of the test statistic t(y) that intersects Sθ̂0 will
do so in a sphere of one fewer dimension and divide the initial sphere into two caps. Let p0 be
the surface volume of the cap corresponding to {t(y) < t0} as a proportion of the surface volume
of the full sphere. The modified t-statistic t̄(y) can be expressed as t̄(y) = x̃ ′

r+1(Xb + sẑ), where
x̃r+1 is the orthogonal projection of xr+1 on to L⊥(X ). The set T 0 can then be expressed as

T 0 = {y : x̃ ′
r+1 y/s < x̃ ′

r+1 y0/s0},

and t̃(y) = t̄(y) = x̃ ′
r+1 y/s, which is equivalent to the usual Student statistic for testing regression

on xr+1 after eliminating regression on X .
More generally, if t(y) can be written to second order as a smooth function of certain derivatives

of the loglikelihood and not asymptotically equivalent to a function of θ̂ , then the assumptions
are satisfied.
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4·4. Asymptotic uniformity

We have a statistic t̃(y) and wish to show that the corresponding probability integral trans-
formation is distributed as Un(0, 1) for each possible θ value. For this, we choose an arbitrary
θ value θ0, and use notation based on θ̂0 = θ0 and the corresponding surface S0, and then for
convenience, take θ0 = 0; we have, of course, that the probability integral transformation of the
resulting t̄(y) is distributed as Un(0, 1). We, thus, need to show just that the probability integral
transformation of t̃(y) under θ0 is distributed as Un(0, 1); that is, to show that, to third order,

 = pr{t̃(y) < t ; θ0} − pr{t̄(y) < t ; θ0}·
For ease of notation, we work with scalar θ̂ and d, but the calculations extend to the vector

case. We assume that t(y) and (θ̂ , t̄, d) are regular with an asymptotic normal distribution
and expansions, as discussed in Cakmak et al. (1994, 1998); and we assume that Gg(t ; θ) is
continuously differentiable in (t, θ) and has positive density. For notational ease, we assume
that the scaling has been adjusted and write (θ̂ , t̄, d) again for the standardized variables, now
asymptotically standard normal. Asymptotic independence between θ̂ and (t̄, d) follows from the
ancillarity of a, and that between t̄ and d, from the ancillarity of d in the embedding model.

We examine the probability difference  for a typical value t = t0. Our region of interest
{t̃(θ̂ , t̄, d) < t0} has boundary set {t̃(θ̂ , t̄, d) = t0}, as defined implicitly. We solve and express t̄
explicitly as a function of (θ̂ , d), obtaining t̄ = t0 + b(θ̂ , d). In this form, the difference from the
contour of t̄(y) = t0 to the contour t̃(y) = t0 is described by the displacement b(θ̂ , d), and we can
then write the probability difference  as

 =
∫

d

∫
θ̂

{∫ t0+b(θ̂ ,d)

t0
f (θ̂ , t̄, d; θ̂0)dt̄

}
d θ̂dd, (4·2)

where the inner integral gives a positive or negative contribution according to the sign of b(θ̂ , d).
In the Appendix, we generate an asymptotic expansion for the boundary b(θ̂ , d) and then evaluate
the integral (4·2). We find that  = 0 to third order, and thus, that t̃(y) is ancillary and panc is
uniform to third order.

4·5. Asymptotic uniformity under weaker conditions

This final subsection outlines how uniformity to a lower order may be obtained under weaker
assumptions. In their report, Robert and Rousseau prove under relaxed conditions, that the special
pcpred is asymptotically uniform to first order, irrespective of the statistic t(y); thus, the same
holds for panc. This robustness property with respect to the test statistic is of wide interest as A1

the test statistic may often be too complicated to yield anything easily concerning its limiting
distribution.

We can obtain second-order uniformity for pcpred or panc under somewhat stronger conditions:
we do not require asymptotic normality of the test statistic t(y) as in Robins et al. (2000), but
do require familiar regularity conditions on the model as in Bhattacharya & Ghosh (1978) and
Bickel & Ghosh (1990); this provides Laplace and Edgeworth expansions for the posterior and
for the maximum-likelihood estimator. We have then the following theorem, where we let t(y)
now be the standardized version and let Z2 be the re-centred and renormalized vector formed
from the components of the matrix of second derivatives of the loglikelihood. We denote by Z the
vector formed of the components of Z2 that are linearly independent, so that (Z , θ̂ ) has positive
definite asymptotic covariance matrix.

