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Abstract: Statistics has many inference procedures for examining a model with data to obtain information
concerning the value of a parameter of interest. If these give different results for the same model and data,
one can reasonably want a satisfactory explanation. Over the last eighty years, three very simple examples
have appeared intermittently in the literature, often with contradictory or misleading results; these enigmatic
examples come from Cox, Behrens, and Box & Cox. The procedures in some generality begin with an
observed likelihood function, which is known to provide just first order accuracy unless there is additional
information that calibrates the parameter. In particular, default Bayes analysis seeks such calibration in the
form of a model-based prior; such a prior with second order accuracy is examined for the Behrens problem,
but none seems available for the Box and Cox problem. Alternatively, higher-order likelihood theory obtains
such information by examining likelihood at and near the data and achieves third order accuracy. We examine
both Bayesian and frequentist procedures in the context of the three enigmatic examples; simulations support
the indicated accuracies. The Canadian Journal of Statistics 37: 1–21; 2009 © 2009 Statistical Society of
Canada

Résumé: La Statistique offre plusieurs procédures permettant d’inférer la valeur d’un paramètre d’intérêt
à l’aide d’un modèle et de données. Si des procédures utilisant le même modèle et les mêmes données
conduisent à des résultats différents, il est légitime d’exiger une explication satisfaisante. Au cours des
quatre-vingt dernières années, trois exemples apparaissant sporadiquement dans la littérature ont donné des
résultats souvent trompeurs ou contradictoires. Ces exemples énigmatiques par Cox (1958), Behrens (1929)
et Box & Cox (1964) sont généralement basés sur une fonction de vraisemblance observée dont la précision
est du premier ordre, sauf en présence d’information additionnelle permettant de calibrer le paramètre. En
analyse Bayésienne, par exemple, cette calibration se présente sous la forme d’une loi à priori. Une telle loi
dont la précision est du deuxième ordre (Ghosh & Kim; 2001) est examinée pour le problème de Behrens,
mais aucun équivalent ne semble possible pour le problème de Box & Cox. De son côté, la théorie de la
vraisemblance d’ordre supérieur déduit cette information en examinant la fonction de vraisemblance aux
données et près de celles-ci, permettant une précision du troisième ordre. Les auteurs étudient des procédures
Bayésiennes et fréquentistes dans le contexte de ces trois exemples énigmatiques; des simulations confirment
les précisions annoncées. La revue canadienne de statistique 37: 1–21; 2009 © 2009 la Société statistique
du Canada

1. INTRODUCTION

Three statistical problems, quite elementary in appearance, have been examined many times in
the literature, from various pragmatic and methodological approaches. The examples are the
Cox measuring instrument in Welch (1939) and in Cox (1958); the Behrens–Fisher two sample
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problem in Behrens (1929) and in Ghosh & Kim (2001); and the Box and Cox problem in Box &
Cox (1964) and in Chen, Lockhart & Stephens (2002); the examples are simple to describe and
typically involve just normally distributed variables.

The pragmatic approach would be illustrated by taking just the mean and standard deviation
of a convenient statistic such as a Student departure for the Behrens–Fisher problem, to the fine
tuning of an approximate degrees of freedom for that statistic as with Welch’s (1947) insightful
proposal.

Methodological approaches are illustrated by the use of likelihood in the original Bayes manner
or the use of a likelihood ratio calculation as with the Behrens–Fisher and Box and Cox problems.
The results are sometimes in close agreement and sometimes quite different, We thus refer to the
examples as enigmatic. Perhaps the enigma lie deeper. Do we have just a tool bag of methods to
explore with? Or is there some unifying way of extracting all or almost all the available statistical
information from a model data combination?

For the simple normal model with unknown location and scaling, almost all resolutions would
lead to the familiar Student quantity with the usual Student distribution. How then can two normal
models as with the Cox example and the Behrens–Fisher example produce such difficulties for
resolution? Or how can the presence of reexpressed normal variables as with the Box and Cox
example produce such difficulties?

Daniels (1954) working from applied mathematics showed that probability calculations can be
much more accurate through the use of a cumulant generating function. This did have some sub-
stantial messages for statistics but these did not emerge for some 25 years until Barndorff-Nielsen
& Cox (1979) presented various statistical applications for the cumulant generating function ap-
proach. A substantial limitation however was the need for the cumulant generating function. Of
course, cumulant generating functions are typically implicit in full exponential family models and
such models were indeed highlighted by Barndorff-Nielsen & Cox (1979), but with notation in
the more familiar likelihood form.

The restriction to exponential family models with available sufficiency meant that even
location-scale models with nonnormal error are not covered. Subsequently Barndorff-Nielsen
(1986) examined log statistical models and with third order probability calculations extended
the cumulant generating function approach. Again there were limitations; the analysis typically
required that the variable and the parameter have the same effective dimension, if not directly,
then by ancillary conditioning.

More recently, a general extension builds on approximate ancillarity derived from model quan-
tile continuity. We address the quite general availability of this higher-order likelihood approach,
a natural follow through from the cumulant generating function approach.

In the next section, we briefly describe the examples and survey the likelihood based
methods that are applicable. We will see that the likelihood function contains the accuracy
of a cumulant generating function for the Daniels’ type calculation of probabilities, and that
parameter information just needs to be extracted by approximate methods that are highly
accurate.

2. THREE SIMPLE EXAMPLES AND LIKELIHOOD INFORMATION

In this section we briefly describe the three simple statistical problems, which have little structure
beyond that of a sample from a normal distribution. We also briefly survey the higher-order
methods for extracting the essential information from a likelihood function. Then in later sections
we survey the application of the methods to the examples.

As the first example, consider the measuring instrument context (Cox, 1958), which has close
parallels in an example used in Welch (1939). Cox (1958) considered two measuring instruments,
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both unbiased and normal but with different standard deviations, say σ1 = 100σ0 and σ2 = σ0;
the context also included an equally likely random choice of which instrument to use to make a
single measurement of a scalar parameter θ. This random choice may seem artificial but it has
clear parallels embedded in almost all modelling contexts. Cox pondered the appropriate sample
space for inference and then developed such in terms of conditioning on an ancillary statistic
(Fisher, 1925, 1934, 1935a,b). By contrast, Welch had focused on maximizing power for given
test size. We discuss this example in Section 3 and make direct use of continuity as to how the
parameter moves the distribution of individual coordinates; we do not however address the power
approach.

