Latent Variable Models 0000 The LV copula model

Model Selection

Numerical Experiments 00000000

Bayesian Copula-based Latent Variable Models

Radu Craiu

Department of Statistical Sciences University of Toronto

Joint with Robert Zimmerman

Amsterdam, October 2024

Latent Variable Models

The LV copula model

Model Selection

Numerical Experiments

Copulas: The Joys

- Copulas are mathematical devices used to model dependence between random variables regardless of their marginals.
- Copulas are useful for data fusion/integration because they lead to coherent joint models, even when the marginals are in different families (e.g., Gaussian, Poisson, Student, etc) or of different types (e.g, discrete, continuous).
- Copulas unlock information contained in the dependence part of the distribution (second-order) that complements the information in the marginals.
- Simply put, copulas allow us to extend statistical methods beyond the use of a multivariate Gaussian or Student.

Latent Variable Models

The LV copula model

Model Selection

Numerical Experiments

At the root of it all, a theorem

- If Y₁, Y₂,..., Y_K are continuous r.v.'s with cdfs F₁, F₂,..., F_k, there is an unique copula C : [0, 1]^K → [0, 1] that links the joint cdf with the marginal ones (Sklar's Theorem).
- ▶ The copula (when K = 2) $C : [0,1] \times [0,1] \rightarrow [0,1]$ satisfies

$$F_{12}(t,s) = \Pr(Y_1 \le t, Y_2 \le s) = C(F_1(t), F_2(s)).$$

The conditional copula satisfies

$$F_{12|X}(t,s) = \Pr(Y_1 \le t, Y_2 \le s|X) = C(F_{1|X}(t), F_{2|X}(s)|X)$$

► Usually we use parametric families so $C(u, v) = C_{\theta}(u, v)$ such as Clayton's family: $C_{\theta}(u, v) = \left[\max\left(u^{-\theta} + v^{-\theta} - 1, 0\right)\right]^{-1/\theta}$. Frank's family: $K_{\theta}(u, v) = -\frac{1}{\theta} \ln \left[1 + \frac{(e^{-\theta u} - 1)(e^{-\theta v} - 1)}{e^{-\theta} - 1}\right]$.

ln a conditional copula, θ may depend on X.

Radu Craiu

Latent Variable Models

The LV copula model

Model Selection

Numerical Experiments

Latent Variables (LV)

The variable of interest W is sometimes impossible to measure directly

- State of the economy
- Traffic in a city
- State of your health
- State of a complex disease

Instead, one measures

- Y = (Y₁,...,Y_k)^T whose components are surrogates of W and each provide partial information about W
- Covariate $\mathbf{X} \in \mathbb{R}^{p}$

▶ We are often interested in the explanatory power of **X** for *W*.

Latent Variable Models ●○○○ The LV copula model

Model Selection

Numerical Experiments

An example

- Cardiotocography (CTG) is a medical procedure that monitors the fetal heart rate.
- The LV is the fetus' underlying state of health during birth, W.
- Our surrogate response is the bivariate vector (Q, Y) where
 - Q is the number of peaks (acceleration followed by a deceleration of heart beats) for the signal recorded by the CTG
 - Y is the log of mean short-term "beat-to-beat" variability (MSTV) where the short-term variability (STV) is obtained by measuring the time between successive R waves (cardiac systoles) of the fetus' electrocardiogram.
- The covariates are FM (fetal movement) and UC (uterine contraction), two continuous variables monitored during birth.

Latent Variable Models

The LV copula model

Model Selection

Numerical Experiments

Conditional independence LV model

• A canonical LV model, given $W_i = X_i\beta + \epsilon$, is

 $\begin{aligned} Y_i &\perp Q_i | W_i \\ Y_i &\sim \mathcal{N}(\mu_c + \lambda_c W_i, \sigma^2) \\ Q_i &\sim \textit{Poisson}(\exp{(\mu_d + \lambda_d W_i)}) \end{aligned}$

- This implies that the two marginal regressions share a common random effect so they are marginally dependent (and conditionally independent)
- ► The induced dependence is not analytically available.

