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ABSTRACT
We present a hidden Markov model (HMM) for discovering stellar flares in light curve

data of stars. HMMs provide a framework to model time series data that are non-
stationary; they allow for systems to be in different states at different times and consider
the probabilities that describe the switching dynamics between states. In the context of
stellar flares discovery, we exploit the HMM framework by allowing the light curve of
a star to be in one of three states at any given time step: Quiet, Firing, or Decaying.
This three-state HMM formulation is designed to enable straightforward identification of
stellar flares, their duration, and associated uncertainty. This is crucial for estimating the
flare’s energy, and is useful for studies of stellar flare energy distributions. We combine
our HMM with a celerite model that accounts for quasi-periodic stellar oscillations.
Through an injection recovery experiment, we demonstrate and evaluate the ability of
our method to detect and characterize flares in stellar time series. We also show that
the proposed HMM flags fainter and lower energy flares more easily than traditional
sigma-clipping methods. Lastly, we visually demonstrate that simultaneously conducting
detrending and flare detection can mitigate biased estimations arising in multi-stage
modelling approaches. Thus, this method paves a new way to calculating stellar flare
energy. We conclude with an example application to one star observed by TESS, showing
how the HMM compares with sigma-clipping when using real data.
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1. INTRODUCTION

Almost all stars in the universe with convec-
tion surface produce stellar flares — bursts of
energy emitted from the star that are thought
to be caused by magnetic reconnection (see, e.g.,
Forbes 1991; Donati & Landstreet 2009). Prop-
erly estimating the energy distribution of flares
as a function of a stars’ mass, age, and other
characteristics is fundamental for understanding
(i) the evolution of stellar magnetic fields, (ii)
stellar rotation and mass-loss rates, and (iii) the
highly energetic radiation environment to which
planets orbiting these stars are subjected. Past
studies have found relationships between flare
energies and decay times, frequency of flares
and stellar rotation rates, and flare duration
and peak luminosity (e.g., see Davenport 2016;
Medina et al. 2020; Chang et al. 2015).

Flares are detected in the time series data of
a star’s brightness measurements — a sudden,
sharp increase in brightness followed by a slower
decay usually indicates a stellar flare. However,
detecting stellar flares is complicated by the fact
that most stars also exhibit small, quasi-periodic
oscillations in their brightness over time.

It is common practice to identify flares in time
series data using non-parametric models, before
assuming anything about their time series sig-
nature or shape (Chang et al. 2015). Current
methods to detect stellar flares in time series
data rely on multi-stage data processing and
“sigma-clipping”; after the stationary and quasi-
periodic part of the time series is modeled and
removed (called detrending), points lying outside
a pre-defined confidence interval are highlighted
as potential flares (e.g. Davenport 2016; Haw-
ley et al. 2014; Osten et al. 2012; Walkowicz
et al. 2011; Yang et al. 2017; Günther et al.
2020). Medina et al. (2020) also note that in
the 3-sigma approach to flare detection and flare
energy estimation, the largest source of uncer-
tainty comes from defining the end of the flare.
The sigma-clipping approach may also struggle

to identify compound flares, although change-
point detection does not suffer from this problem
(Chang et al. 2015).

After the flares’ locations in the time series are
detected, a template or model for flare shape
(e.g., Davenport et al. 2014) is often used to esti-
mate flare parameters. The detrending process is
often done using a flexible model, such as Gaus-
sian processes (e.g. celerite Foreman-Mackey
et al. 2017). However, detrending methods are
typically done before the flare detection step,
and this pre-processing may absorb lower-energy
flares in the time series data, and bias the en-
ergy profile. Therefore, it would be beneficial to
model the trend of the time series and the flares
simultaneously.

Other methods such as change-point detection
have also been explored to identify potential
flares (Chang et al. 2015). While this approach
detects the most energetic flares, it can struggle
to detect the medium- to low-energetic flares
that are part of the flare energy distribution.
The stella software, which uses a convolutional
neural network (CNN) to find flares in TESS
data, is an efficient tool for finding flares, but
still relies on a probability threshold for flare
detection (Feinstein et al. 2020).

