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Abstract

The X‐chromosome is often excluded from genome‐wide association studies

because of analytical challenges. Some of the problems, such as the random,

skewed, or no X‐inactivation model uncertainty, have been investigated. Other

considerations have received little to no attention, such as the value in con-

sidering nonadditive and gene–sex interaction effects, and the inferential

consequence of choosing different baseline alleles (i.e., the reference vs. the

alternative allele). Here we propose a unified and flexible regression‐based
association test for X‐chromosomal variants. We provide theoretical justifica-

tions for its robustness in the presence of various model uncertainties, as well

as for its improved power when compared with the existing approaches under

certain scenarios. For completeness, we also revisit the autosomes and show

that the proposed framework leads to a more robust approach than the

standard method. Finally, we provide supporting evidence by revisiting several

published association studies. Supporting Information for this article are

available online.
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1 | INTRODUCTION

Genome‐wide association studies (GWAS) are ubiqui-
tous, delivering significant insights into the genetic de-
terminants of complex traits over the past decade
(Visscher et al., 2017). For this reason, it is surprising that
it is not a common practice to include the X‐chromosome
in GWAS (Konig et al., 2014; Wise et al., 2013). The

X‐chromosome differs from the autosomes in that males
have only one copy of the X‐chromosome while females
have two, and at any given genomic location one of the
two copies in females may be silenced (Gendrel &
Heard, 2011), referred to as X‐chromosome inactivation
(XCI). The choice of the silenced copy could be random
or skewed toward a specific copy (Wang et al., 2014).
These unique aspects lead to more complex analytic
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considerations for genetic association analysis of
X‐chromosomal variants, such as bi‐allelic single‐
nucleotide polymorphisms (SNPs).

A bi‐allelic SNP has two alleles, r and R, of which one
is the reference allele and the other is the alternative
allele with allele frequency f . An autosomal SNP
has three genotypes regardless of sex, namely
G rr rR RR= ( , , ). In association analysis of an autosomal
SNP, the common practice is to simply model a binary or
continuous phenotype Y as an additive function of the
number of copies of the non‐baseline allele present in G;
that is, coding G additively as G = (0, 1, 2)A . Here, with-
out loss of generality, r is chosen to be the baseline allele
in a statistical model and R the non‐baseline allele. When
Y is binary, this regression‐based additive test is also
equivalent to the Cochran–Armitage trend test (Wellek &
Ziegler, 2012). Although both dominant and recessive
genetic models of inheritance are possible, among these
one degrees of freedom (1 df) models, a common practice
for GWAS is to use the additive model, because it has
reasonable power to detect both additive and dominance
effects at a causal variant, and at variants in linkage
disequilibrium (LD) with the causal variant (Bush &
Moore, 2012; Hill et al., 2008). An alternative para-
meterization is the 2 df genotypic model that includes
both the additive G = (0, 1, 2)A term and the dominance
G = (0, 1, 0)D term. In the case of recessive genetic in-
heritance, Zhou et al. (2017) showed that the 2 df geno-
typic test outperforms the 1 df additive test for binary
outcomes, and Dizier et al. (2017) reached the same
conclusion for continuous traits. In the case of additive
genetic inheritance being true, the genotypic test is
known to be less powerful than the additive test due to
the increased df, which is unnecessary. The preferred test
for unknown genetic inheritance in terms of power and
robustness to different genetic models is, however, not
clear across different true genetic effect sizes, sample
sizes, and significance levels.

For an X‐chromosomal SNP, the most commonly
used approach assumes additivity and XCI. However,
recent work (Tukiainen et al., 2017) showed that up to
one‐third of X‐chromosomal genes are expressed from
both the active and inactive X‐chromosomes in female
cells, with varying degrees of “escape” from inactivation
between genes and individuals. Several additional points
also require attention. Table 1 describes eight analytical
considerations and challenges (C1–C8) present in an
X‐chromosome‐inclusive GWAS, including a method's
suitability for analyzing both binary and continuous
traits (C1), which is related to the type of method used,
that is, genotype‐based or allelic association tests (C2);
the (under‐appreciated) consequence of the choice
of the baseline allele on association analysis of an

X‐chromosomal SNP (C3); the importance of including
sex as a covariate (C4) and its analytical connection with
C3; the value in considering gene‐sex interaction effect
(C5) and its connection with the assumption of XCI (C6);
and the assumption of random versus skewed XCI (C7)
and its connection with nonadditive effects (C8).

Several association methods have been developed for
the X‐chromosome, and they are computationally effi-
cient for conducting X‐chromosome‐wide association
analysis. However, each method solves only some of the
C1–C8 challenges. For example, Zheng et al. (2007)
considered only binary outcomes for which both
genotype‐ and allele‐based association tests are applic-
able. The classical allelic association test, comparing
allele frequencies between case and control groups, is
locally most powerful but sensitive to the
Hardy–Weinberg equilibrium (HWE) assumption and
not applicable to continuous traits (Sasieni, 1997; Zhang
& Sun, 2021; Zheng, 2008). Clayton (2008, 2009) dis-
cussed analytical strategies assuming the X‐chromosome
is always inactivated. Hickey and Bahlo (2011) and Loley
et al. (2011) performed simulation studies, each provid-
ing a thorough method comparison, for example, be-
tween tests of Zheng et al. (2007) and Clayton (2008).
Konig et al. (2014) gave detailed guidelines for including
the X‐chromosome in GWAS, recommending different
tests for different model assumptions (e.g., presence or
absence of an interaction effect or XCI), but it is difficult
to validate these assumptions in practice. Gao et al.
(2015) developed a toolset for conducting X‐chromosome
association studies, implementing some of the existing
methods. More recently Z. Chen et al. (2017) improved
sex‐stratified analysis by eliminating genetic model as-
sumptions, but their method is limited to analyzing ge-
netic main effects on binary traits. Focusing on XCI
uncertainty, Wang et al. (2014) proposed a frequentist
maximum likelihood solution to deal with no, random or
skewed X‐inactivation, and in their follow‐up work Wang
et al. (2017) provided a model selection method. In
contrast, B. Chen et al. (2020) applied the Bayesian
model averaging principle (Draper, 1995) to deal with the
XCI uncertainty problem. However, these approaches
assumed additive genetic effects. The value in consider-
ing dominance and gene‐sex interaction effects, and the
inferential consequence of defining different baseline
allele (i.e., the reference or the alternative allele) when
analyzing an X‐chromosomal SNP, have received little to
no attention.