As the second example, consider the Behrens (1929)–Fisher (1935a,b) problem. This involves
a sample of n1 values from a Normal (µ1, σ2

1 ) and a sample of n2 values from a Normal (µ2,
σ2

2 ). The two sampling models are independent, and the interest parameter is the difference
in means δ = µ1 − µ2. This does involve just two normal samples yet no generally accept-
able or definitive procedure has evolved in the literature. Fisher (1935a,b) following Behrens
(1929) obtained a confidence distribution for µ1 and a confidence distribution for µ2, and then
convolved these to obtain a distribution for δ. At that time, the confidence distributions were
called fiducial distributions, and they were based on the now familiar confidence pivotal in-
version. Both frequentists and Bayesians took exception to the procedure, the former to the
combining of two confidence distributions and the latter to the confidence inversion itself. Jef-
freys (1961) proposed the prior σ−1

1 σ−1
2 relative to dµ1 dµ2 dσ1 dσ2, which is the product of

the familiar right invariant measures for the separate location-scale groups; this differs from
the usual Jeffreys prior σ−2

1 σ−2
2 which corresponds to the left invariant measures. Ghosh &

Kim (2001) used a second order asymptotic argument and frequentist properties to develop the
prior

σ−3
1 σ−3

2

(
σ2

1
n1

+ σ2
2

n2

)
.

For either approach, a joint posterior distribution for µ1, µ2, σ2
1 , and σ2

2 can be obtained, and then
the marginal posterior distribution for µ1 − µ2. Ghosh & Kim compared the results from the new
prior and from the right invariant Jeffreys prior by examining the frequency of correct statements
using related posterior intervals. For larger sample sizes and most smaller sample sizes the new
second order prior gave a substantially higher frequency of correct statements. The example is
discussed in Section 4 using Bayesian and likelihood approaches.

As the third example, consider the Box & Cox (1964) problem: a response variable suitably
expressed has a linear model Xβ + σz where X is n × r matrix of full column rank r, β is an
r × 1 vector of regression coefficients, z is an n × 1 sample from a standard normal distribution,
and σ is a positive scalar. A familiar method of response re-expression is provided by the power
transformations: for a positive coordinate yi, the re-expressions yλ

i with λ not equal to zero form a
transformation group; the limit case λ = 0 can be linked to the transformation log(y) provided X

includes the 1-vector. For notation, let yλ
1 , . . . , yλ

n designate the vector of transformed responses;
the model then can be written as

y = (Xβ + σz)1/λ.

Box & Cox (1964) obtained maximum likelihood and maximum Bayesian posterior estimates for
λ, and then used the estimated value for λ as a fixed value for a regression analysis of the remaining
parameters; this latter step is often called a “plug-in analysis.” Various objections were raised by
Bickel & Doksum (1981) to the direct use of the estimated value; and these were answered by
Box & Cox (1982). Chen, Lockhart & Stephens (2002) discussed the choice of the parameter
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to be estimated while focussing on stability of the corresponding estimation analysis and gave
preference to a ratio β/σ of a regression parameter β to error standard deviation σ; they then
provided simulations to demonstrate the stability. In the discussion, McCullagh raised questions
whether the choice β/σ was “physically meaningful” and mentioned the notion of a natural sub-
parameter (McCullagh, 2002); the resulting claim was that β/σ did not represent a characteristic
of the context being investigated and was rather an artefact of the model and thus inappropriate
to pursue. The example is discussed in Section 6 using present higher-order likelihood analysis
methods.

The methodological approaches to the examples cover a broad spectrum and typically make
direct use of the observed likelihood function Lo(θ) = cf (yo; θ) where f (y; θ) is the model in
density form, yo is the observed data point, and c is an arbitrary positive constant. Exceptions are
the pragmatic choice of the degrees of freedom (Welch, 1947) for the Behrens–Fisher problem
and the Welch (1939) use of optimality and fixed test size for the Cox (1958) problem; we do not
address these here.

Bayes (1763) introduced the direct use of the full observed likelihood function Lo(θ) as the
primary ingredient for statistical inference; this coupled the observed likelihood Lo(θ) with a
weight function π(θ) to give an evaluation cπ(θ)Lo(θ) on the parameter space. In the context he
examined, the model was specialized and had location form which would now be written f (y − θ)
and the weight function was constant reflecting the translation invariance of the model; this use
of likelihood was long before its formal recognition (Fisher, 1922) and the supporting argument
invoked conditional probability even though π(θ) in context was not describing probability; the
approach can be viewed as innovative, exploratory and much ahead of its time. If we have interest
in a scalar component parameter ψ(θ), we might then reasonably calculate the posterior survival
value ∫ ∞

ψ(θ)=ψ

cπ(α)Lo(α) dα

with integration over the parameter region having ψ(θ) values larger than some interest value ψ;
for this various first order and higher-order approximations are surveyed in Bédard et al. (2008).

Various characteristics of the observed likelihood function can focus on scalar characteristics
such as the maximum likelihood value θ̂o = θ̂(yo) or the score 	θ(θ; yo) = s(θ) which is the slope
of the log-likelihood function at a tested value θ; scaling of these can be obtained from several
sources but the curvature or the Hessian at the maximum likelihood value has strong support and
is called the observed information

jθθ′ (θ̂o) = −	θθ(θ̂o; yo) = −	θθ(θ̂o) = − ∂

∂θ

∂

∂θ′ 	(θ)
∣∣∣∣
θ̂o

.

Thus for the maximum likelihood departure from an interest value θ in the scalar case, we have

q(θ) = jθθ′ (θ̂o)1/2(θ̂o − θ)

which is first order standard normal from an asymptotic view.
The maximum likelihood departure is directly affected by a change in the parameterization. A

familiar departure measure that has invariance to reparameterization is the signed log-likelihood
ratio, sometimes referred to as the directed deviance (Barndorff-Nielsen & Cox, 1994). For a
scalar interest parameter ψ = ψ(θ) it has the form

r(ψ) = r(ψ, yo) = sgn(ψ̂o − ψ)
[
2

{
	(θ̂o) − 	(θ̂o

ψ)
}]1/2

, (1)
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where θ̂o
ψ is the maximum likelihood value when the parameter is restricted to values satisfying

ψ(θ) = ψ; from the asymptotic view r(ψ) is also first order standard normal.
An improvement on the preceding q which covers the more general case of a scalar component

ψ(θ) takes the form

q = (ψ̂o − ψ)

{
|jθθ′ (θ̂o)|
|jλλ′ (θ̂o

ψ)|

}1/2

(2)

where jθθ′ (θ̂o) = −(∂2/∂θ∂θ′)	(θ)|θ=θ̂o , and jλλ′ (θ̂o
ψ) = −(∂2/∂λ∂λ′)	(θ)|θ=θ̂o

ψ
, ψ̂o = ψ(θ̂o) and

λ is a complementing nuisance parameter having θ = (ψ, λ′)′. When the j matrices are too com-
plicated in form, they can be evaluated numerically by fine differencing provided the likelihood
function is calculated with high accuracy. Again this revised q is first order standard normal but its
statistical quality can be seriously degraded in the presence of nuisance parameters. Note that (1)
and (2) give approximate p-values �(r) and �(q), where �(·) is the standard normal distribution
function, but the first based on the signed log-likelihood ratio is widely viewed as more reliable.