In this work, we introduce a new approach
to stellar flare detection using hidden Markov
models (HMMs). HMMs are flexible time series
models that are popular in many domains, in-
cluding ecology (McClintock et al. 2020; Adam
et al. 2019; Leos-Barajas et al. 2017), health
(Williams et al. 2020) and sports (Ötting et al.
2021). The advantage of using HMMs in the
context of stellar flare detection is that they are
more likely to detect medium- to low energy
flares than traditional sigma-clipping methods.

HMMs provide a way to model different states
underlying a time series, with a probability as-
sociated to the transitions between them (Zuc-
chini et al. 2017). This is a very natural scheme
to approach the detection of stellar flares — a
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star may be in a “quiet”, flare-“firing”, or flare-
“decaying” state. Thus, if an HMM is fit to the
light curve of a star, every point in that time
series can be estimated to come from one of
these three states. This allows one to discover
both the firing and decaying phases of each flare.
The decaying state is particularly helpful, as it
helps characterize the end of a flare as the star
transitions back to the quiet state.

In addition to using an HMM, we simulta-
neously fit celerite to model the quasi-periodic
trend in the star’s light curve. We show that this
simultaneous fitting of celerite and the HMM
not only removes the need for iterative fitting
when searching for flares, but also improves the
celerite fit overall. That is, celerite does not
as easily absorb small flares, nor the decaying
portion of larger flares. For our entire analysis,
we adopt a Bayesian approach.

This paper presents our HMM for stellar flares
detection, shows its merits, and applies it to a
stellar light curve measured from TESS. Our
paper is organized as follows: In Section 2, we
describe the data that motivated this study. In
Section 3, we thoroughly describe our method;
we begin with a quick overview of celerite (Sec-
tion 3.1), followed by an introduction to HMMs
(Section 3.2); then we proceed to describe our
observational model (Section 3.3), our particular
HMM (Section 3.4), our model fitting techniques
(Section 3.5), how we identify and characterize
flares (Section 3.6), and the injection recovery ex-
periment performed (Section 3.7). The results of
our injection recovery experiment and the appli-
cation of our HMM to TESS data are presented
in Section 4. We conclude with a discussion
and a summary of future research directions in
Sections 5 and 6.

2. DATA

To test and demonstrate our HMM approach,
we use M dwarf TIC 031381302 two-minute ca-
dence data measured by TESS. We use this star’s
Pre-Search Data Conditioning Simple Aperture

Photometry (PDCSAP) light curve for both our
injected flare tests (Section 3.7) and for a case
study demonstration detecting real flares (Sec-
tion 4.2). This star was chosen because it has
long portions of the time series undergoing quies-
cent oscillations, in which simulated flares could
be injected to test our method. At the same
time, there are parts of the time series for this
star that have known flare events — these por-
tions of the light curve are used to demonstrate
that our HMM can recover the same flares as
other methods.

3. METHODS

To identify flares in a stellar brightness time se-
ries, we simultaneously model the quasi-periodic
changes of the star and the star’s flares. For
the former, we use celerite (Foreman-Mackey
et al. 2017) and for the latter we use the HMM
described in this paper. Readers familiar with
celerite may want to skip ahead to Section 3.2.
Those readers familiar with HMMs may want to
skip to our particular setup in Section 3.4.

For quick reference, a list of our mathematical
notation is shown in Table 1.

3.1. Celerite and detrending

To account for the star’s quasi-periodic changes
as well as the mean brightness, we use celerite,
a physically-motivated Gaussian Process (GP)
widely used to model the trend of stellar light
curves (Foreman-Mackey et al. 2017). In princi-
ple, one could use any kernel provided in celerite,
but in this study we use the rotation kernel, the
same one used in Medina et al. (2020), which
consists of a sum of two simple harmonic oscilla-
tors.