THEOREM 1. Given standard regularity conditions on the model f (y; θ), so that (t, u, Z ) =
{t(y),√n(θ̂ − θ), Z} converges to a distribution with density h, then pcpred being distributed as
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Un(0, 1) to the second order is equivalent to∫
h(t, u, Z )1It<G−1(p | u)

[
u′Z2u − tr{i−1(θ0)Z2}

]
dtdud Z = 0, (4·3)

for all p ∈ [0, 1], where G(t | u) is the asymptotic conditional distribution function of t(y), given
u, and i(θ) is the Fisher information matrix.

The proof is outlined in the Appendix.
Condition (4·3) is satisfied, in particular, when the limiting distribution is Gaussian; it is also

satisfied as soon as t is asymptotically independent of θ̂ , even though the limiting distribution
might not be Gaussian. A third-order result could also be obtained following the preceding route,
but would involve tedious calculations that might not be as enlightening as the Studentization
approach in the previous section.

5. THE BOOTSTRAP p-VALUE

5·1. Overview

In this section, we show under moderate regularity that the bootstrap applied to a statistic
t(y) produces a new statistic whose distributional dependence on the parameter θ is reduced by
order n−1/2 and in three stages converts an initial statistic into the Bayesian-frequentist p-value,
which is third-order ancillary. Again, we let Gi (t ; θ) denote the distribution function of an i th
statistic ti (y) and let pi+1 = Gi (pi ; θ̂ ) be the plug-in modification of pi ; we show that p3 is the
Bayesian-frequentist p-value.

5·2. Alternative coordinates

We assume the conditions in § 4 leading to the third-order asymptotic uniformity established
in § 4.4, and for ease of exposition, we work with the scalar parameter case. Also, we find it
convenient to examine the model variable in the alternative coordinates (θ̂ , t̃, d), rather than the
initial coordinates. The asymptotics that drive the theory are the asymptotics of n appropriate to
this variable, not the N of any resampling used for implementation.

At the core of the bootstrap are two issues, namely the scalar statistic used at a particular
iteration and the sampling distribution obtained at that stage to order points statistically in relation
to the original data value point; for the latter, the sampling distribution is obtained by replacing
θ by the observed maximum-likelihood estimator θ̂0. Working with the sampling distribution for
(θ̂ , t̃, d), we have that (t̃, d) is ancillary and its bootstrap distribution is unchanged in an iteration.
Thus, the deviation between the bootstrap distribution and the true distribution at each iteration is
entirely in the conditional distribution of θ̂ . Thus, when θ is replaced by θ̂ , the resulting composite
distribution is inflated; it is, in effect, a double compound of itself, and when standardized, would
again approximate the initial standard normal, but perhaps be smoother. However, the statistic
used to order sampled values relative to the original data point changes radically; we examine
this next.

For the initial step in the bootstrap with resampling from a current θ̂0 value, we have assumed
that the variables are standardized, so that (θ̂ , t̃ ) is first-order standard normal with some detail
in the Appendix and that t(y) has multiple correlation ρ with θ̂ , where | ρ | < 1. As t(θ̂0, t̃ ) = t̃ ,
we are able to re-express t(y) as t̃(y) + {ρ/(1 − ρ2)1/2}θ̂ to first order.

5·3. First-level bootstrap

Consider the data point y0. From the methods in the Appendix, we have that t̃ = t̄ + OP (n−1/2),
so that the bootstrap distribution of (θ̂ , t̃ ) is distributed as N (0, I ) to first order. From the
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correlation ρ above between t and θ̂ , it follows that t(y) is distributed as N (0, γ 2) to first order,
where γ 2 = 1 + ρ2/(1 − ρ2) = (1 − ρ2)−1, and thus, that the observed p-value based on the
bootstrap sample (θ̂ , t̃) is

p1 = pr{t(y) < t ; θ̂0} = �{(1 − ρ2)1/2 t̃} + OP (n−1/2)· (5·1)

As t̃ is distributed as N (0, 1), it follows that p1 is first-order conservative, unless ρ = 0. This
gives the result in Robins et al. (2000), as ρ = 0 is equivalent to t(y) having asymptotic mean
independent of θ . Thus, the first-order bootstrap is distributed as Un(0, 1), if and only if t(y)
and θ̂ are asymptotically independent. Towards bootstrap results to the next order, we now use
an asymptotic statistic t1(y) equivalent to p1, which has the form t1(y) = t̃(y) + OP (n−1/2), and
obtain p1(y0) = pr{t1(y) � t1(y0); θ0}.