Here we propose a theoretically justified and robust
X‐chromosome association method that can simulta-
neously deal with all eight challenges (C1–C8) outlined
in Table 1. We emphasize the robustness of the proposed
method to genetic assumptions as our understanding is
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TABLE 1 Eight analytical considerations and challenges, C1–C8, present in X‐chromosome‐inclusive association studies

Problem Solution Relevant sections

C1: Quantitative traits vs. binary outcomes

C2: Genotype‐based vs. allele‐based association
methods

Allele‐based association tests, comparing allele
frequency differences between cases and controls,
are locally most powerful. However, they analyze
binary outcomes only and are sensitive to the
Hardy–Weinberg equilibrium (HWE) assumption
(Sasieni, 1997).

Genotype‐based regression models, Y ‐on‐G, support
various types of outcome data, account for
covariate effects with ease, and are robust to the
HWE assumption.

Sections 1 and 2

C3: The choice of the baseline allele for association
analysis, r vs. R

For the autosomes, switching the two alleles does not
affect the association inference. Is this true for the
X‐chromosome?

It is not always true for the X‐chromosome, unless S
is included in the model.

Sections 2.1 and 2.2,
and C4

C4: Sex as a covariate vs. no S main effect
Unlike the autosomes, sex is a confounder when

analyzing the X‐chromosome for traits exhibiting
sexual dimorphism (e.g., height and weight). Even
for the autosomes, sex can be a confounder if allele
frequencies differ significantly between males and
females.×

To maintain the correct type I error rate control, the
sex main effect must be considered particular
when analyzing the X‐chromosome. The
resulting association test is also invariant to the
choice of the baseline allele.

Section 2.2 and C3

C5: Gene–sex interaction vs. no G× S interaction
effect

Gene–sex interaction might exist, but there is a concern
over loss of power due to increased degrees of
freedom. In addition, what is the interpretation of
gene–sex interaction effect in the presence of X‐
inactivation?

Under no interaction, power loss of modeling
interaction is capped at 11.4%. Models including
theG S× covariate also lead to tests invariant to
the assumption of X‐chromosome inactivation
status.

Sections 2.3 and 3,
and C6

C6: X‐chromosome inactivation (XCI) vs. no XCI
XCI occurs if one of the two alleles in a genotype of a

female is silenced. Individual‐level XCI status
requires additional biological information that are
not typically available to genetic association studies.
Assuming XCI or no XCI at the sample level leads to
different genotype coding strategies (Table 2), and it
was thought that this will always lead to different
association results.

XCI uncertainty implies sex‐stratified genetic effect
which can be analytically represented by the
G S× interaction effect. Teasing apart these
different biological phenomenon require other
“omic” data and additional analyses.

Sections 2.3 and 5,
and C5

C7: If XCI, random vs. skewed X‐inactivation
If the choice of the silenced allele in females is skewed

toward a specific allele, the average effect of the rR
genotype is no longer the average of those of r
and R.

XCI skewness is statistically equivalent to a
dominance genetic effect.

Section 2.4, and C8

C8: Dominance effect vs. no GD dominance effect
For both the autosomes and X‐chromosome, the most

common practice is to use the additive test which
has better power than the genotypic test under
(approximate) additivity, but it cannot capture
dominance effects. The exact trade‐off, however, is
not clear.

We provide analytical and empirical evidence
supporting the use of genotypic model when
analyzing either the autosomes or X‐
chromosome. For an X‐chromosomal variant,
including the dominance effect term has the
added benefit of resolving of the skewed X‐
inactivation uncertainty issue.

Sections 2.4, 3 and 4,
and C7
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evolving. For example, although most published X‐
chromosome‐inclusive GWAS assumed XCI, recent
work has shown that up to a third of genes “escape” XCI
(Tukiainen et al., 2017).

The proposed method is regression‐ and genotype‐
based (robust to departure from HWE), analyzing either
a continuous or binary trait while adjusting for covariate
effects. The recommended test has three degrees of
freedom, including both additive and dominance genetic
effects, as well as a gene–sex interaction effect. We show
analytically why the proposed method is robust to the
various model uncertainties, including no, random or
skewed XCI, as well as the choice of the baseline allele.
Desirably, the power of the proposed test is robust to
different alternative genetic models, despite its increased
degrees of freedom over a simple additive test. We note
that the work here focuses on efficient association test-
ing, not parameter estimation or model selection which
requires additional biological data (Busque et al., 1996).

We first present our main theory to address the eight
challenges associated with X‐chromosome‐inclusive
GWAS in Section 2. We then provide analytical results
of power study across all possible genetic models, sample
sizes and type I error rates, as well as empirical results
from simulation studies in Section 3. For methodology
completeness, this section also briefly discusses merit of
the genotypic model in the familiar context of analyzing
autosomal SNPs. We then provide corroborating evi-
dence from several applications in favor of the proposed
approach in Section 4. Finally we discuss the limitations
of our approach and possible future work in Section 5.

2 | METHOD FOR
X ‐CHROMOSOME ‐INCLUSIVE
ASSOCIATION ANALYSIS

The proposed method relies on the generalized linear
model (McCullagh & Nelder, 1989) as it is flexible,
analyzing both binary and continuous traits (C1
of Table 1). As a result, the method is a genotype‐
based approach (C2) that is robust to the assumption
of HWE by regressing the phenotype data (Y ) on ge-
netic data (G) while accounting for other covariate
effects.

For robust and powerful association analysis of a bi‐
allelic X‐chromosomal SNP, we recommend the follow-
ing model:

g E Y β β S β G β G β GS( ( )) = + + + + ,S A A D D GS0 (1)

and the corresponding 3 df test, jointly testing

H β β β: = = = 0,A D GS0 (2)

where notations for the covariates are defined in Table 2.
Other relevant covariates such as environmental factors
(Es) should also be included in the model but omitted
here for notation simplicity.

We show later (a) why the association result from the
proposed approach is invariant to the different GA (e.g.,
GA R I, , or GA r N, , ) and GS (e.g., GSR or GSr) coding schemes
as defined in Table 2, and (b) why the proposed method
also solves the C3–C8 issues simultaneously. But before
we do so, we first provide more details about the nota-
tions presented in Table 2.