For the GP, let µ, K, and f denote the mean
function, the kernel parameter, and the (latent)
trend, respectively. The value of f at time t is
denoted ft. For a single star, the observed light
curve Yt is modeled as the sum of the trend ft
and a flaring channel Zt,
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Table 1. Notation used in this paper.

Meaning

Yt observed brightness of star at time t

f quasi-periodic trend of the time series (modeled with celerite)
ft celerite-modeled trend at time t

Zt flaring channel (time series without trend)
µ mean flux in Quiet state
K kernel for celerite
σ2 variance of measurement noise
St state of time series at time t

Q Quiet state
F Firing state
D Decay state
log(λ) log average flux increase during firing state
logit(r) logit of decay rate
pQ|Q, pQ|F transition probabilities from Quiet state
pF |F , pF |D transition probabilities from Firing state
pD|Q, pD|F , pD|D transition probabilities from Decay state

f |K, µ ∼ Celerite(µ,K)

Yt = ft + Zt. (1)

We use priors for the parameters of µ and K
recommended in Foreman-Mackey et al. (2017).
The HMM for the flaring channel Zt is described
in Section 3.4.

3.2. An introduction to HMMs

In its basic form, an HMM is a doubly stochas-
tic process composed of an observable, state-
dependent, process {Zt}Tt=1 and a state process
{St}Tt=1. At each point in time, t, the time
series is assumed to be in one of N possible
states, (i.e., the time series follows a state pro-
cess S1, S2, ..., St). The states are taken to be
discrete latent variables generated from a first-
order Markov chain that evolves over time ac-
cording to an N ×N transition probability ma-
trix with entries pi,j = Pr(St = j|St−1 = i), for
i, j ∈ {1, . . . , N}. The state at time t = 1 is

taken to be generated according to an initial
state distribution.

The observations are modeled assuming they
are emitted from a set of state-dependent distri-
butions, i.e.,

gn(Zt) = g(Zt|St = n) for n ∈ {1, . . . , N}. (2)

For example, if the HMM is a three-state model
(N = 3), then there would be three different
distributions g, which describe a different data
generating process conditioned on each state
n. In practice, the number of states N and
the distributions g are defined using scientific
domain knowledge. The parameters of these
distributions may be estimated within the model
or fixed. The N × N matrix describing the
probability of transition between states is also
estimated in practice.

When fitting an HMM to real time series data,
one can use the estimated model to obtain the
state sequence ŝ1, . . . , ŝT ; the most likely, under
the assumed model to underlie the observations.
This is known as state decoding and can be effi-
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ciently carried out through the Viterbi algorithm
(Viterbi 1967; see also Forney 1973 for a detailed
description).

The latter uses the estimated state-dependent
distributions ĝn to compute the probability den-
sity ĝn(zt) of each observation when a specific
state n ∈ {1, . . . , N} is active. The algorithm
combines these probability densities with the
estimated transition probabilities to recursively
determine the most likely sequence leading to
each possible state n, at each time t ∈ {1, . . . , T}.
This is done through recursively computing the
quantities

ξt,n =
(
max

i
(ξt−1,ip̂i,n)

)
ĝn(zt)

for t = 2, . . . , T , initialized with ξ1,n = P̂r(S1 =
n)ĝn(z1). i.e., ξt,n corresponds to the likelihood
of the state sequence from time 1 to t− 1 most
likely to lead to state n being the one active at
time t, given the observations between 1 and
t. The most likely full state sequence is then
determined by recursively maximizing over these
likelihoods, starting with

ŝT = argmax
n=1,...,N

ξT,n,

and setting

ŝt = argmax
n=1,...,N

ξt,np̂n,ŝt+1 ,

for t = T − 1, T − 2, . . . , 1.
Additional references and some foundational

papers about HMMs are Baum et al. (1970),
Rabiner (1989), and Zucchini et al. (2017).