The full third order use of the cumulant generating type information contained in the likelihood
function and mentioned in Section 1 extends from cumulant generating functions themselves, to
the exponential model context, to approximate exponential models, to exact conditioning, and
then to approximate conditioning. Key formula for this make use of a combination of r and q

type quantities inherited from contexts with cumulant generating functions; the formula has two
versions, one from Lugannani & Rice (1980) and the other from Barndorff-Nielsen (1986), the
latter being

p(ψ) = �(r∗) = �

{
r − r−1 log

(
r

q

)}
(3)

where r∗ is implicitly defined, r is the signed log-likelihood ratio (1) and q given in (4) is a
modification of (2) that uses an intrinsic reparameterization ϕ(θ) which establishes the analytic
link to the cumulant generating function.

The needed maximum likelihood based departure q works within the reparameterization ϕ(θ):

q = q(ψ) = q(ψ; yo) = sgn(ψ̂o − ψ)|χ(θ̂o) − χ(θ̂o
ψ)|

{
|jϕϕ′ (θ̂o)|
|j(λλ′)(θ̂o

ψ)|

}1/2

. (4)

For this χ(θ) is a special linear combination of the coordinates of the reparameterization ϕ(θ) and
the two information matrices jϕϕ′ (θ̂o) and j(λλ′)(θ̂o

ψ) are just observed informations or Hessians
for the full and for the nuisance parameter, but calculated in the ϕ parameterization. Some details
on the rescaling to the ϕ parameterization are given in Appendix together with some technical and
expository references. The computations involve just first and second derivatives of likelihood
and are readily available by calculus through Mathematica or Maple, or by numerical differencing
on a fine scale using high precision calculations (Davision, Fraser & Reid, 2006).

The reparameterization ϕ(θ) is to provide a stand-in for the canonical parameter of an expo-
nential model and thus to link it to the usual Daniels type arguments using cumulant generating
functions. The reparameterization is available as the observed gradient of the log-likelihood func-
tion,

ϕ′(θ) = 	V (θ; y)|yo =
(

d
dv1

, · · · , d
dvp

)
	(θ; y)

∣∣∣∣
yo

, (5)
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calculated in directions V = (v1, . . . , vp) that describe the approximate conditioning that extends
the methodology from the sufficient statistic context to the general asymptotic context; the sub-
script V is to indicate that directional derivatives are taken in the directions recorded in the matrix
V , for example, (d/dv)	(θ; y) = (d/dt)	(θ; y + tv)|t=0.

The directions (v1, . . . , vp) forming the matrix V are tangents to an approximate ancillary
and are obtained as a gradient of the coordinate quantile functions. Let yi = yi(ui, θ) be the
quantile function corresponding to the coordinate distribution function ui = Fi(yi, θ); for example
with the Normal (µ, σ2), the distribution function is �{(y − µ)/σ} and the quantile is then the
inverse function y = µ + σz using u = �(z). The direction V = (vα) = (viα) are given by viα =
∂yi/∂θα|(ûo

i
,θ̂o) where ûo

i = Fi(yo
i , θ̂

o); see Fraser & Reid (1995, 2001).
The p-value for a parameter ψ as given by p(ψ) in (3) is pivotal and from the sampling

viewpoint it has the Uniform(0,1) distribution with third order accuracy. It can analytically be
viewed as a definitive p-value to third order. And it leads to any choice of confidence interval or
confidence bound. For example the 95% confidence lower bound is

ψ̂0.95 = p−1(0.95)

and the central 95% confidence interval is

(ψ̂0.975, ψ̂0.025) = (p−1(0.975), p−1(0.025));

this is just standard confidence or pivotal inversion (Fisher, 1930, 1935a,b; Neyman, 1937). The
function p(ψ) as given in (3) is called here the p-value function for ψ.

3. COX MEASURING INSTRUMENT EXAMPLE

The Cox (1958) measuring instrument example discussed briefly in Section 1 can be expressed in
a simple form: y is distributed as Normal (θ, σ2

a ), and a is Bernoulli (1/2). The observable variable
(y, a) has sample space R × {1, 2}.

Consider now an observed data point (yo, ao). The observed likelihood function is

Lo(θ) = exp
{

− (yo − θ)2

2σ2
ao

}

which is location normal in shape with scaling given by the data-identified standard deviation σao .
The corresponding observed log-likelihood function is

	(θ) = − (yo − θ)2

2σ2
ao

;

this clearly reflects the use of the observed precision as indicated by the scaling σ2
a coming from

the actual instrument that made the measurement.
The model has the translation invariance central to Bayes (1763) and the corresponding default

prior is π(θ) = c. This gives the posterior that θ is Normal (yo, σ2
ao ).

The decision-theoretic approach supported by Welch (1939) would ignore that the scaling had
been observed and was known; this is seemingly contradictory to clear objectives of statistical
inference. The result is that the two possible values for a lead correspondingly to separate critical
values for y. This is a trade-off between the two p-values to achieve some overall optimality.
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2009 THREE ENIGMATIC EXAMPLES 7

From the higher-order likelihood approach we would calculate the gradient of the log-
likelihood function at the observed data and obtain

	y(θ) = ϕ(θ) = θ − yo

σ2
ao

which is affine in θ; this calculation of gradient describes what small parameter change at the
data point does to log-likelihood. An affine transformation on ϕ(θ) has no effect on (1) or (4);
thus it suffices to take ϕ to be just the given θ as expected. Then routinely from (1) and (5)
we obtain

r = yo − θ

σao
, q = yo − θ

σao
;

and then from (3) we have

p(ψ) = �

{
yo − θ

100σ0

}
if a = 1,

= �

{
yo − θ

σ0

}
if a = 2.