TABLE 2 Covariate coding schemes
for examining the additive, dominance,
gene–sex interaction, and sex effects
under different assumptions of the X‐
chromosome inactivation status and the
choice of the baseline allele

Effect
interpretation

Covariate
notation

Non‐
baseline
allele

X‐chromosome
inactivation
(XCI) status

Coding schemes

Females Males

rr rR RR r R

GA R I, , R Yes 0 0.5 1 0 1

Additive GA GA r I, , r Yes 1 0.5 0 1 0

GA GA R N, , R No 0 1 2 0 1

GA r N, , r No 2 1 0 1 0

Dominance GD GD Either Either 0 1 0 0 0

Gene–sex
interaction

GSR R Either 0 0 0 0 1

GS G S= ×A GSr r Either 0 0 0 1 0

Sex S S Either Either 0 0 0 1 1

Note: The subscripts A and D represent additive and dominance effects, R or r represents the non‐baseline
allele of which we count the number of copies present in a genotype, and I or N denotes X‐chromosome
inactivated or not inactivated.
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2.1 | X‐chromosome specific genotype
and covariate coding schemes

Table 2 summarizes the various covariate coding
schemes for analyzing an X‐chromosomal SNP, when
considering all the analytical challenges outlined in
Table 1. Note that when the choice of the baseline allele
is varied (i.e., either r or R) and the XCI status is un-
known, there are four ways to code the additive covariate
GA, and two ways to code the gene–sex interaction cov-
ariate GS. The specific coding for sex does not have an
impact on our proposed method. In Table 2, a female is
coded as 0 and a male as 1, and the interaction G S×D

term vanishes. If a female were coded as 1 and a male as
0, thenG S×D is the same asGD. Thus, in either case it is
redundant to include G S×D in our proposed regression
model.

Using the notations in Table 2, it is immediately clear
why the choice of the baseline allele (C3) matters for
association analysis of an X‐chromosomal SNP. Under no
XCI, if r were assumed to be the baseline allele there
would be one copy of allele R in genotype rR of a female,
and R of a male. Thus, genotypes rR and R would be
grouped together for association analysis. However, if R
were chosen to be the baseline allele, genotypes rR and r
would be grouped together, resulting in different in-
ference. In contrast, the choice of the baseline allele does
not affect association evidence when analyzing an auto-
somal SNP. It is well‐known that although the estimate
of the effect size changes direction, the magnitude of the
association remains the same when analyzing an auto-
somal SNP. But, this is not always true when analyzing
an X‐chromosomal SNP.

2.2 | Sex as a confounder (C4) and its
connection with the choice of the baseline
allele (C3)

Sex is a confounder for phenotype‐genotype association
analysis of an X‐chromosomal SNP for traits displaying
sexual dimorphism. When sex, but not the SNP, is as-
sociated with a trait of interest, omitting sex in the ana-
lysis leads to false positives. This is because sex is
inherently associated with the genotypes of an X‐
chromosomal SNP (Table 2); see Ozbek et al. (2018) for
empirical evidence from simulation studies. Thus, accu-
racy of a test provides the first argument for always in-
cluding S as a covariate in association analysis of an
X‐chromosomal SNP.

The second advantage of modeling the S main effect
is more subtle. As shown in Table 2, the coding of GA

depends on the choice of the baseline allele (i.e., R or r)
and the X‐inactivation status (I for XCI and N for no
XCI), resulting in a total of four different ways of coding
the five genotype groups, namelyG =A R I, , (0, 0.5, 1, 0, 1)′,
G =A r I, , (1, 0.5, 0, 1, 0)′, G =A R N, , (0, 1, 2, 0, 1)′, and
G =A r N, , (2, 1, 0, 1, 0)′. Furthermore, GA R N, , and GA r N, ,

yield different test statistics, because the two coding
schemes lead to different groupings of the genotypes
as discussed in 2.1. Note that, in contrast to
G G= 1 −A R I A r I, , , , under XCI, under no XCI there is no
linear transformation that makes GA R N, , and GA r N, ,

equivalent. An inference that is invariant to the coding
choices may seem difficult, but we show that this is
achievable for models that include sex as a covariate.

Theorem 1. Let 1 and 2 be two generalized linear
models (McCullagh & Nelder, 1989) with the same link
function βg g E Y X, ( ( )) = 11 and βg E Y X( ( )) = 22 , where
Y is the response vector of length n X, 1 and X2 are two
n p× design matrices, and β1 and β2 are the
corresponding parameter vectors of length p. Let
X X X= ( , )1 11 12 , where X11 and X12 are n p q× ( − ) and
n q× matrices corresponding to, respectively, the p q( − )

secondary covariates not being tested and the q primary
covariates of interest, and similarly for X X X= ( , )2 21 22 , and
partition the regression coefficients accordingly as
β β β= ( ′, ′)′1 and β β β= ( ′, ′)′2 . If there exists an
invertible p p× matrix

T
T T

T
X X T=

0
, such that = ,11 12

22
2 1

⎛
⎝⎜

⎞
⎠⎟

where T11 and T22 are, respectively, invertible
p q p q( − ) × ( − ) and q q× matrices, then any of the
Wald, Score or LRT tests for testing

H β H β: = 0 and : = 00 12 0 22

are identical under the two models 1 and 2 , resulting
in the same association inference for evaluating the q

primary covariates of interest. Note that given the structure
of matrix T X X T, =2 1 implies X X T=21 11 11.

We provide the proof of Theorem 1 in Supporting
Information Appendix A. Here we emphasize that the
two sets of q primary covariates being tested, X22 and X12,
are not required to be linear transformation of each
other, for example, between G = (0, 1, 2, 0, 1)′A R N, , and
G = (2, 1, 0, 1, 0)′A r N, , . Instead, X21 and X11, correspond-
ing to the p q− secondary covariates (including the unit
vector if modeling the intercept), that are not being tested
must be invertible linear transformations of each other,
X X T=21 11 11, in addition to X X T=2 1 . This result may
seem surprising, but the two requirements imply that the
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two design matrices are equivalent to each other either in
general or under the null, resulting in identical F‐test
statistics; see Supporting Information Appendix A for
technical details.

In our setting when sex is included in the model,
consider only the additive effect for the moment,
g E Y β β S β G( ( )) = + +S A A0 . Then the two design ma-
trices, corresponding to r or R being the baseline allele
and under no XCI, are

X X=

1 0 0
1 0 1
1 0 2
1 1 0
1 1 1

and =

1 0 2
1 0 1
1 0 0
1 1 1
1 1 0

.1 2

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

In this case, ( )T T=
1 0
0 1

, = (2, −1)′11 12 and T = −122

satisfy the two requirements. Thus, even though
G = (0, 1, 2, 0, 1)′A R N, , and G = (2, 1, 0, 1, 0)′A r N, , are not
linked by a linear transformation, Theorem 1 allows us to
conclude that a Wald, Score or LRT test of H β: = 0A0 is

invariant to the two GA coding schemes GA R N, , and GA r N, , ,
if sex is included as a covariate.