3.3. Observational Model

In our application, we assume an observational
model for the random variable Yt given state St:

Yt|St = ft + Zt|St, (3)

where ft is the celerite-modeled trend at time t
(note that it does not depend on the underlying
state), and Zt is the flaring channel. The latter’s

distribution depends on whether the star is in a
quiet, firing, or decaying state, and is described
next.

3.4. A Quiet-Firing-Decay HMM for Flare
Events

We propose a three-state hidden Markov model
(Hamilton 1990) for modeling flare events in
the detrended light curve. Each point in the
time series can result from one of three (hidden,
unobservable) states: Quiet, Firing, or Decay
(denoted as Q,F and D respectively). The Q

state is used to model the time series when the
star is not in any flare event, while the F and
D states are used to model the increasing and
decreasing phase of a flare.

Recall the probabilities pSt−1,St of switching
between states at each step in the time series
(akin to a Markov chain); they are conditional
probabilities of the form pSt−1|St, where St−1

is the previous state; for example, pF |Q denotes
the probability of transitioning to state F given
that the star is in state Q. The interpretation
given to each of these transitions is illustrated
in Table 2.

The transition from Q to F accounts for the
firing rate of flares from the star’s quiet state.
Once the star is in the flaring state, the tran-
sition from F to F accounts for the increasing
phase of a flare, while the transition from F to
D accounts for the decay of the flare. When
the time series is in the decay state,transiting
from D to F corresponds to a compound flare.
Note that we forbid the transition from Q to D
(i.e., when the star is quiet, it will not suddenly
“decay”) and from F to Q (i.e., when the star is
flaring, the flare will not spontaneously disap-
pear). All other transitions are allowed, and are
each modeled with parameters that account for
different physical characteristics.

We model the flaring channel Zt at time t given
the states St ∈ {Q,F,D} and the previous step
Zt−1 as follows:
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Table 2. Interpretation of transitions between states

to
Q F D

Q remain quiet start firing forbidden
from F forbidden increased firing start decaying

D return to quiet start compound flare decaying continues

Zt|(St = Q,Zt−1, σ
2) ∼ N (0, σ2),

Zt|(St = F,Zt−1, λ, σ
2) ∼ N (Zt−1, σ

2) +

Exp(λ),
Zt|(St = D,Zt−1, r, σ

2) ∼ N (rZt−1, σ
2).

(4)

The distributions above are the gn distribu-
tions mentioned in Section 3.2 and eq. (2). Note
that the value of the time series at time t is
always dependent on the current state of the
star St and on the value of the time series in
the previous step (Zt−1) when in states F or
D. The Q state is modeled as an independent
normal random variable with variance σ2. When
formulating the distributions in (4) we assume
that: when quiet, the flaring channel will just be
measurement noise on top of the quiescent trend;
when firing, the flaring channel will be around
the previous channel plus an independent flux
increase exponentially distributed; and when
decaying, the flaring channel will be centered
around a scaled value of the previous channel.

Recall that the model for the observed light
curve yt is the combination of the trend and
the flaring channel; that is, celerite and the
HMM are fit simultaneously, such that f is a
latent variable (Figure 1). We call this com-
bined model celeriteQFD. A summary of the
HMM parameters, their prior distributions, and
hyperparameter values can be found in Table 3.
invGamma is the inverse Gamma distribution
and the transition probabilities (e.g., pQ|F , pF |D,
etc.) use Dirichlet prior distributions. This set-
ting is used for all injection-recovery and real
data examples.

Quasi-Periodic
Trend
(Celerite)

Hidden 
Flaring State

Flaring
Channel

Observed
Brightness

Figure 1. Graphical representation of our complete
model for observed brightness decomposed into its
various parts. The Quasi-Periodic Trend reflects the
average brightness of the star when it is not flaring.
The Flaring Channel represents the extra brightness
due to the state of the star. The Hidden Flaring
State represents the (unobserved) state of the star
(Q,F, or D).