This is just the p-value based on the model for the measuring instrument that actually made the
measurement, a very natural result. This of course agrees with Cox (1958) who conditions on
the ancillary a = ao as suggested in Fisher (1925, 1934, 1935a,b). For some recent discussion of
conditioning see Fraser (2004). The Bayesian and frequentist approaches agree and run counter
to the optimality approach supported by Welch (1939).

4. BEHRENS–FISHER EXAMPLE

If a sample from a normal distribution can be viewed as providing a simple primal statistical
problem, then surely samples from two separate normal distributions should come a close second.
But the almost eight decades since the original Behrens (1929) paper indeed suggest otherwise.
Let (y11, . . . , y1n1 ) be an independent sample from the Normal (µ1, σ2

1 ) and (y21, . . . , y2n2 ) be an
independent sample from the Normal (µ2, σ2

2 ); and suppose we are interested in δ = µ1 − µ2.
Let ȳ1, ȳ2 be the sample means and s2

1, s2
2 be the sample variances.

From a pragmatic frequentist viewpoint, a fairly natural quantity for assessing δ is readily
available as

t = ȳ1 − ȳ2 − δ

(s2
1/n1 + s2

2/n2)1/2
, (6)

which is the departure of the estimate ȳ1 − ȳ2 from the interest parameter δ, standardized by its
estimated standard deviation. At issue however is the full statistical calibration of this quantity:
it does not have a distribution free of the nuisance parameters. Both Behrens (1929) and Fisher
(1935a,b) produced a distribution for assessing δ but the derivations were not generally accepted.
Welch (1947) noted the close connection to the ordinary t-statistic and chose a degrees of freedom
that closely approximated the denominator to a scaled Chi variable, and then recommended the
corresponding Student distribution.

From the default Bayesian viewpoint mentioned in Section 1, we have the left and right Jeffreys
priors and the recent second order Ghosh & Kim (2001) prior.
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Now consider the higher-order likelihood approach as described in Section 2. The observed
log-likelihood function is

	(θ) = − 1
2σ2

1
{n1(ȳ1 − µ1)2 + S2

1} − 1
2σ2

2
{n2(ȳ2 − µ2)2 + S2

2} − n1

2
log σ2

1 − n2

2
log σ2

2 ,

where S2
1 and S2

2 are the sums of squares of residuals in the first and second samples. The effective
sample space involves (ȳ1, ȳ2, S2

1 , S2
2) and has dimension 4, equal to that of the parameter. The

model itself is exponential and one version of the canonical parameter is

ϕ(θ) = ϕ(µ1, σ
2
1 , µ2, σ

2
2 ) = ϕ =

(
µ1

σ2
1
,

1
σ2

1
,

µ2

σ2
2
,

1
σ2

2

)
,

which we take as a row vector. This is a case where the cumulant generating function is implicitly
available and the higher-order likelihood approach just mechanizes the calculations of the p-value.

If we follow the higher-order likelihood procedure and calculate the sample space gradient of
the observed log-likelihood function at the observed data we would obtain just an affine function
of the row vector above and it would be an equivalent canonical parameterization. This happens
quite generally: if a model is a full exponential model, the sample space gradient procedure just
extracts an exponential canonical parameterization; and an affine change in the parameterization
does not affect the calculated p-value; in effect it works from the implicit cumulant generating
function.

The maximum likelihood values are almost immediate. For the full parameter θ the maximum
likelihood value θ̂ is just the combination of the individual sample maximum likelihood values:
(µ̂1, µ̂2, σ̂

2
1 , σ̂2

2 ) = (ȳ1, ȳ2, S
2
1/n1, S

2
2/n2). For the constrained maximum likelihood value, the

exact functional form seems not available, but it is easily obtained numerically.

5. BEHRENS–FISHER SIMULATIONS

We use simulations to evaluate the inference procedures for the Behrens–Fisher problem targeted
on the difference δ = µ1 − µ2 in the population means. The inference procedures discussed in
Section 4 include the posterior distribution based on right invariant Jeffreys prior, the posterior
distribution based on the second order Ghosh & Kim (2001) prior, the confidence distribution
based on the Welch test approximation, the confidence distribution based on the signed log-
likelihood ratio r, and the confidence distribution based on the third order adjustment r∗. And
for each procedure, we focus on central (1 − α)100% intervals (θ̂α/2, θ̂1−α/2) where θ̂γ is the γ

quantile of a proposed inference distribution. And to enable direct comparison with Ghosh & Kim
(2001) results, we take α = 10%.

While there are four parameters in the full model, the evaluation of the procedures only needs
the ratio σ2

1/σ2
2 of the variances and of course the sample sizes n1, and n2. In particular, without

loss of generality, we choose µ1 = 2, µ2 = 0, and σ2
2 = 1, and then follow Ghosh & Kim with

σ2
1 = 2, and σ2

1 = 4 and with various choices of n1 and n2, as indicated in Tables 1a and 1b.
We first generate N = 10,000 instances of a sample of n1 for y1 and of a sample of n2 for y2,

for a given choice of the parameters as just described. In each instance, we calculate the central
90% parameter quantile interval. Table 1 reports the proportion of cases where the true value falls
below the lower limit of the interval, and the proportion of cases below the upper limit of the
interval; these should have the target values 0.05 and 0.95; we also record the simulation standard
deviations which is calculated as

√
p(1 − p)/N, where p is the target value.

The Canadian Journal of Statistics DOI: 10.1002/cjs



2009 THREE ENIGMATIC EXAMPLES 9

Table 1a: For µ1 = 2.0, µ2 = 0.0, σ2
2 = 1.0 without loss of generality and for various n1 ≥ n2, σ

2
1 , we

record the proportion of the 10,000 cases where the true δ is less than the lower limit and less than the
upper limit of the 90% central interval.