Latent Variable Models

The LV copula model

Model Selection

Numerical Experiments

Conditional independence is a Copula LV

• The copula alternative is, conditional on W_i ,

$$\begin{aligned} H(Y_i, Q_i | W_i) &= C_{\theta_i}(F_Y(Y_i | W_i), F_Q(Q_i | W_i)), \quad \theta_i = \kappa^{-1}(\xi_0 + \xi_1 W_i) \\ Y_i &\sim \mathcal{N}(\mu_c + \lambda_c W_i, \sigma^2); \quad Q_i \sim \textit{Poisson}(\exp(\mu_d + \lambda_d W_i)) \end{aligned}$$

- ► The whole joint distribution of (*Y*, *Q*) is varying with *W* not just the marginals.
- ► The copula captures the residual dependence on *W* after the marginal effects have been accounted for.
- The previous model is obtained when the copula is the independence copula.

Latent Variable Models

The LV copula model

Model Selection

Numerical Experiments

Why the Conditional Copula?

- $\blacktriangleright Y_i | x \sim N(f_i(x), \sigma_i) x \in \mathbb{R}^2$
- True marginal means:
 - $f_1(x) = 0.6 \sin(5x_1) 0.9 \sin(2x_2)$
 - $f_2(x) = 0.6 \sin(3x_1 + 5x_2)$
 - $\sigma_1 = \sigma_2 = 0.2, X_1 \perp X_2.$
- ▶ Copula: θ(x) = 0.71

Suppose x₂ is not observed so inference is based only on x₁

Latent Variable Models

The LV copula model

Model Selection

Numerical Experiments

Why the Conditional Copula?

- $\blacktriangleright Y_i | x \sim N(f_i(x), \sigma_i) x \in \mathbb{R}^2$
- True marginal means:
 - $f_1(x) = 0.6 \sin(5x_1) 0.9 \sin(2x_2)$
 - $f_2(x) = 0.6 \sin(3x_1 + 5x_2)$
 - $\sigma_1 = \sigma_2 = 0.2, X_1 \perp X_2.$
- Copula: $\theta(x) = 0.71$

Suppose x_2 is not observed so inference is based only on x_1

Latent Variable Models

The LV copula model

Model Selection

Numerical Experiments

CTG: The LV Copula Model

• $(Q_i, Y_i)|W_i$ has joint density

$$f_{(Q,Y)}(q,y) = f_c(y) \cdot \left[C_{d|c} \left(F_d(q), F_c(y) \right) - C_{d|c} \left(F_d(q-), F_c(y) \right) \right],$$

where

$$C_{d|c}(u_d, u_c) = \frac{\partial}{\partial u_c} C(u_d, u_c).$$

Data Augmentation: Introduce latent variable Z such that

$$Q\stackrel{d}{=} F_d^-(F_Z(Z)),$$

- The copula between (Y, Z) is the same as the copula between (Y, Q)
- We can choose the distribution of *Z* to help the computation.
- For instance if we use a Gaussian copula, it helps to have $Z \sim N(0, 1)$
- Smith and Khaled (JASA, 2012), C. and Sabeti (JMVA, 2012).