5·4. Iterated bootstrap

For the effect of a second bootstrap iteration, we expand t1 in terms of θ̂ about the true, which
is zero in the standardized coordinates A2

t1(y) = t̃(y) + c1(t̃)θ̂n−1/2 + OP (n−1)· (5·2)

To assess the second-order effect of the last term, we need to use only the first-order standard
normal distribution for θ̂ ; thus,

p2 = pr{t1(y) < t ; θ0} = pr{t̃(y) < t} + OP (n−1)·
To obtain results to the next order, we work with an asymptotic statistic equivalent to p2, which
from the preceding discussion has the form t2(y) = t̃(y) + OP (n−1). We then expand t2 as before,
in terms of θ̂ about the true value, which is zero:

t2(y) = t̃ + c2(t̃)θ̂n−1· (5·3)

For the last term, we again need only the first-order standard normal distribution for θ̂ ; thus, to
the third order,

p3 = pr{t2(y) < t ; θ0} = pr{t̃(y) < t} + OP (n−3/2) = panc(t ; θ̂) + OP (n−3/2)·
Note that, these three iterations are needed, in general, to reach t̃ as the next-order term in each

iteration has a component of the form (θ̂ − θ̂0)2 which does not disappear under the standard
normal averaging.

6. THE BEHRENS–FISHER PROBLEM

The Behrens–Fisher problem (Behrens, 1929; Fisher, 1935) has two normal distributions
and interest focuses on the difference of the means: let (y11, . . . , y1m) be a sample from the
N (µ1, σ

2
1 ), (y21, . . . , y2n) be a sample from the N (µ2, σ

2
2 ) and let δ = µ1 − µ2 be the param-

eter of interest; also, let (ȳ1, ȳ2) designate the sample means and (s2
1 , s2

2 ) designate the sample
variances. Despite its apparent simplicity, this problem has challenged statistical theory since
its origins. Ghosh & Kim (2001) give some general background and propose a second-order
default Bayesian prior as an improvement on previously available priors; simulations are given to
compare with other methods. We examine this problem using the present Studentization method
and report on simulations made available to us by colleagues Augustine Wong and Ye Sun of York
University.
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Table 1. Behrens–Fisher problem. Coverage frequencies
for the left and right bounds of the central 90% confidence
intervals using Jeffreys prior, Ghosh–Kim prior, signed
likelihood root and third-order Studentization procedure,

with simulation limits about target

Left Right
Target 5% 95%
Signed likelihood root 13·2% 86·9%
Jeffreys 0·7% 99·1%
Ghosh–Kim 1·7% 97·9%
Studentization 4·2% 95·8%
95% simulation limits (4·9%, 5·1%) (94·9%, 95·1%)

We consider the assessment of a particular value of δ, and for convenience and without loss of
generality (Fraser, 2004), we use δ = 0 and work with the sufficiency variables (ȳ1, ȳ2, s2

1 , s2
2 ). For

fixed σ ’s, the maximum-likelihood estimator for µ is the reciprocal-variance weighted average
of the sample means, and the maximum-likelihood values for the σ 2’s are available by simple
iteration. Thus, the maximum-likelihood surface is, in fact, just a curve in the 4-space of the
sufficient statistic. We want the p-value determined from the ancillary distribution on this curve,
and a convenient statistic for describing the points on the curve is ȳ1 − ȳ2. While a numerical
integration or a Markov chain Monte Carlo simulation would be interesting, the p-value from
this ancillary distribution is directly available from third-order likelihood approximations (Fraser
et al., 1999), using an embedding model which conveniently is just the original normal model.