σ2
1 = 2.0 σ2

1 = 4.0

n1 n2 Method <Lower limit <Upper limit <Lower limit <Upper limit

Target 0.0500 0.9500 0.0500 0.9500
Sim SD 0.0022 0.0022 0.0022 0.0022

2 2 Jeffreys 0.0094 0.9924 0.0107 0.9908
Ghosh & Kim 0.0199 0.9841 0.0221 0.9812
slr 0.1322 0.8718 0.1396 0.8636
Welch 0.0293 0.9701 0.0349 0.9664
Third order 0.0274 0.9731 0.0304 0.9677

20 2 Jeffreys 0.0385 0.9681 0.0295 0.9745
Ghosh & Kim 0.1097 0.8970 0.0924 0.9096
slr 0.1286 0.8685 0.1117 0.8868
Welch 0.0829 0.9191 0.0724 0.9281
Third order 0.0683 0.9300 0.0646 0.9332

3 2 Jeffreys 0.0133 0.9895 0.0128 0.9899
Ghosh & Kim 0.0279 0.9745 0.0287 0.9733
slr 0.1072 0.8954 0.1024 0.8989
Welch 0.0356 0.9662 0.0364 0.9657
Third order 0.0313 0.9664 0.0331 0.9655

7 5 Jeffreys 0.0348 0.9651 0.0361 0.9631
Ghosh & Kim 0.0474 0.9525 0.0458 0.9525
slr 0.0716 0.9285 0.0704 0.9310
Welch 0.0494 0.9504 0.0479 0.9490
Third order 0.0517 0.9488 0.0528 0.9505

15 10 Jeffreys 0.0410 0.9509 0.0411 0.9487
Ghosh & Kim 0.0466 0.9435 0.0467 0.9447
slr 0.0663 0.9434 0.0652 0.9435
Welch 0.0468 0.9432 0.0472 0.9444
Third order 0.0572 0.9528 0.0561 0.9524

20 15 Jeffreys 0.0486 0.9608 0.0486 0.9588
Ghosh & Kim 0.0531 0.9549 0.0520 0.9550
slr 0.0525 0.9402 0.0509 0.9420
Welch 0.0531 0.9545 0.0525 0.9547
Third order 0.0458 0.9468 0.0454 0.9475

30 20 Jeffreys 0.0450 0.9510 0.0464 0.9494
Ghosh & Kim 0.0492 0.9473 0.0491 0.9469
slr 0.0560 0.9467 0.0570 0.9462
Welch 0.0494 0.9472 0.0492 0.9468
Third order 0.0529 0.9504 0.0533 0.9507
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Table 1b: For µ1 = 2.0, µ2 = 0.0, σ2
2 = 1.0 without loss of generality and for various n1 ≤ n2, σ

2
1 , we

record the proportion of the 10,000 cases where the true δ is less than the lower limit and less than the
upper limit of the 90% central interval.

σ2
1 = 2.0 σ2

1 = 4.0

n1 n2 Method <Lower limit <Upper limit <Lower limit <Upper limit

Target 0.0500 0.9500 0.0500 0.9500

Sim SD 0.0022 0.0022 0.0022 0.0022

2 3 Jeffreys 0.0144 0.9836 0.0186 0.9766

Ghosh & Kim 0.0351 0.9624 0.0438 0.9530

slr 0.1267 0.8732 0.1363 0.8602

Welch 0.0460 0.9530 0.0549 0.9440

Third order 0.0424 0.9586 0.0522 0.9519

2 20 Jeffreys 0.0417 0.9592 0.0456 0.9564

Ghosh & Kim 0.0969 0.8855 0.0921 0.8930

slr 0.1479 0.8495 0.1544 0.8429

Welch 0.0793 0.9232 0.0760 0.9283

Third order 0.0651 0.9334 0.0640 0.9337

5 7 Jeffreys 0.0375 0.9606 0.0409 0.9587

Ghosh & Kim 0.0495 0.9504 0.0497 0.9493

slr 0.0760 0.9257 0.0799 0.9242

Welch 0.0511 0.9496 0.0507 0.9484

Third order 0.0518 0.9484 0.0520 0.9488

10 15 Jeffreys 0.0457 0.9540 0.0480 0.9538

Ghosh & Kim 0.0520 0.9477 0.0535 0.9484

slr 0.0630 0.9367 0.0630 0.9374

Welch 0.0518 0.9484 0.0531 0.9485

Third order 0.0517 0.9481 0.0516 0.9469

15 20 Jeffreys 0.0466 0.9542 0.0485 0.9515

Ghosh & Kim 0.0509 0.9490 0.0512 0.9477

slr 0.0577 0.9421 0.0597 0.9410

Welch 0.0507 0.9492 0.0510 0.9482

Third order 0.0509 0.9493 0.0516 0.9491

20 30 Jeffreys 0.0549 0.9442 0.0545 0.9445

Ghosh & Kim 0.0471 0.9533 0.0483 0.9537

slr 0.0550 0.9443 0.0546 0.9446

Welch 0.0513 0.9509 0.0496 0.9510

Third order 0.0491 0.9486 0.0490 0.9504
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We find that the third order frequentist procedure gives values that are very close to the
target values 0.05 and 0.95, although pushing the three standard deviation simulation limits in the
asymmetric sample size cases, with (2, 20) being the most conspicuous.

The Welch procedure, finely turned to the specifics of the Student type quantity (6), comes
quite close and indeed does better in several very small sample cases such as (2, 20). Of course with
a first sample of size 2 the usual t-statistic for the corresponding mean has a Cauchy distribution
and it is known that the third order approach does give a bearable approximation to the Cauchy
but does not duplicate an exact Cauchy calculation; see Rekkas et al. (2008).

6. BOX AND COX EXAMPLE

Now consider the Box & Cox (1964) model y = (Xβ + σz)1/λ, where the error vector z is a sample
from a given error distribution. For ease of exposition we use the simple regression version with
yi = (α + βxi + σzi)1/λ and take the errors to be standard normal. The higher-order likelihood
procedure however extends to nonnormal error and to nonlinear regression (Fraser, Wong &
Wu, 1999) with minor increase in the computational burden, mostly in calculating the needed
constrained maximum likelihood values.

Chen, Lockhart & Stephens (2002) questioned the focus on the regression parameter β in Box
& Cox (1964) and in Bickel & Doksum (1981), and chose β/σ as having stability for estimation
analysis. We extend the questioning concern to both parameters and view them as being artefacts
of the notation used and thus not parameters of the original investigation; this is in accord with
McCullagh (2002). Correspondingly we do not examine them here directly or in simulations.

The higher-order likelihood methodology allows us to examine almost any smooth parameter
and in particular allows us to focus easily on various parameters of direct physical interest in
an original regression context. For this we consider the example discussed by Chen, Lockhart
& Stephens (2002) which involves gasoline x in litres added to a vehicle and the correspond-
ing distance y in kilometres driven until empty. Chen, Lockhart & Stephens (2002) present
data involving 107 values of distance driven in kilometres yi and of corresponding amount
of fuel consumed xi in litres. We compare the p-value functions obtained by the signed log-
likelihood ratio and the third order methodology given as in (3). The Bayesian methodology
is not examined because we do not find a satisfactory route to a default prior: the power pa-
rameter λ on its own has group properties, and the parameters α, β, and σ on their own have
group properties; but the full parameter does not have such properties which seem needed to
produce an appropriate default prior. Also the marginalization issues (Dawid, Stone & Zidek,
1973) indicate that it could be difficult to obtain individual priors to target the various component
parameters of interest. This is partly an issue of parameter curvature which will be addressed
elsewhere.