Note that the known result that two tests are
equivalent to each other if X12 and X22, corresponding to
q primary covariates, are linear transformation of each
other is a special case of Theorem 1, where all elements
except the first row of T12 are zero; the exception allows
for a location shift. For example, under the XCI as-
sumption, X G= = (0, 0.5, 1, 0, 1)′A R I12 , , and X =22

G = (1, 0.5, 0, 1, 0)′A r I, , , and X X= 1 −22 12. Thus, T =11

( ) T
1 0
0 1

, = (1, 0)′12 andT = −122 satisfy the requirements.

At this point in the methodology development, the
preferred model g E Y β β S β G( ( )) = + +S A A0 controls
the type I error rate and is invariant to the choice of the
baseline allele. However, in practice the XCI status is
unknown and if we assume there is XCI,
G = (0, 0.5, 1, 0, 1)′A R I, , and G = (2, 1, 0, 1, 0)′A r N, , , and

X X=

1 0 0
1 0 0.5
1 0 1
1 1 0
1 1 1

and =

1 0 2
1 0 1
1 0 0
1 1 1
1 1 0

.1 2

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

In this case, it is not difficult to show that a matrix T
satisfying the requirements of Theorem 1 does not exist,
because Rank X Rank X X( ) < (( , ))1 1 2 implies that the
linear system X X T=2 1 has no solution, and the XCI
uncertainty remains a challenge.

2.3 | Gene–sex interaction effect (C5)
and its connection with unknown XCI
status (C6)

Throughout the paper, we define theGS interaction term
asG S×A . Depending on the choice of the baseline allele,
GS has two different codings, namely GSR and GSr
(Table 2). In the previous section, we have shown that
when S is included in the model, that is,
g E Y β β S β G( ( )) = + +S A A0 , the choice of the baseline
allele is no longer of a concern if we test H β: = 0A0

within a particular XCI assumption. Interestingly, when
both S and GS are included in the model,
g E Y β β S β G β GS( ( )) = + + +S A A GS0 , by applying
Theorem 1 again, testing H β β: = = 0A GS0 is statistically
equivalent between the different choices of the baseline
allele and the assumption of the XCI status. For example,
consider

X X=

1 0 0 0
1 0 0.5 0
1 0 1 0
1 1 0 0
1 1 1 1

and =

1 0 2 0
1 0 1 0
1 0 0 0
1 1 1 1
1 1 0 0

,1 2

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

respectively, for a model assuming XCI and choosing r as
the baseline allele (i.e., tracking the number of copies of
allele R), and for a model assuming no XCI and choosing
R as the baseline allele, we can show that

( ) ( )
( )

T T T=
1 0
0 1

, = 2 0
−1 1

and

= −2 0
1 −1

11 12 22

satisfy the linear transformation requirements of
Theorem 1. That is, for association analysis of an
X‐chromosomal SNP, testing H β β: = = 0A GS0 based on
g E Y β β S β G β GS( ( )) = + + +S A A GS0 is invariant to the
choice of the baseline allele and the assumption of the
X‐inactivation status. Figure 1 summarizes the equiv-
alency between the design matrices that correspond to the
different coding schemes studied so far; all the theoretical
results have been confirmed empirically via simulations.
Our findings are supported by a recent simulation study
(Song et al., 2021), where estimation biases in SNP coef-
ficient estimate were observed “in several situations, par-
ticularly if the assumptions about XCI made by the coding
scheme used and the assumptions made about sex dif-
ferences in SNP effect of the fitted model were incorrect,”
while “Fitting models with SNP× Sex interaction terms
can avoid reliance on assumptions.”
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2.4 | Random versus skewed
X‐inactivation (C7) and its connection
with genetic dominance effect (C8)

Similar to analyzing an autosomal SNP, the first reason
for modeling the dominance effect is to capture potential
departure from additivity; see Section 3 for additional
discussion. For an X‐chromosomal SNP, another im-
portant reason is that the dominance effect can also
statistically capture skewness of X‐inactivation, if
present.

Intuitively, if we assume the effects of rr and RR to
be, respectively, 0 and 1, the effect of rR will be either 0
or 1 for each individual, depending on the inactivated
allele of the sample collected. If the two alleles are
equally likely to be inactivated (i.e., random XCI) across
all individuals, the average statistical effect of rR is 1/2. If
r is more (or less) likely to be inactivated (i.e., skewed
XCI), the average effect of rR is greater (or less) than 1/2.
However, this XCI skewness is analytically equivalent to
a dominance effect (i.e., effect of rR deviating from 1/2),
even though dominance effect is at the population level
whereas skewed XCI is a sample‐specific property. This
analytical equivalency also shows that knowing the true

underlying biological model requires more than the
standard GWAS data.

Table 3 summarizes the statistical behaviors of
all the regression models and corresponding tests
discussed in this section. Notably, jointly testing
H β β β: = = = 0A D GS0 , based on the g E Y( ( )) =

β β S β G β G β GS+ + + +S A A D D GS0 model M4, ensures
that the inference is invariant to the assumptions of the
XCI status and baseline allele, and accounts for dom-
inance effect and XCI‐skewness if present.

3 | ANALYTICAL AND
SIMULATION ‐BASED METHOD
EVALUATION

The proposed method is easy‐to‐implement and has good
type I error control, because regression‐based approach is
known to be well behaved, as long as sample size is not
too small and allele frequency is not too low, which are
satisfied by most GWAS of common variants. Thus, we
focus on evaluating power of the proposed method. We
first provide a general analytical finding then present
some simulation‐based results.