From the Bayesian viewpoint, various priors are available. Jeffreys (1961) proposed the com-
posite of the right-invariant priors for the component normals:

σ−1
1 σ−1

2 dµ1dµ2dσ1dσ2·

Ghosh & Kim (2001) proposed a second-order prior,

σ−3
1 σ−3

2

(
σ 2

1

/
m + σ 2

2

/
n
)
dµ1dµ2dσ1dσ2,

which appears as a type of weighted combination of the component right-invariant priors.
For a frequentist comparison short of the present ancillary approach, we used the signed

likelihood-root quantity, and tested relative to its usual first-order standard normal approximation.
Simulations have been performed for various parameter combinations. We report here on just

an extreme case, the smallest sample size case with m = n = 2, and with σ 2
1 /m = 2, σ 2

2 /n = 1
and δ = 2; the simulation size was N = 100 000. For frequentist cases, we calculated the central
90% intervals and checked for coverage of the true value, up to the left and up to the right interval
bound; for the Bayesian cases, we report the results from Ghosh & Kim (2001), but we did record
quite similar results ourselves. The corresponding coverage proportions are recorded in Table 1
for each of the methods.

This is an extreme case with the smallest possible sample sizes, and the individual sample
t-statistics have Cauchy distributions. For this extreme case, the coverage probabilities based on
third-order Studentization do just miss the 95% simulation limits under the nominal. Nonetheless,
we find that third-order Studentization provides a large improvement over the signed likelihood
root, the Jeffreys and the Ghosh and Kim confidence and posterior intervals. Coverage results for
larger sample sizes were generally excellent.
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7. MORE EXAMPLES AND DISCUSSION

For any full exponential family and for any scalar statistic t(y) that is not a function of the
maximum-likelihood statistic, pcpred is equal to the conditional p-value as a consequence of the
sufficiency and is thus, exactly uniformly distributed. This covers Example 2.2 in Bayarri & Berger
(2000) for a sample from the scale exponential, using the statistic t(y) = mini yi ; it also covers the
example in Gelman et al. (1995, p. 166) for a sample from the N (µ, σ 2) and the same minimum
value statistic. Also, for the discrete case, following Davison et al. (2006), we have similar results.
Consider, for example, a goodness-of-fit chi-squared test against a smooth parametric family
F = { fθ , θ ∈ �}, together with a test statistic t(y) = ∑k

j=1{N j − np j (θ̂)}2/{np j (θ̂)} using a
fixed number k of bins and N j observations in the j th bin. Simple Taylor expansion around the
true value θ implies that

t(y) =
k∑

j=1

[
√

n{N j/n − p j (θ)} − √
n(θ̂ − θ)p′

j (θ)]2

p j (θ)
+ OP (n−1/2)

=
k−1∑
j=1

w2
j

{
1

p j (θ)
+ 1

pk(θ)

}
+ 1

pk(θ)

∑
j � l

w jwl + OP (n−1/2),

where w j = √
n{N j/n − p j (θ)} − √

n(θ̂ − θ)p′
j (θ). Asymptotically and conditionally on u =√

n(θ̂ − θ), the vector w = (w1, . . . , wk−1) is distributed as N (0, �), for some covariance matrix
� independent of u, as soon as

i(θ) =
∫

fθ (y1; θ)2

f (y1; θ)
dy1 >

k∑
j=1

p′
j (θ)2

p j (θ)
,

where the subscript on the density denotes differentiation; otherwise, the distribution is degen-
erate. Therefore, t is asymptotically independent of u and pcpred is second-order uniform. The
discreteness of the count variables N j inhibits the use of higher order expansions for the distri-
bution of t(y), so that third-order uniformity is not available; however, for some second-order
calculations, see Davison et al. (2006).
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APPENDIX

Technical details

Third-order uniformity. We prove that  = 0 for θ = θ0. Following from § 4·4, we use standardized
notation and have a standard normal asymptotic distribution for (θ̂ , t̄, d), and of course, marginally for
(t̄, d). We also have a statistic t̃(θ̂ , t̄, d) that coincides with t̄ when θ̂ = 0, and satisfies marginal distribution
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conditions for other θ̂ values. In addition, we want to show that t̄ = t0 and t̃ = t0 define a difference set
expressed by b(θ̂ , d) that has probability content 0 to third order.