For an input of some particular amount of gasoline of interest say x0, we might well be
interested in the mean distance traveled

ψ(θ) = E(α + βx0 + σz)1/λ.

This would seemingly not be functionally accessible given the power transformations and the
mean value calculation. Accordingly we follow Yang (2002) and focus directly on the parameter
recording the median distance for some fuel input value x0 of interest; this would have the form

ψ1(θ) = (α + βx0)1/λ,

which is a composite of α, β, λ, and the fuel input x0.
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a b

c d

e

Figure 1: The p-value functions for (a) the median distance p(ψ1) from 30 liters of fuel; (b) the extra
distance when topping up 30 liters p(ψ2); (c) the liters needed to go a median 500 kilometers p(ψ3); (d) the

rate of fuel consumption for a distance of 500 kilometers p(ψ4); (e) the power parameter λ.

For the data in Chen, Lockhart & Stephens (2002) we plot in Figure 1a the p-value function
p(ψ1) for an input of x0 = 30 L of gasoline; the actual parameter being examined is then ψ1 =
(α + 30β)1/λ, and the 95% confidence interval for ψ1 in kilometres is

slr: (409.96, 428.22)

third order: (410.40, 429.03).

We do note that the data set is very large with n = 107 and that likelihood alone is powerful.
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To give some indication of the computation needed for the third order, we record some steps
indicating what is needed beyond just likelihood. Of course the preceding suggests we do not need
more than likelihood in the presence of the large data set from the literature, but the simulations
in the next section will focus on performance with smaller data sets.

The calculations for the preceding use an observed log-likelihood, 	(θ), and a nominal canon-
ical parameter ϕ(θ); these are sums, 	(θ) = ∑

	i(θ) and ϕ(θ) = ∑
ϕi(θ), of contributions from

individual coordinates. In particular, we have

	i(θ) = − log(σ) − 1
2σ2 (yλ

i − α − βxi)2 + log λ + (λ − 1) log yi

for the component observed log-likelihood, and

ϕi(θ) =
{

−λyλ−1
i

σ2 (yλ
i − α − βxi) + (λ − 1)y−1

i

}
(vi1, vi2, vi3, vi4)

for the component canonical parameter. The row vector Vi = (vi1, vi2, vi3, vi4) is obtained by first
differentiating y = (α + βx + σz)1/λ for fixed z with respect to (α, β, σ, λ), and then evaluating
the result at the observed yi with the overall maximum likelihood value (α̂, β̂, σ̂, λ̂) and with the
corresponding values of the residuals; this gives with observed values:

Vi = yi

λ̂yλ̂
i

(1, xi, ẑi, −yλ̂
i log yi)

and

ẑi = σ̂−1(yλ̂
i − α̂ − β̂xi).

These are routine problem-specific calculations that more generally can be mechanized by replac-
ing derivatives by high accuracy differences.

But there are other physically meaningful parameters that could also be of interest in an original
context, and are also readily accessible from the cumulant generating approach to likelihood. For
example, we could be interested in the rate at which extra distance is achieved by providing
additional fuel to some initial amount x0. The interest parameter is then the derivative (d/dx)(α +
βx)1/λ|x=x0 :

ψ2(θ) = βλ−1(α + βx0)1/λ−1.

For the data set in Chen, Lockhart & Stephens (2002), we plot in Figure 1b the p-value function
p(ψ2) for the rate of extra distance when topping up 30 L of gasoline; the parameter being examined
is then ψ2(θ) = βλ−1(α + 30β)1/λ−1. The 95% confidence interval for ψ2 in kilometres per litre
is then

slr: (7.965, 12.709)

third order: (7.805, 12.682).

Or in a reverse way we could be interested in the amount of fuel needed to go a median
distance of say y0 kilometres. The interest parameter is then the solution for x from the equation
(α + βx)1/λ = y0:

ψ3(θ) = β−1(yλ
0 − α).

DOI: 10.1002/cjs The Canadian Journal of Statistics



14 FRASER, WONG AND SUN Vol. 37, No. 1

For the large data set, we plot in Figure 1c the p-value function p(ψ3) for a target distance of y0 =
500 km. The parameter being examined is then ψ3(θ) = β−1(500λ − α). The 95% confidence
interval for ψ3 in litres is then

slr: (36.83, 40.18)

third order: (36.90, 40.43).

Or we could be interested in the rate of fuel consumption at a certain terminal distance y0 of
travel; this is closely related to ψ2(θ) and is given as

ψ4(θ) = β−1λyλ−1
0 .

For the large data set, we plot in Figure 1d the p-value function p(ψ4) for a target distance of
y0 = 500 km; the interest parameter is then the rate of fuel consumption ψ4(θ) = β−1λ500λ−1

for a terminal distance of 500 km. The 95% confidence interval for ψ4 in litres kilometre is
then

slr: (0.0777, 0.1486)

third order: (0.0797, 0.1557).

Also in Figure 1e, we plot the p-value function for the power parameter λ obtained from the
given data. The 95% confidence interval for λ is

slr: (0.7126, 2.4100)

third order: (0.6939, 2.3773).

The plots show that the third order likelihood p-value can differ substantially from the first
order approach. In the next section, we report on simulation results that strongly support the third
order p-value approach. Then in Appendix, we illustrate with simple examples the flexibility of
the higher-order approach.

In concluding this section we do note that the computations sometimes need special attention
with presently available likelihood programs. The main computational concern centres on the need
for highly accurate and reliable maximum likelihood sub-calculations. For example, the maximum
likelihood estimate given in Chen, Lockhart & Stephens (2002) is λ̂ = 1.46, with θ̂o = (α̂, β̂, σ̂) =
(−592.2767, 244.2613, 703.987) which yields 	(θ̂o) = −414.940034. On the other hand, if we
take a more accurate evaluation λ̂ = 1.4655, we obtain θ̂o = (−634.7085, 253.2915, 730.7206)
which gives 	(θ̂o) = −414.939951. We thus obtain a large change in the estimated parameters
from a very small change in λ̂; the observed log-likelihood function however does not seem to
be seriously affected by such accuracy, but negative values can occur for 	(θ̂o) − 	(θ̂o

ψ), and the
observed information matrix can become computationally non-positive definite; in other words,
the computational accuracy can be very important, particularly when, as here, the parameter
effects are closely linked or confounded.