3.5. Computation, Model Fitting, and State
Decoding

For computational purposes, we split each time
series {yt}Tt=1 into smaller chunks of 2000 time
steps. We subtract the overall mean from the
light curve to center it around zero. Our model
was implemented in stan (Carpenter et al. 2017),
while the C++ code for celerite was adopted
from the Python library EXO-PLANET. The pos-
terior distributions of model parameters and
derived quantities are sampled using a dynamic
Hamiltonian Monte Carlo algorithm (Hoffman
& Gelman 2014). States are decoded using the
Viterbi algorithm as described in Section 3.2
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Table 3. Prior setting of the QFD part of the model

Parameter Meaning Prior distribution Hyperparameter used

µ Mean flux at quiet N(µ0, σ
2
0) µ0 = 0, σ2

0 = 100σ2

σ2 variance of measurement noise invGamma(α, β) α = .01, β = .01

log(λ) log average flux increasing during firing N(µλ, σ
2
λ) µλ = 0, σ2

λ = 1e3

logit(r) logit of decay rate N(µr, σ
2
r ) µr = 0, σ2

r = 1e3

pQ|Q, pQ|F transition probabilities from Quiet state Dir(αQ) αQ = (1, 0.1)

pF |F , pF |D transition probabilities from Firing state Dir(αF ) αF = (1, 1)

pD|Q, pD|F , pD|D transition probabilities from Decay state Dir(αD) αD = (1, 0.1, 1)

(see also Forney 1973). The stan implementa-
tion as well as the injection recovery tests can
be found in the first author’s github repository
Esquivel-Arturo/celeriteQFD.

To obtain samples from the posterior distri-
butions of the model parameters, we use two
MCMC chains and sample 1000 (2000 in total)
posterior samples, after discarding the first 1000
samples obtained during the warm-up period.
For each joint posterior sample of the param-
eters, we use the Viterbi algorithm to uncover
the most likely state sequence that could have
generated the data. In this manner we are able
to propagate the uncertainty around our param-
eters to produce 2000 most likely state sequences
and capture the variability in state decoding re-
sults. Thus, for every point in the time series
we have a "decoding distribution" (see Figure 2
top panel) of the states (Q,F ,D). For each point
in the time series, we estimate the state of the
star to be the one that appears most frequently
across the 2000 decodings of that time step.

Each celeriteQFD implementation on 2000
time steps took between 1 and 4 hours to run
using two cores of a M1 MacBook Pro with 16
GB of memory.

3.6. Identifying and Characterizing Flares

To identify flares after fitting celeriteQFD, we
consider, all consecutive points decoded in a non-
Q state (i.e., the rise F and fall D of the flare)
are used to define the duration of a flare. A flare

is considered over once the time series returns to
state Q. In other words, the duration of a flare
is defined as the time elapsed from when the
star enters the flaring state (Q to F ) to when
the star re-enters the quiet state (D to Q). For
example, in Figure 2 the flare was estimated to
commence with the peak red point and end right
before time 1331.30.

This method also allows us to find compound
flares (e.g., the time series could be in the decay-
ing phase of a flare, and then start firing again).
As the state decoding of a compound flare will
have multiple peaks we skip any peaks identified
in a flare’s duration when searching for the next
flare. We can also quantify uncertainty around
the Viterbi "decoding distributions", e.g., Fig-
ure 3 shows two flares detected very close to each
other. From the decoding proportions we can
see 10% of the Viterbi state decodings point to
a compound flare instead of two separate flares.

3.7. Injection Recovery Experiment

To test the ability of our HMM to detect stellar
flares, we perform an injection recovery exper-
iment: we inject simulated flares into a real
stellar time series, apply our HMM algorithm
to detect the simulated flares, and compare our
results to the ground truth and those of using a
sigma-clipping approach.

We use the mean-centered flux time series data
from one star as the base time series for our injec-
tion recovery experiment, and randomly inject

https://github.com/Esquivel-Arturo/celeriteQFD
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Quiet Firing Decay

0.0

0.2

0.5

0.8

1.0

Viterbi Decoding Posterior Proportions

0
25
50
75

1331.25 1331.30 1331.35 1331.40
Time

Light Curve

Figure 2. Detected flare example from implementing celeriteQFD on the real time series of TIC 031381302
Top panel: State "decoding distributions" across all Viterbi sequences per observation. Second panel: shows
the fit of celeriteQFD, the estimated trend (purple curve) and assigned state to each point (black points are
state Q, red points F , and orange points are D).