Radu Craiu

Latent Variable Models

The LV copula model

Model Selection

Numerical Experiments

The Augmented LV Copula Model for the CTG Example

The augmented model for CTG data is

$$Z_i \sim \mathcal{N}(0, 1)$$

$$Q_i \mid W_i \sim \text{Poisson} \left(e^{\mu_d + \lambda_d W_i}\right)$$

$$Y_i \mid W_i \sim \mathcal{N}(\mu_c + \lambda_c W_i, \sigma^2)$$

$$(Z_i, Y_i) \mid W_i \sim C^{\text{Gauss}} \left(\Phi(\cdot), \Phi\left(\frac{\cdot - \mu_c - \lambda_c W_i}{\sigma}\right) \mid \theta(W_i, \boldsymbol{\xi})\right)$$

$$W_i \sim \mathcal{N}(x_i \beta, 1),$$

Latent Variable Models

The LV copula model

Model Selection

Numerical Experiments

CTG: The Augmented LV Copula Model

► The dependence between *Y*, *Z* and *Q* is defined by their joint conditional distribution

$$f_{(Q,Z,Y)|W}(q,z,y \mid w) = h(z,y \mid w,\mu_c,\lambda_c,\psi_c,\boldsymbol{\xi})$$

$$\cdot \mathbbm{1}_{F_Z^{-1}(F_d(q-|\varphi_d(\mu_d,\lambda_d,w))) \leq z < F_Z^{-1}(F_d(q|\varphi_d(\mu_d,\lambda_d,w)))}$$

▶ Let $\boldsymbol{\xi} = (\xi_0, \xi_1) \in \mathbb{R}^2$ and $A(w) = \xi_0 + \xi_1 \cdot w$. Then we set

$$\theta(w, \xi) = rac{e^{A(w)} - e^{-A(w)}}{e^{A(w)} - e^{-A(w)}}$$

as the correlation parameter of the bivariate Gaussian conditional copula of (Y, Z)|W = w.

Latent Variable Models

The LV copula model

Model Selection

Numerical Experiments

Some MCMC details

- If the copula and marginals are Gaussian the joint is a multivariate normal so some of the conditional densities are available in closed form.
- ► For other copula families we rely on MwG moves.
- We sample {Z_i : 1 ≤ i ≤ n} from its conditional distribution and use the samples only to update the copula parameters *ξ*.

Good initialization helps:

$$\boldsymbol{\flat} \ \boldsymbol{\beta}^{(0)} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}$$

$$\boldsymbol{\mathsf{W}}_{i}^{(0)} = (\boldsymbol{\beta}^{(0)})^{\top} \mathbf{x}_{i}$$

• $(\mu_d^{(0)}, \lambda_d^{(0)})$ is the MLE based on the marginal likelihood, etc

► Adaptive strategy for all MwG: target an acceptance rate of 44%.

Latent Variable Models

The LV copula model

Model Selection

Numerical Experiments

Model Selection: WAIC

The WAIC is defined as

$$WAIC(\mathcal{M}) = -2fit(\mathcal{M}) + 2p(\mathcal{M}), \qquad (1)$$

where the model fitness is

$$fit(\mathcal{M}) = \sum_{i=1}^{n} \log \left(\mathbb{E} \left[\Pr(y_i, q_i | \omega, \mathcal{M}) \right] \right)$$
(2)

and the penalty

$$p(\mathcal{M}) = \sum_{i=1}^{n} Var(\log(Pr(y_i, q_i | \omega, \mathcal{M}))), \qquad (3)$$

where ω contains all the parameters and latent variables in the model.

Latent Variable Models

The LV copula model

Model Selection

Numerical Experiments

Spotlight on dependence: A conditional WAIC

► We use the following two conditional WAICs:

$$\begin{split} \mathsf{CWAIC}_{Y|Q}(\mathcal{M}) &= -2\sum_{i=1}^{n} \log \left(\mathbb{E} \left[\mathsf{Pr}(y_i | q_i, \omega, \mathcal{M}) \right] \right) + \\ &+ 2\sum_{i=1}^{n} \mathsf{Var} \left(\log \left(\mathsf{Pr}(y_i | q_i, \omega, \mathcal{M}) \right) \right), \\ \mathsf{CWAIC}_{Q|Y}(\mathcal{M}) &= -2\sum_{i=1}^{n} \log \left(\mathbb{E} \left[\mathsf{Pr}(q_i | y_i, \omega, \mathcal{M}) \right] \right) + \\ &+ 2\sum_{i=1}^{n} \mathsf{Var} \left(\log \left(\mathsf{Pr}(q_i | y_i, \omega, \mathcal{M}) \right) \right), \end{split}$$