We expand b(θ̂ , d) in a Taylor series around (0, 0) to order O(n−3/2) and make use of b(0, d) = 0:

b(θ̂ , d) = (a10 + a11d/n1/2 + a12d2/2n)θ̂ + (a20/n1/2 + a21d/n)θ̂2/2 + (a30/n)θ̂3/6· (A1)

The definition of the boundary on a surface Sθ̂ gives

∫
d

{∫ t0+b(θ̂ ,d)

t0

g(t̄, d)dt̄

}
dd = O(n−3/2), (A2)

and we have the very strong result, that this holds for each θ̂ in moderate deviations.
The complicating feature for analyzing the difference set is the presence in (A1) of the cross term

a11d θ̂/n1/2 , which describes how t̃ has a twist relative to t̄ . Our approach is to apply a transformation
to the space of (θ̂ , t̄, d) to remove the twist in the initial statistic t(y); of course, the transformation does
not alter the distribution of t̃(y) and, as we will see, does not alter the marginal distribution g(t̄, d). To
be specific, at each θ̂ level, a rotation is applied to (t̄, d) to make the contours of the initial statistic t(y)
second-order parallel to the d axis at d = 0; the contours of t̃(y) being just t(y) contours then have the
same property. We then examine the difference set after the transformation.

An O(n−1/2) rotation of the distribution of (t̄, d) | θ̂ does not, to third order, affect the fourth derivative
terms, but does alter to O(n−1), the third derivative terms by an amount proportional to the rotation, as
shown below. When this is averaged over θ̂ , we have that g(t̄, d) is unchanged. We have, however, that the
structure of t̃(y) is now more easily examined as it is second-order parallel to the d axis direction at d = 0.

We again expand the boundary, but now in the new notation:

b(θ̂ , d) = (a10 + a11d/n + a12d2/2n)θ̂ + (a20/n1/2 + a21d/n)θ̂2/2 + (a30/n)θ̂3/6. (A3)

Then, using the definition (A2) for the boundary, we have that the boundary (A1) can be written as

b(θ̂ , d) = {a11d/n + a12(d2 − 1)/2n}θ̂ + (a21d)θ̂2/2n + a30θ̂
3/6n·

Then substituting in (4·2), expanding the inner upper limit of integration and using the symmetry of the
density function gives zero to the third order, thus establishing the third-order uniformity.

Effect of rotations. In two dimensions, a rotation through an angle a/n1/2 involves a cosine written as
1 − a/n and a sine written as a/n1/2, all to third order. Then, for the effect on the log of a standardized
density, there is no effect on the quadratic term, the cubic term is unchanged to the second order, but
acquires an O(n−1) adjustment, and the fourth-order terms are unchanged; the angle a/n1/2 appears
linearly in the second-order adjustment.

Second-order uniformity: Connection to conditional p-value. The proof is straightforward and from
(3·1), we can write

f (y | θ̂0; θ ) = 1IS
θ̂0 exp �(θ ; y) | �θ ;y | −1 | ĵ |

f (θ̂0; θ )
,

where f (θ̂ ; θ ) is the marginal density of θ̂ . From (1·2) and using the ratio relative to a true density-labelled
θ0 density, we obtain

p0
cpred =

∫
�

pr{t(y) < t0 | θ̂0; θ}π (θ | θ̂0)dθ

=
∫

S
θ̂0

f (y | θ̂0; θ0)1It(y)<t0 f (θ̂0; θ0)

∫
�

e�(θ ;y)−�(θ0;y)π (θ )dθ∫
�

f (θ̂0; θ )π (θ )dθ
da· (A4)