FIGURE 1 Equivalency between different regression models for association analysis of an X‐chromosomal bi‐allelic SNP. The subscript
R or r represents the non‐baseline allele of which we count the number of copies present in a genotype, and I or N denotes X‐chromosome
inactivated or not inactivated; see Table 2 for additional covariate coding details. Two groups of coding connected by a line if there is an
invertible linear transformation between the design matrices as specified in Theorem 1, and the resulting test statistics for testing the
specified H0 will be identical to each other. Part (a) corresponds to models and tests without the dominance GD covariate, and part (b)
corresponds to models and tests with GD included. Inclusion of GD has no effect on the linear relationships established in part (a), because
coding of GD in Table 2 is invariant to the choice of the baseline allele or the XCI status. However, GD effect is statistically equivalent to
skewed XCI as shown in Section 2.4
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FIGURE 2 Power comparison for analyzing X‐chromosomal single nucleotide polymorphisms (SNPs). Black□ curves for testing β = 0A

based on model M1 as specified in Table 3, green◇ curves for testing β β= = 0A D based on model M2, blue ▿ curves for testing β β= = 0A GS

based on model M3, and red × curves for testing β β β= = = 0A D GS based on the proposed model M4. (a) ffemale = fmale = 0.2 and (b)
ffemale = fmale = 0.5. Upper panels in (a) and (b) examine power as a function of the “dominance” effect. Lower panels in (a) and (b) examine
power as a function of the gene–sex “interaction” effect. Note that biological dominance effect and skewed X‐chromosome inactivation (XCI),
and gene–sex interaction effect and the XCI status are statistically confounded with each other; see Section 3.2. Results for other parameter
values including differential f between males and females are shown in Figures S5. The analyses related to M1–M3 assume that the true
baseline allele is known and f being the allele frequency of the non‐baseline allele, and the true XCI status is known at the population level.
Unlike the other methods (M1–M3), the proposed method (M4) is invariant to the assumptions of the baseline allele and the XCI status

3.1 | Using the general theory of χ2
distributions

One concern with the use of the proposed 3 df test is the
potential loss of power due to the increased degrees of

freedom. Indeed, if the true model for an X‐chromosomal
SNP is without a dominance effect and skewed inactiva-
tion, without gene‐sex interaction, and the true inactiva-
tion status is known so that the additive genotype variable
GA can be correctly coded, then the corresponding 1 df test
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will be more powerful than the proposed 3 df test. How-
ever, we show that even under the worst‐case scenario and
irrespective of sample size and the nominal type I error α
level, the maximum power loss of the proposed 3 df is,
surprisingly, capped at 18.8%, while the potential max-
imum power gain is α1 − (i.e., close to 100%).

Let W χ W χ~ , ~ncp ncp1 (1, )
2

2 (2, )
2

1 2
, and W χ~ ncp3 (3, )

2

3
be

the 1, 2, and 3 df test statistics derived from the different

regression models listed in Table 3. The power difference

between the different W 's depends on both the non‐
centrality parameters and α. When all the ncp's are close

to 0, all tests have no power. At the other extreme when

all ncp's are sufficiently large or α close to 1, all tests have

power close to 1. Thus, we expect meaningful power

comparison when ncp's, and α have moderate values.

First, we assume that there are no dominance or in-
teraction effects and the true XCI status is known to
study the maximum power loss induced by unnecessarily
including the GD and GS terms. In that case,
ncp ncp ncp ncp= = =1 2 3 and W1, derived from
g E Y β β S β G( ( )) = + +S A A0 with the correct genotype
coding, is the optimal test. Varying ncp and α values, we
numerically compute the power of the W 's for
ncp [0, 100]∈ and α−log [0, 15]10 ∈ . Figure S1 provides
a heat plot for power as a function of ncp and α for the
two tests. Results show that the maximum power loss of
W3 compared withW1 is capped at 18.8%, regardless of the
true additive effect size, sample size and the α level. The
maximum occurs at α = 0.0008 and ncp = 13.4

(Figure S1). At the genome‐wide significance level
α = 5 × 10−8 (Dudgridge & Gusnanto, 2008), the max-
imum power loss is 17.7% occurring at ncp = 32.6.

Notably, the maximum of 18.8% power loss holds for
comparing any 3 df χ2 test with a 1 df χ2 test that was

derived from the correctly specified 1 df model. This is
because the derivation is based on ncp and α alone.
Second, we emphasize that although a 18.8% loss of
power is substantial, the fact that this is the maximum
power loss for the 3 df test, under any true 1 df genetic
model and regardless of the true genetic effect size,
sample size, and significance level, is encouraging, as the
potential power gain of the proposed 3 df test under other
models can be much greater than 18.8% as we show next.

In the presence of dominance effect/skewed XCI or
interaction effect/misspecified XCI, ncp ncp= + Δ3 1 13,
where Δ > 013 . Compared with the maximum power loss
of using the proposed 3 df for a 1 df (correctly specified)
model, the maximum power gain under other genetic
models can be theoretically as large as α1 − . To provide
specific numerical results, we consider α = 0.0008 (the
worse‐case scenario derived above for the 3 df test),
ncp = 51 , 10 or 15, and Δ13 ranging from 0 to 10. Results
in Figure S2 show that once Δ13 is as large as half of ncp1

(i.e., ncp ncp1.53 1≈ ⋅ ), the 3 df test is more powerful than
the 1 df test.

Together these two observations suggest that the
proposed 3 df test is not only robust to the various model
uncertainties associated with analyzing X‐chromosomal
variants, but it is reasonably powered as compared with
the standard 1 df additive test. Compared with a 2 df
test derived from correctly specified g E Y( ( )) =

β β S β G β G+ + +S A A D D0 or g E Y β β S β G( ( )) = + +S A A0

β G+ GS GS, the global maximum power loss of the pro-
posed 3 df test is capped at 7.7%, occurring at
α = 9.12 × 10−5 and ncp = 19. At α = 5 × 10−8, the
maximum power loss is 7.5% occurring at ncp = 34.2

(Figure S1). In contrast, if the 2 df model is misspecified
the potential power gain of the proposed 3 df test can be
greater than 95%.