7. BOX AND COX SIMULATIONS

The preceding large sample example with n = 107 suggests that with large data sets there may not
be a large change in going from first order likelihood to third order likelihood. For simulation in this
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section, we examine medium sized data sets with n = 30. For this we note that the power parameter
λ itself is rather special in that such transformations form a group. Accordingly, it suffices to
examine a single λ value and, for such, an appropriate power transformation can convert that
value to λ = 1. For the other parameters, we choose σ = 1, α = 3, and examine three choices for
β = 1/3, 1, and 3. For input values x, we look at a moderate range (x1, . . . , x30) = (11, . . . , 40);
the model is

yi = (α + βxi + σzi)1/λ, i = 1, . . . , 30

with normally distributed errors zi.
We generated N = 10,000 samples of size 30 from the standard normal and then used the

model and the particular parameter values to generate 10,000 data sets for each parameter combi-
nation. We then calculated the corresponding central 95% confidence intervals for λ and for ψ1(θ)
based on the signed log-likelihood ratio and the third order method. Table 2 for λ and Table 3

Table 2: Box–Cox problem: Interest in λ.

β Method Lower limits Between lower and upper limits Upper limits

Target 0.0250 0.9500 0.0250

Sim SD 0.0016 0.0022 0.0016

1/3 slr 0.0271 0.9396 0.0333

third order 0.0258 0.9479 0.0263

1 slr 0.0333 0.9334 0.0333

third order 0.0275 0.9465 0.0260

3 slr 0.0354 0.9310 0.0330

third order 0.0282 0.9464 0.0254

Simulation coverage probabilities for the 95% confidence interval for λ with N = 10,000. For λ = 1 without loss of
generality, and with σ = 1, α = 3, (x1, . . . , x30) = (11, 12, . . . , 40) and various β values, we record the proportion of
cases of 95% confidence intervals having the true λ less than the interval, in the interval or above the interval; we also
record the simulation standard deviation.

Table 3: Box–Cox problem: Interest in ψ1(θ) .

β Method Lower limits Between lower and upper limits Upper limits

Target 0.025 0.9500 0.0250

Sim SD 0.0016 0.0022 0.0016

1/3 slr 0.0260 0.9364 0.0376

third order 0.0235 0.9494 0.0271

1 slr 0.0280 0.9352 0.0368

third order 0.0230 0.9496 0.0274

3 slr 0.0296 0.9354 0.0350

third order 0.0238 0.9494 0.0268

Simulation coverage probabilities for the 95% confidence interval for ψ1(θ) with N = 10,000. For λ = 1 without loss
of generality, and with σ = 1, α = 3, (x1, . . . , x30) = (11, 12, . . . , 40) and various β values, we record the proportion
of cases of 95% confidence intervals having the true ψ1(θ) less than the interval, in the interval or above the interval;
we also record the simulation standard deviation.
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for ψ1(θ) record the proportion of samples where the true value of the parameter falls below the
lower confidence limit, within the confidence interval, and above the upper confidence limit. Note
that the nominal values are 0.025, 0.95, and 0.025, respectively; simulation standard deviations
are reported.

We did not complete simulations for the remaining parameters ψ2, ψ3, and ψ4 but in Section 8
cite various broadly based simulation studies available in the literature.

8. DISCUSSION

Three simple statistical models involving normal distributions have appeared sporadically in
the literature over the better part of a century and many statistical inference procedures have
been brought to bear with little agreement as to the appropriate direction. We have surveyed
these enigmatic examples: the methods that have been applied, some additional methods that are
available, and some simulations to guide the choice of method.

The oldest problem, the Behrens (1929)–Fisher (1935a,b) problem, has received various
Bayesian and frequentist analyses with little unanimity as to the most inclusive or accu-
rate. We have compared by simulations various Bayesian and likelihood methods and find
more reliable intervals using higher-order likelihood method. This is further supported by an
N = 100,000,000 McMC simulation for a particular minimum sample size case in Bédard et al.
(2008).

A somewhat more recent problem, the Welch (1939)–Cox (1958) problem has received pri-
marily frequentist and decision theoretic attention, but we note that a Bayes (1763) approach
addresses the major difficulties almost immediately, as does the higher-order likelihood ap-
proach. Much of the controversy in the literature has been concerned with whether to con-
dition or not, and for this simple example, the conditioning is immediate for both of the
approaches.

A still more recent problem, the Box & Cox (1964) problem has received primarily fre-
quentist analysis. Much attention has been given to the choice of parameter to analyze and we
defer to the view that the parameter chosen should have meaning in the original context for
the problem. The absence of Bayesian approaches is partly explained by the difficulty in find-
ing targeted priors appropriate to the various parameters of interest. This seems not an issue
from the frequentist view, although more complicated parameters may require more demanding
calculations. A partial Bayesian step could involve the elimination of the complicating power
parameter by the use of a flat non-informative prior. Such a step has much appeal but some cau-
tions for this have recently appeared in the literature; see Stainforth et al. (2007) and Heinrich
(2006).

We have used simulations as needed for the two more recent problems, and obtained support
for the use of the higher-order likelihood approach. Also various simulations in the literature
are cited at the end of this section. We have focussed on the flexibility of the methods in man-
aging complications in the model. A different issue raised in the editorial process focused on
whether the higher-order methods are robust. Our emphasis on obtaining accurate results un-
der variations in the model type is somewhat counter to this, and generally it is found that the
results do depend on details of the statistical model: that if you incorporate additional informa-
tion concerning the form of the model then you can obtain more accurate and precise inference
results.

For background, examples, and simulations, see Davision, Fraser & Reid (2006), DiCiccio,
Field & Fraser (1990), Fraser (1990, 1991), Fraser & Reid (1993), Fraser, Reid & Wong (1991),
Fraser, Reid & Wu (1999), and Fraser, Wong & Wu (1999).
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APPENDIX

(i) The linearized interest parameter. The rotated coordinate χ(θ) in the ϕ(θ) parameterization is
obtained from the gradient vector of ψ(θ) at θ̂o

ψ and has the form

χ(θ) = ψϕ′ (θ̂o
ψ)

|ψϕ′ (θ̂o
ψ)| · ϕ(θ).

The first factor is the unit row vector version of the gradient vector ψϕ′ (θ̂o
ψ); it is obtained from

ψϕ′ (θ) = ∂ψ(θ)
∂ϕ′ =

(
∂ψ(θ)
∂θ′

)
·
(

∂ϕ(θ)
∂θ′

)−1

= ψθ′ (θ)ϕ−1
θ′ (θ);

in this we take ψϕ′ to be the Jacobian of the column vector ψ with respect to the row vector ϕ′ ;
the unit vector is evaluated at the observed data point.