Kepler flares following the procedure outlined in
Davenport et al. (2014). We use TIC 031381302
(from day 1325.292 to day 1327.377, n = 1501).
This time segment was chosen to avoid already-
discovered natural flares.

We inject five flares, both small and large,
at randomly chosen points in the time series.
The time scale of our Kepler-like flares, t1/2, is
proportional to its peak flux. The peak fluxes of
the injections are i.i.d. Pareto (i.e., they follow
a truncated power-law distribution):

p(x) =
αxα

m

xα+1
, (5)

where xm and α are the distribution parameters.
We use different parameter values for

(t1/2, xm, α, δ, β) to simulate small and large
flares. We use (5× 10−5, 10, 1, 30, 150) for small
flares, and (5×10−5, 50, 1, 0, 300) for large flares.

For each set of parameter values, we separately
simulate and inject five flares into the time series,
and perform our analysis of flare recovery. We
repeat the procedure 100 times for each parame-
ter scheme. Although we do not explicitly study
our method’s ability to recover compound flares,
we do allow the simulated flares to overlap in
time and form compound flares in the base time
series.

3.8. Flare Detection Evaluation

For each simulated time series, we run celerite-
QFD and obtain a Bayesian estimate of the state
of the star (Q,F , or D) at every time step (see
Section 3.5 and Figure 2). Once we have the
estimated states for all points in a time series,
flares are identified as described in Section 3.6.

To evaluate the accuracy of flare detection us-
ing our HMM framework (Section 3.2), we com-
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pare the number of detected flares to the ground
truth (i.e., flares injected). For each fitted model
(100 per method and flare scheme), we calculate
the true positive, false positive, and false nega-
tive rates of detection, as well as the sensitivity
and the positive predictive value (PPV):

sensitivity=
TFD

TFT
, (6)

PPV =
TFD

FD
, (7)

where TFD is the number of true flares detected;
TFT the total number of true flares; and FD the
total number of flares detected. We also assess
flare detection in terms of the full duration of
the flaring processes, i.e. we compute the per
observation sensitivity and PPV:

sensitivity=
TFDo

TFTo

, (8)

PPV =
TFDo

FDo

, (9)

where TFDo is the number of observations part
of a true flare correctly identified; TFTo is the
total number of observations that are part of
a true flare; and FDo is the total number of
observations identified to be part of a detected
flare. Note that sensitivity and PPV ((6) and
(7)) should each be 1 if we perfectly identify
all true flares. Similarly, the per observation
metrics ((8) and (9)) should be 1 if the entire
duration of every flare is correctly identified.

We compare our results to those obtained with
the more commonplace sigma-clipping a–bσ rule,
where a is the number of consecutive points in
the time series that are bσ away from the mean
flux µ of the detrended time series (i.e., the rule
outlined in Chang et al. 2015 and used in e.g.
Medina et al. 2020; Ilin et al. 2019). In particular,
we compare against using a 1–3σ approach and
when fitting celerite for detrending in the this

method, we use the same priors and kernel as
with celeriteQFD.

4. RESULTS

4.1. Injection recovery

An example of one injection recovery experi-
ment under the small flare scheme is shown in
Figure 4. The flux was centered, i.e. it is the raw
flux data from which we subtracted the grand
mean. It shows the estimated trend and state
sequence from our HMM (second panel), along
with the ground truth (top panel) and with the
result of using a 1− 3σ approach (third panel).
We use 1− 3σ because it is more sensitive than
the usual 3 − 3σ and so it is more likely for it
to detect small injections. In this example it
can be seen how, through state D, the HMM
directly identifies a larger proportion of flaring
events than sigma-clipping. Moreover, note that
celerite can absorb part of the flares into the esti-
mated trend of the time series, and so reduce the
chance that a flare is detected by sigma-clipping
rules.