Power comparison between a 1 df test and a 2 df test
is more relevant to the analysis of an autosomal SNP, but

TABLE 3 Properties of different
regression models in the presence of the
eight analytical challenges, as detailed in
Table 1

Model, g E Y( ( ))= Testing H :0 C3/C4 C5/C6 C7/C8

M β β S β G: + +S A A1 0 β = 0A √ × ×

M β β S β G β G: + + +S A A D D2 0 β β= = 0A D √ × √

M β β S β G β GS: + + +S A A GS3 0 β β= = 0A GS √ √ ×

M β β S β G β G β GS: + + + +S A A D D GS4 0 β β β= = = 0A D GS √ √ √

Note: Whole‐genome considerations such as C1 (continuous vs. binary traits) and C2 (Hardy–Weinberg
equilibrium vs. disequilibrium) are naturally dealt with by the genotype‐based regression approach.
X‐chromosome‐specific considerations include C3 (choice of the baseline allele), C4 (sex as a confounder
and type I error control), C5 (gene‐sex interaction), C6 (X‐chromosome inactivation (XCI) vs. no XCI), C7
(random vs. skewed XCI), and C8 (the dominance effect). In the table, × indicates a problem for the

corresponding model and test, and √ means no problem. Relevant covariates E 's should be included in

the model but omitted here for notation simplicity. Joint testing of H β β β: = = = 0A D GS0 based on M4 is

the recommended, most robust approach; see Figures 2 and S5 for power comparisons among M1–M4.
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the conclusion is similar to above. For example, under
additivity, the maximum power loss of a 2 df genotypic
test is capped at 11.4% across all parameter values and
sample sizes. The maximum occurs at α = 0.0025 and
ncp = 10.6, and at the genome‐wide significance level of
α = 5 × 10−8 (Dudgridge & Gusnanto, 2008), the max-
imum power loss is 10.3% when ncp = 31.4 (Figure S1).
Supporting Information Appendix B also provides power
comparison between the additive and genotypic tests for
association analysis of an autosomal SNP across a range
of dominance effects and allele frequencies (Figure S3).
For each combination of parameter values considered,
Figure S4 and Table S1 also provide the corresponding
ncp1 and ncp2.

3.2 | Using different genetic models for
the X‐chromosome

Here we provide some empirical results based on dif-
ferent genetic models for an X‐chromosomal variant and
sample sizes. Note that tests derived from models that do
not include sex as a covariate are susceptible to type I
error rate inflation. Thus, power comparisons here focus
on M1–M4 as specified in Table 3.

To compare the empirical power, we first derive the
non‐centrality parameters of the tests as functions of
sample size, additive, dominance, and interaction effects,
and under different assumptions of the baseline allele
and X‐inactivation status. We provide the technical de-
tails in Supporting Information Appendices C and D. We
then considered n α= 1, 000, = 0.0008 (the worst case
scenario for the 3 df test as shown in Section 3.1), and
allele frequency f f= = 0.2male female or 0.5. Results for
other parameter values, including differential allele fre-
quency values between males and females, are provided
as Supporting Information; sex‐specific allele frequencies
may occur due to sex‐specific selection.

Because of the various analytical equivalencies be-
tween GS interaction and XCI status, and between
dominance effect and skewed XCI, the corresponding
interaction, dominance, and skewed effect sizes are sta-
tistically confounded with each other. Thus, we specified
the averaged statistical effect size for each of the five
genotype groups, that is, μ μ μ μ, , ,rr rR RR r , and μR. We
fixed μ μ= −0.3, = 0.3rr RR and μ = 0r , and varied μrR
and μR from −0.6 to 0.6. Note that fixing μrr and μRR is
equivalent to fixing the additive effect β = 0.6A under
XCI or β = 0.3A under no XCI; varying μrR is equivalent
to varying the dominance effect βD from −0.6 to 0.6. The
link with the interaction effect βGS is less clear. Under
the XCI assumption, β μ μ μ μ= ( − ) − ( − )GS R r RR rr

μ2 = − 0.3R∕ , while under the no XCI assumption,

β =GS μ μ μ μ μ( − ) − ( − ) 4 = − 0.15R r RR rr R∕ . Thus, for
the μR values considered here, βGS ranged from −0.9 to
0.3 under XCI, and from−0.75 to 0.45 under no XCI. For
ease of interpretation, Figure 2 uses the “dominance”
and “interaction” terms to denote the varying degrees of
μrR and μR.

Results in Figure 2 demonstrate the merits of the
proposed method (testing β β β= = = 0A D GS jointly, the
red × curves). While there could be some power loss in
the worse case scenario (no GD dominance or GS inter-
action effects), it is theoretically capped at 18.8% re-
gardless of the parameter values. On the other hand,
compared with the standard 1 df additive test (testing
β = 0A and assuming the correct genotype coding, the
black □ curves), power gain can be 70% for the cases
considered here. When the allele frequency is 0.2
(Figure 2a), the performance of the 2 df additive and
interaction test (testing β β= = 0A GS , the blue ▿ curves)
is close to the proposed 3 df test. However, that is no
longer the case when f = 0.5 (Figure 2b), where the 2 df
additive and dominance test (testing β β= = 0A D , the
green◇ curves) is better and close to the proposed 3 df
test. Figures S5 provides additional results for other
parameter values, all showing the robustness of the
proposed method, which is testing H β β β: = = = 0A D GS0

based on M4, g E Y β β S β G( ( )) = + + +S A A0 β G +D D

β GSGS . In practice the regression model should include
relevant E 's, which are omitted here for notation
simplicity.

The proposed method not only resolves all C1–C8
analytical challenges simultaneously, but also has the best
overall performance across the different underlying ge-
netic models. However, we note that our robust method
cannot identify the underlying true genetic model. This is
true for any method that uses GWAS data alone, because
we have shown, for example, XCI uncertainty is analyti-
cally equivalent to a gene–sex interaction effect, while XCI
skewness is analytically equivalent to dominance effect.
The lack of model identifiability of the proposed method,
however, does not prevent a robust and powerful asso-
ciation analysis of X‐chromosomal SNPs.

4 | APPLICATIONS TO THREE
PREVIOUSLY PUBLISHED
ASSOCIATION STUDIES

4.1 | Reanalyses of the X‐chromosome‐
inclusive GWAS of Sun et al. (2012)

This data set consists of 3199 unrelated individuals with
cystic fibrosis (CF) and 570,724 genome‐wide bi‐allelic
SNPs after standard quality control (Sun et al., 2012).
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Among the 570,724 SNPs, 14,279 are for the X‐
chromosome and 556,445 are from the autosomes. And
among the 3199 CF subjects, 574 are cases with meco-
nium ileus, an intestinal obstruction at birth seen in

15%≈ of CF patients (Dupuis et al., 2016), and the
remaining 2625 CF subjects are controls; 1722 are males
and 1477 are females. The rates of meconium ileus are
17.7% and 18.3%, respectively, in the male and female
groups, which is not statistically different.

A previous X‐chromosome‐inclusive GWAS of me-
conium ileus in CF has been conducted based on this
data set (Sun et al., 2012), where the standard 1 df ad-
ditive test was used for analyzing the autosomal SNPs,
and X‐chromosome being inactivated was further as-
sumed for analyzing the X‐chromosomal SNPs (i.e., using
model M1 in Table 3 with genotype coding under the
assumption of XCI). Here we reanalyze both the auto-
somal and X‐chromosomal SNPs to demonstrate the
utility of the proposed approach.