(ii) Information determinants. The full information determinant jθθ′ (θ̂o) contains the negative
second derivative of log-likelihood at the maximum, and the corresponding information in the
new parameterization is available as

|jϕϕ′ (θ̂o)| = |jθθ′ (θ̂o)| · |ϕθ(θ̂o)|−2

using the Jacobian ϕθ(θ) = ∂ϕ(θ)/∂θ′. The nuisance information determinant in a somewhat sim-
ilar way takes the form

|j(λλ′)(θ̂o
ψ)| = |jλλ′ (θ̂o

ψ)| · |ϕλ′ (θ̂o
ψ)ϕ′

λ′ (θ̂o
ψ)|−1 = |jλλ′ (θ̂o

ψ)| · |X′X|−1

where the right hand determinant uses X = ϕλ′ (θ̂o
ψ) and corresponds in the regression context to

the volume on the regression surface as a proportion of the corresponding volume for regression
coefficients; in the preceding formula this changes the scaling for the nuisance parameter to that
derived from the ϕ parameterization. The expressions above are for the case where θ′ is given as
(ψ, λ′); the more general version without an explicit nuisance parameterization is available in
Fraser, Reid & Wu (1999).

(iii) Examples
Let y be a sample of size 1 from an exponential distribution with mean θ. For this model, there

is no nuisance parameter. The exact p-value function is

p(θ) = 1 − exp
{

−y

θ

}
.

The log-likelihood function and its derivatives are

	(θ) = − log(θ) − y

θ
, 	θ(θ) = −1

θ
+ y

θ2 , 	θθ(θ) = 1
θ2 − 2y

θ3 ;

the maximum likelihood value is θ̂ = y; and the observed information is ĵ = jθθ(θ̂) = 1/y2. The
parameter of interest is taken to be ψ = ψ(θ) = θ. From (1), the signed log-likelihood ratio is

r = r(ψ) = sgn(y − ψ)
[

2
{

− log
y

ψ
− 1 + y

ψ

}]1/2

.
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The canonical parameter is ϕ(θ) = 1/θ. Hence ϕθ(θ) = −1/θ2 and thus

|jϕϕ(θ̂)| = |jθθ(θ̂)||ϕθ(θ̂)|−2 = y2.

Moreover, with ψθ(θ) = 1, we have χ(θ) = ϕ(θ) = 1/θ. Therefore, from (4), we have

q = q(ψ) = sgn(y − ψ)
∣∣∣∣1
y

− 1
ψ

∣∣∣∣ y

and the p-value function can be approximated by (3).
To illustrate the accuracy, consider y = 2.25. The following table reports p-values obtained

from the signed log-likelihood ratio (slr), third order as in (3), and the exact for selected values
of ψ.

ψ

Method 0.5 1 3 5 10

slr 0.9971 0.8256 0.3918 0.2404 0.1156

third order 0.9887 0.8934 0.5265 0.3621 0.2022

exact 0.9889 0.8946 0.5276 0.3624 0.2015

ψ

Method 20 30 50 100 200

slr 0.0536 0.0340 0.0191 0.0088 0.0041

third order 0.1074 0.0732 0.0448 0.0227 0.0115

exact 0.1064 0.0723 0.0440 0.0222 0.0112

Consider another example which has a nuisance parameter. Let (y1, . . . , yn) be a sample from
a Gamma distribution with shape β and mean µ. Let t1 = ∑

log yi and t2 = ∑
yi. Then the

log-likelihood function can be written as

	(θ) = 	(β, µ) = −n log �(β) + nβ log β − nβ log µ + βt1 − βt2

µ
.

The overall maximum likelihood estimate of θ is θ̂ = (β̂, µ̂)′ where µ̂ = t2/n and β̂ satisfies

−g(β̂) + log β̂ − log
( t2

n

)
+ t1

n
= 0,

where g(·) is the digamma function. Note that β̂ has to be obtained numerically. By differentiating
the log-likelihood function twice, we have

jθθ′ (θ) =
(

ng′(β) − n/β n/µ − t2/µ
2

n/µ − t2/µ
2 −nβ/µ2 + 2βt2/µ

3

)

where g′(·) is the trigamma function.
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The canonical parameter is ϕ(θ) = (β, β/µ)′. Hence

ϕθ′ (θ) =
(

1 0

1/µ −β/µ2

)
, ϕ−1

θ′ (θ) =
(

1 0

µ/β −µ2/β

)

and ϕλ(θ) = (0, −β/µ2). The parameter of interest is taken to be the shape parameter β, thus
ψ = ψ(θ) = β. We then have ψθ′ (θ) = (1, 0) and the constrained maximum likelihood estimate
of θ is θ̂ψ = (β, µ̂). Since ψϕ′ (θ) = ψθ′ (θ)ϕ−1

θ′ (θ) = (1, 0), we have χ(θ) = β. Thus

|jϕϕ′ (θ̂)|
|j(λλ′)(θ̂ψ)| = {ng′(β̂) − n/β̂}β/β̂.

From (1), we have

r = sgn(β̂ − β)[2{	(θ̂) − 	(θ̂ψ)}]1/2

and from (4), we have

q = sgn(β̂ − β)|β̂ − β|[{ng′(β̂) − n/β̂}β/β̂]1/2.

Finally, we have r∗ = r − 1/r log(r/q).
Wong & Wu (1998) examined the above problem and from their simulations the approximation

based on the exact conditional likelihood function gave the best coverage, which we use for
comparison with the present third order method.

As the numerical illustration, we examine the Gross & Clark (1975) data in Grice & Bain
(1980) giving survival times for 20 mice exposed to 240 rad of gamma radiation.

152 152 115 109 137 88 94 77 160 165

125 40 128 123 136 101 62 153 83 69

The following table reports the p-value obtained by the log-likelihood ratio, the present third order
method, and the approximation discussed in Wong & Wu (1998), for various β values. The third
order approaches are substantially in agreement and the signed likelihood ratio analysis differs
noticeably.

β

Method 3 5 7 10 12 15 20

slr 0.9985 0.9527 0.7614 0.3370 0.1464 0.0300 0.0011

third order 0.9963 0.9181 0.67100 0.2492 0.0965 0.0169 0.0005

Wong & Wu 0.9962 0.9174 0.66700 0.2481 0.0959 0.1068 0.0005
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