The results of the injection recovery experi-
ments are presented in Figure 5. The box plots
show a comparison of our method’s detection
performance with that of 1 − 3σ clipping for
small and large flares schemes. They show the
sensitivity and PPV distributions across the 100
simulations of each setting. e.g., the first (light-
blue) box on the top-left panel corresponds to
the distribution of the per flare sensitivity (see
(6)) across all 100 sigma-clipping models fitted to
the 100 injections of five small flares simulated.

From part (a) of Figure 5, it can be seen that
both methods perform almost ideally when it
comes to detecting the occurrence of large and
small flaring events. Flare detection sensitiv-
ity, i.e., the probability of correctly detecting
a flare was computed to be 1 in almost all the
100 simulations. They also achieve a similar
performance in terms of the PPV (see (7)); i.e.,
the probability of an identified flare occurrence
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Quiet Firing Decay
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Figure 3. Example of two flares detected from implementing celeriteQFD on the real time series of TIC
031381302. Top panel: State "decoding distributions" across all Viterbi sequences per observation. Second
panel: shows the fit of celeriteQFD, the estimated trend (purple curve) and assigned state to each point
(black points are state Q, red points F , and orange points are D).

being correct. However, under the large flares
scheme, celeriteQFD often performed slightly
better, achieving PPVs of 1 (it was 0.8 almost
always with sigma-clipping). This indicates that
our method is less susceptible to producing false
detections.

These results suggest our proposed HMM
framework is at least as good as sigma-clipping
for flaring events detection tasks. But the mean-
ingful difference of our method consists of its
ability to directly provide an estimate of the
full duration of flaring events. Figure 5 part (b)
contains the distributions of the per observation
performance metrics (see (8) and (9)). i.e., the
metrics are computed using all points identified
as part of a flare by the methods, as compared
with all the points that truly belong to injected
flares. The plots show that both methods very
rarely flagged observations outside of a real flare

(PPVs are concentrated very close to 1). Also
one can clearly see the difference between meth-
ods when it comes to spotting all light points
that are part of a flare; celeriteQFD consistently
identified more than 50% of the observations
forming part of a small flare and close to 70%
for large flares.

Sigma-clipping alone is never used for a full
characterization of a flare, which is usually done
through further data modeling steps (see Chang
et al. (2015) for example). Still, this experiment
demonstrates the capacity our method has to
describe the entire duration of detected flares
without the need for extra steps.

Another crucial difference of our method is
that it simultaneously carries out detrending
and flare detection. By considering the light
curve observations to be a combination of the
long-term trend and a flaring channel (see (3)),
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Figure 4. An example of one injection recovery simulation in the small flare scheme. Top panel: ground truth
— the real time series for TIC 031381302 with five simulated flares injected (their real states colour-coded).
Second panel: shows the fit of our proposed algorithm that simultaneously models the trend with celerite
(purple curve) and assigns states to each point in the time series (black points are state Q, red points F , and
orange points are D). Third panel: the sigma-clipping approach that uses celerite alone to model the trend
(purple curve), with outliers beyond 3σ (red points) used to identify flares. Bottom panel: the flare channel
that was injected into the time series.

both components are modeled accounting for
the effects of the other part on the observational
process. i.e., the posterior distributions of the

celerite parameters contain information on the
HMM parameters and vice-versa.