For the X‐chromosome, we compared the M1–M4

models and their corresponding tests as detailed in
Table 3 in Section 2. For each SNP, we performed six
different association tests, depending on which of the
M1–M4 models was used and if the XCI status needed to
be specified, because (a) sex must be included to ensure
correct type I error rate control and models including S
are invariant to the choice of the baseline allele
(Section 2.2), and (b) models including the gene‐sex in-
teraction effect are invariant to the assumption of XCI
(Section 2.3). Figure 3a shows the results for the top 15
ranked X‐chromosomal SNPs, ordered by the minimal
p value of all six tests; the lines connecting the SNPs are
used only for visualization purposes to demonstrate the
robustness of a method.

The application results here are consistent with our
earlier analytical and simulation results in Section 3,
showing that joint modeling and testing the additive,
dominance, and gene–sex interaction effects is the most
robust association approach for analyzing X‐chromosomal
variants. For example, the result of Sun et al. (2012) (M1

and assuming XCI) marked by the black□ curve is clearly
less “stable” than the red× curve (the proposedM4) across
different SNPs. In this particular application, we observed
that the performance of the orange + curve (M2 assuming
no XCI) is similar to the proposed method. However, in-
terestingly, the green◇ curve (alsoM2 but assuming XCI)
is noticeably different from the orange + curve.

For the autosomal SNPs, we contrast the standard 1 df
additive test with the proposed 2 df genotypic test as
briefly discussed in Section 3.1 and detailed in Supporting
Information Appendix B. Figure 3b shows the results for

the top 15 ranked autosomal SNPs, ordered by the mini-
mal p value of additive and genotypic tests; Figures S7 and
S8 provide genome‐wide results. It is clear that if the
p values of the standard 1 df additive test (the black □
curve) are smaller, then those from the recommended 2 df
genotypic test (the red × curve) are close in magnitude,
while the reverse is not true. For example, p value of the
recommended 2 df genotypic test for the 6th SNP
(rs2657147) in the plot is more than four orders of mag-
nitude smaller than that of the 1 df additive test; there is
no evidence for genotyping error at this SNP as the p value
of HWE test in the control group is 0.026. The genotype
counts for rr rR, , and RR are (210, 312, 52) in the case
group and (1012, 1192, 421) in the control group, which
yields case/control ratios of (0.208, 0.262, 0.124), clearly
suggesting a dominance pattern. Whether this is a true
new finding, however, requires further investigation.

4.2 | Evidence from the first (autosome
only) GWAS of WTCCC (2007)

We then examined the results of the first (autosome only)
GWAS, conducted by the Wellcome Trust Case Control
Consortium (WTCCC, 2007). Their tab. 3 lists regions of
the genome showing the strongest association signals
and provides results from both the 1 df trend test (sta-
tistically equivalent to the additive test considered here)
and the 2 df genotypic tests.

Consistent with the autosomal results of the CF
meconium ileus application above, the results in tab. 3
of WTCCC (2007) also show that if the 1 df additive test
provides a smaller p value, the p value of the 2 df
genotypic test is at most one order of magnitude larger.
For example, the p values are 1.16 × 10−13 and
1.79 × 10−14, respectively, for the 1 df additive and 2 df
genotypic tests, testing association between coronary
artery disease and rs1333049, the second SNP in
Table 3 of WTCCC (2007). On the other hand, the p
value of the 2 df genotypic test can be several orders of
magnitude smaller that of the 1 df additive test. For
example, the p values are 2.19 × 10−4 and 6.29 × 10−8,
respectively, for the 1 df additive and 2 df genotypic
tests, testing association between bipolar disorder and
rs420259, the first SNP in Table 3 of WTCCC (2007);
the association between rs420259 and bipolar disorder
has since been replicated by other studies (Gonzalez
et al., 2016; Tesli et al., 2010). We can draw similar
conclusions based on the Bayes factors provided in
their tab. 3, obtained under the 1 df additive or 2 df
genotypic models.
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4.3 | Re‐analyses of the 60 autosomal
SNPs potentially associated with various
complex traits, selected by
Wittke‐Thompson et al. (2005)

Finally, we re‐analyzed the 60 autosomal SNPs selected
by Wittke‐Thompson et al. (2005) from 41 case‐control
association studies of various complex traits, including
Alzheimer's disease and breast cancer; the genotype
count data are available from Table 1 of Wittke‐
Thompson et al. (2005). Although these SNPs were ori-
ginally selected by Wittke‐Thompson et al. (2005) for a

study of departure from HWE, genotype‐based methods
are robust to the HWE assumption (Sasieni, 1997; Zhang
& Sun, 2021). Here we focused on comparing the stan-
dard 1 df additive test with the recommended 2 df gen-
otypic test for analyzing these 60 autosomal SNPs, which
are presumed to be associated with complex traits based
on the earlier 41 studies.

We observed that the genotypic test leads to 31 SNPs
with p values less than α = 0.05, while the additive test
results in 22 SNPs (Figure S6). Using the Bonferroni
threshold of α = 0.05 60∕ the numbers are 7 and 6, re-
spectively, for the genotypic and additive tests. Although

FIGURE 3 Results of a genome‐wide association study of meconium ileus in cystic fibrosis subjects. In total, 3199 independent cystic
fibrosis subjects, 14,279 X‐chromosomal single nucleotide polymorphisms (SNPs), and 556,445 autosomal SNPs are analyzed. The SNPs are
ordered by the minimal p value of the different tests considered, and the lines connecting the SNPs are used only for visualization purposes
to demonstrate the robustness of a particular method. (a) X‐chromosome results. These top 15 ranked X‐chromosomal SNPs are selected
based on any of the six tests based on M1–M4 models in Table 3: the Black□ curve for testing β = 0A based on M1 assuming X‐chromosome
inactivation (XCI), the brown△ curve for testing β = 0A based onM1 assuming no XCI, the green◇ curve for testing β β= = 0A D based on
M2 assuming XCI, the orange+ curve for testing β β= = 0A D based on M2 assuming no XCI, the blue ▿ curve for testing β β= = 0A GS based
on M3 (invariant to the XCI assumptions ifGS is included in the model and tested), and the red × curve for testing β β β= = = 0A D GS based
on the recommended model M4 that is most robust for analyzing the X‐chromosome. (b) Autosome results. These top 15 ranked autosomal
SNPs are selected based on either the 1 df additive test or the 2 df genotypic test. The black□ curve for testing β = 0A using the standard
additive model, and the red × curve for testing β β= = 0A D using the recommend genotypic model that is most robust for analyzing the
autosomes
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these autosomal SNPs can only be presumed to be as-
sociated with the various complex traits, the empirical
evidence here is consistent with the analytical and si-
mulation results in Section 3.1 and Supporting In-
formation Appendix B.