► ¹/₂(CWAIC_{1|2} + CWAIC_{2|1}) is asymptotically equivalent to CCV for the marginal likelihood

$$\mathsf{CCV}(\mathcal{M}) = \frac{1}{2} \left\{ \sum_{i=1}^{n} \log \left(\mathsf{Pr}(y_i | q_i, \mathcal{D}_{-i}, \mathcal{M}) \right) + \sum_{i=1}^{n} \log \left(\mathsf{Pr}(q_i | y_i, \mathcal{D}_{-i}, \mathcal{M}) \right) \right\}$$

Radu Craiu

Bayesian Copula-based Latent Variable Models

13

Latent Variable Models

The LV copula model

Model Selection

Numerical Experiments

Simulation Experiment

Generate data using a Gaussian copula

Gaussian copula

Figure: Bivariate scatterplot of the generated data with Gaussian copula, and Poisson and normal marginals

Latent Variable Models

The LV copula model

Model Selection

Numerical Experiments

Simulation Experiment

• $CWAIC_{Y|Q}$ and $CWAIC_{Q|Y}$ selection criteria

Criteria\Copula	Gaussian	Frank	Gumbel	Clayton	Indep
CWAIC _{Y Q}	1627.36	1642.36	2395.17	1637.17	1606.31
CWAIC	950.71	982.42	1673.57	976.05	997.43
Average	1289.04	1312.39	2034.37	1306.61	1301.87

Latent Variable Models

The LV copula model

Model Selection

Numerical Experiments

Simulation Experiment

Figure: Traceplots for η 's components.

Latent Variable Models

The LV copula model

Model Selection

Numerical Experiments

Simulation Experiment

	β_1	β_2	λ_d	λ_c	ξ_1
Mean	1.18	0.48	0.90	0.84	3.10
True	1	0.5	1	1	3

Latent Variable Models

The LV copula model

Model Selection

Numerical Experiments

CTG: The data

What	are	Copulas	
000			

Latent Variable Models

The LV copula model

Model Selection

Numerical Experiments

CTG: Estimates

- ► WAIC, WAIC_{Y|Q} and WAIC_{Q|Y} all point to the Gaussian copula (over Gumbel, Frank, Clayton, Independence).
- The posterior means

Latent Variable Models

The LV copula model

Model Selection

Numerical Experiments

CTG: What does it mean?

- ► A peak in the histogram (counted with Nmax) would typically be produced by an FHR acceleration followed by a deceleration.
- Certain decelerations can be attributed to compression of the baby's head during uterine contractions, so they're not unusual.
- Late decelerations (starting after a uterine contraction begins) and especially variable decelerations often suggest a compromise in the supply of blood and oxygen to the fetus.
- A reduced STV can signify a quiet or sleep phase of the fetus, but also the effects of analgesic drugs given to the mother, fetal hypoxia, prematurity, neurological damage and tachycardia from any cause.
- Interpretation: Extremes values of W are identified with "unhealthy" regimes while small values of |W| correspond to healthy ones.
- It is physiologically plausible that MSTV should be negatively correlated with Nmax.

Latent Variable Models

The LV copula model

Model Selection

Numerical Experiments

The Past & Future

- Copulas offer a way to bypass the paucity of available joint distributions.
- Copulas allow the integration of multiple (dependent) sources of information/data via joint modeling
- Joint models can be used for prediction/imputation of an expensive variable given values for cheaper ones.
- So far have been used to further empower multivariate regressions, time series, HMMs, LV models, etc
- Computational challenges, especially in higher dimensions
- Papers available here: https://www.utstat.toronto.edu/craiu/Papers/index.html