Under the conditions in § 3, we use an Edgeworth expansion (Bhattacharya & Ghosh, 1978) for the
density of the maximum-likelihood estimator which is uniform in θ, together with the usual Laplace
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expansions as in § 3 and obtain ∫
�

f (θ̂0; θ )π (θ )dθ = 1 + OP (n−1)·

For the numerator integral in (A4), we use a Laplace expansion of the integral, together with an
Edgeworth expansion of the density f (θ̂ ; θ0) and obtain

p0
cpred =

∫
S

θ̂0

f (y | θ̂0; θ0)1It(y)<t0 A(y)dyc + Rnn−1, (A5)

with the adjustment factor A(y) given as

A(y) = {
1 + H1(u0)/n1/2

} {
1 + 1

2

(
u′

0{ ĵ − i(θ0)}u0 − tr[i(θ0)−1{ ĵ − i(θ0)}]
)}

,

where u1/2(θ0 − θ̂ ), u0 = n1/2(θ0 − θ̂0), H1(u0) is an odd polynomial function, and Rn = OP (1). In these
calculations, we make no assumption concerning the behaviour of t(y), but we do invoke the usual regularity
conditions on the likelihood function. The equation (A4) shows that pcpred is first-order equivalent to the
conditional p-value: pr{t(y) < t0 | θ̂0; θ0} = pθ̂0;θ0

(t0) for any t(y), and is thus uniformly distributed to
first order.

Second-order uniformity: Discrepancy from conditional p-value. We now examine the discrepancy
between pcpred and pθ̂ ;θ0

(t0):

c = pr
(

pcpred < p
) − pr

{
pθ̂ ;θ0

(t0) < p
} · (A6)

Consider the expression (A4) and the form of the adjustment factor A(y) and let z2 = n1/2{ j(θ0) − i(θ0)}.
Then, ĵ − i(θ0) = z2n−1/2 − u′

0µ3(θ0)n−1/2 + OP (n−1), where u′
0µ3(θ0) is the p × p matrix whose (a, b)

component is
∑p

r=1 u0
r Eθ0 {Dabr log f (X ; θ0)} and Dabr designates the third derivative with respect to the

parameter coordinates a, b, r . Let

W (t0, u0) =
∫

S
θ̂0

f (y | θ̂0, θ0)1It(y)<t0 [u′
0z2u0 − tr{i(θ0)−1z2}]/2dyc·

The calculations at (A4) then show that,

pcpred = pθ̂0;θ0
(t0)

{
1 + H2(u0)n−1/2

} + W (t0, u0)n−1/2 + OP (n−1),

where H2 is an odd polynomial function.
We now compare pr(pcpred < p; θ0) with p = pr(pθ̂0;θ0

(t0) < p; θ0). For this, we assume that some

standardized version of t(y), ts(y) say, has, as n goes to infinity a limiting conditional density, given θ̂0

which is positive under the θ0 distribution. We denote ts(y0) by t0
s and let G(· | θ̂ , θ0) be the distribution

function of ts(y), given θ̂ and θ0. We also let Eθ0 designate the expectation taken with respect to f (y; θ0).
We assume that the transformation from t(y) to ts(y) is monotone increasing, in other words, that {t(y) <

t0} ∩ Sθ̂0 = {ts(y) < t0
s } ∩ Sθ̂0 . In the following expression, the probabilities are calculated under f (y; θ0)

and we use the simpler notation G−1(p | u) instead of G−1(p | u, θ0), and work up to order O(n−1):

c = pr(pcpred < p; θ0) − pr(pθ̂ ,θ0
< p; θ0)

= pr(G−1(p | u) < ts < G−1[p{1 − H2(u)n−1/2} − Wn{G−1(p | u), u}n−1/2 | u])

− pr(G−1(p | u) � t0
s > G−1[p{1 − H2(u)n−1/2} − Wn{G−1(p | u), u}n−1/2 | u])

= − Eθ0 [H2(u)n−1/2 − Wn{G−1(p | u), u}n−1/2]·
As H2 is an odd polynomial function in u, we find that,

c = (1/2)n−1/2
∫

fn(t, u, z2)1It<G−1(p | u)[u
′z2u − tr{i−1(θ0)z2}]dtdudz2,
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where fn(t, z2, u) is the joint density of {ts(y), z2, n1/2(θ0 − θ̂}. If fn(t, z2, u) converges almost surely to
a density function f (t, u, z2), then c = 0, if and only if∫

f (t, u, z2)1It<G−1(p | u)[u
′z2u − tr{i−1(θ0)z2}]dtdudz2 = 0· (A7)

This completes the proof of Theorem 1.
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