5 | DISCUSSION

We have shown that in association analysis of an X‐
chromosomal variant, the sex main effect must be in-
cluded to achieve correct type I error rate control. The
inclusion of sex also addresses the complication of
baseline allele specification that otherwise affects asso-
ciation inference for an X‐chromosomal SNP, in contrast
to an autosomal SNP. Although the method developed
here is motivated by genetic association studies of the X‐
chromosome, Theorem 1 is applicable to other settings
where model uncertainty plays a role. For association
studies of autosomal variants, sex is not routinely in-
cluded. However, sex can be a confounder for an auto-
somal SNP as well, for example, when there is sex
difference in allele frequency due to sex‐specific selec-
tion. When the allele frequency difference is small, in-
cluding sex does not substantively change the association
result, because sex is not directly included in the genetic
association test. Thus, we recommend to always include
sex as a covariate in association analysis of either auto-
somal or X‐chromosomal variants.

We have also shown that modeling the genetic
dominance effect βD is beneficial for analyzing both the
autosomes and X‐chromosome. The proposed model can
significantly increase test power when βD is large. When
βD is close to 0, the model is still robust and maintains
‘comparable’ power with that of the additive model;
“comparable” is in the context of the trade‐off between
the maximum power loss and gain across different
models. For an autosomal SNP, we have shown analyti-
cally that even under true additivity, compared with the
classical 1 df additive test, the maximum power loss of
the 2 df genotypic test is capped at 11.4%, regardless of
the sample, genetic effect and test sizes, but the power
gain can be as high as α1 − . Similarly, for an
X‐chromosome SNP, with a 3 df test that includes β β,A D,
and βGS interaction effects, power loss is capped at 18.8%;
this assumes that the standard 1 df additive test used the
correct XCI model and there is no skewed XCI or dom-
inance effect. If these assumptions do not hold, the po-
tential power gain of the 3 df test can be as high as α1 − .
However, not all alternative genetic models are equally
likely in practice. Consistent with the earlier work of Hill
et al. (2008) and Bush and Moore (2012), two recent
studies showed that “genetic variance for complex traits

is predominantly additive” (Hivert et al., 2021;
Pazokitoroudi et al., 2021). To this end, a Bayesian al-
ternative that incorporates prior evidence for the differ-
ent genetic models can be considered.

When the true genetic model is unknown, one al-
ternative frequentist's approach is to consider all possible
models and use the “best” or weighted average. But, such
an approach is difficult to implement in practice; see
Bagos (2013) for a review. For example, selection bias
inherent in choosing the best‐fitted model must be cor-
rected for, often through computationally intensive si-
mulation studies, and power of this bias‐corrected
inferential procedure is not clear. On the other hand,
ways to obtain a weighted average of the test statistics or
p values across all models can be quite ad hoc, and the
optimal weighting factors are difficult to derive. The re-
cent Cauchy method can be used to combine correlated
p values derived from all possible genetic models (Liu &
Xie, 2020). Finally, the method proposed here is tailored
for analyzing one common SNP at a time, and joint
analysis of multiple common or rare SNPs (Derkach
et al., 2014) requires further consideration.

When the true genetic model is unknown, another
alternative is to use sex‐stratified analysis, followed by
meta‐analysis combining the female and male groups
(Willer et al., 2010). This approach appears to be robust
to the XCI assumption when analyzing an X‐
chromosomal variant, because association evidence in
females are the same between the XCI and no‐XCI as-
sumptions. However, the two assumptions lead to dif-
ferent effect size estimates by a factor of two (the
standard errors also differ by a factor of two), resulting in
different results using the inverse‐variance‐based meta‐
analysis. The sample‐size‐based meta‐analysis can over-
come this limitation, but other issues remain including
difficulty of modeling non‐additive or gene–sex interac-
tion effects.

Summary statistics from the proposed 3 df test for X‐
chromosome SNPs can be used to perform meta‐analysis
by using, for example, Fisher's combined p‐value ap-
proach. The classical inverse‐variance‐based method,
however, is not applicable for two reasons. Firstly, there
are multiple genotype‐related β estimates, β β,A D, and βGS.
Secondly, and more importantly, some of the β estimates
are not meaningful on their own as we have shown that
skewed XCI and dominance effects are statistically con-
founded with each other, so are the G S× interaction
effect and the assumption of XCI. Even if we limit our
attention to the genetic main additive effect, the effect size
estimate changes by a factor of two depending on the XCI
assumption (i.e., the genotype coding scheme). Thus, our
work here also highlights new challenges associated with
other analyses of X‐chromosomal SNPs. For example, how
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to aggregate association evidence across multiple SNPs or
multiple traits (Zhao & Sun, 2021), and how to perform X‐
chromosome‐inclusive polygenic risk score (PRS) analysis
(Dudbridge et al., 2018), both of which we will address in
future research.

The proposed full model for analyzing an X‐
chromosomal SNP, g E Y β β S β G( ( )) = + + +S A A0

β G β GS+D D GS , is robust to various model uncertainties,
analytically. However, as noted earlier it is not capable of
differentiating between the scenarios. Indeed, the recent
work by Song et al. (2021), focusing on effect size esti-
mation as opposed to association testing, showed that
genetic effect estimates are sensitive to model assump-
tions. Using the available genetic association data, Ma
et al. (2015) proposed a variance‐based test for detecting
X‐inactivation by comparing phenotypic variance of the
rR group with that of the rr and RR groups in females,
but this method is limited to a continuous trait (Deng
et al., 2019; Soave & Sun, 2017). Wang et al. (2014) ex-
plicitly introduced a parameter to represent the amount
of skewness of X‐inactivation. Our work here, however,
shows that the interpretation of their parameter is sta-
tistically confounded with dominance genetic effect
using GWAS data alone. How to incorporate additional
‘omic’ data (Carrel & Willard, 2005) to tease apart dif-
ferent biological phenomenon is an interesting problem
that deserves further investigation.
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