Figure 6 illustrates this by showing a zoomed-
in flare detected by both methods from the exam-
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Figure 5. Flare recovery sensitivity and positive predictive value (PPV) distributions across 100 small and
large flares injections, using the 1-3σ rule and celeriteQFD (HMM). (a) shows results from detecting flare
occurrences (equations (6) and (7) are used). (b) shows results on a per-observation basis (equations (8) and
(9) are used).

ple in Figure 4. The first thing to note, is that,
overall, the celerite-estimated trend is consider-
ably less affected by light curve variability when
fitted simultaneously with the HMM. Moreover,
in the zoomed flare, note that celerite, when
used alone, can absorb part of the flares into the
trend. Since the data points correspond to an in-
jected flare, we know the increased flux of those
observations is not part of the long-term pattern
of the light curve and that detrending should
ideally ignore it. celeriteQFD, is not only able to
estimate the trend unaffected by the increased
flux, it is also capable of identifying many of the
observations as part of the decaying phase of a
flare. This result is critical, suggesting that bet-
ter detrending can be achieved, further leading
to less biased estimates of the flares’ energies.

4.2. Case Study: Photometric Data from the
TESS Mission

As a demonstration of real flares detection,
we apply our HMM method to a large portion
of the TIC 031381302 light curve. The time
series was sliced into pieces of 2000 time steps to

more efficiently fit the models and conduct flare
detection. Trace plots of the MCMC sub-chains
corresponding to the parameters were produced
and inspected without any indication of lack of
convergence.

A large portion (from day 1325.292 to day
1353.177) of TIC 031381302 PDCSAP mean-
centered flux, along with the resulting fit and
state decoding, are shown in Figure 7. During
the period observed, a total of 11 flares were
detected, with an average duration of 10.3 obser-
vations (approximately 0.01545 days or 1334.88
seconds). The estimated (using the posterior me-
dian) transition probability (pQ|F ) was 0.00170,
with a 95% credible interval of (0.00007, 0.00820).
i.e., the estimated probability that this star
starts firing at any particular time, given that it
was quiet in the previous time step, is 0.17%.

A smaller portion (from day 1333.627 to day
1336.404) of both models fitted to the TIC
031381302 are shown in Figure 8. The right-
hand side shows a zoom-in into a portion con-
taining what both methods identified as a flare
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Figure 6. An example comparison of celeriteQFD and standard sigma-clipping for identifying the injected
flares to part of the TIC 031381302 light curve. Top row: celeriteQFD, that simultaneously models the trend
with celerite and assigns states to each point in the time series. Bottom row: the sigma-clipping approach
that uses celerite alone to model the trend, with outliers beyond 3σ used to identify flares. The right-hand
column shows a zoomed-in portion of one of the flares identified in both methods.

event. Note the similarity with many aspects of
the flare shown in the right-hand side of Figure 6.
The trend modeled using celerite only (bottom
row) gets distorted, absorbing observations of
higher brightness. Given that this points follow
two observations of peak brightness, it is rather
likely that at least some of them correspond to
the decaying phase of a flare. This is precisely
the type of case in which flare energies could be
underestimated. Also note that using our ap-
proach, the estimated trend remained unaltered
in this window and the HMM identified multiple

observations to be in decaying state (the same
way as in the synthetic case).

By comparing the simulation results, where
the ground truth is know, with real data results,
it seems celeriteQFD can in fact better model
the long-term trend of a light curve. Addition-
ally, these results indicate the model is capable
of directly identify light points conforming the
decaying phase of a real flare, determining the
duration of flaring events. Moreover, through
the "decoding distributions" it directly provides
a way to quantify the uncertainty about the es-
timated durations of the flares. e.g, in Figure 2
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Figure 7. TIC 031381302 mean centered light curve along with the fit of celeriteQFD that simultaneously
models the trend with celerite and assigns states to each point in the time series.

top panel it can be seen that almost 20% of
the Viterbi sequences estimated the decaying
phase of the flare detected extends up until time
1331.35. Similarly, it can be seen that around
10% of them identified the flare to end 9 time
steps earlier than estimated using the majority
state. This uncertainty can be easily propagated
into the final goal of producing energy distribu-
tions, potentially leading to more reliable and
comprehensive distributions.

5. DISCUSSION

As shown in this work, an advantage of having
the HMM as a flaring model is that we can
identify the whole course of a flare, via states
assigned to each time point. We no longer need
to cross-correlate the time series with stellar flare
templates, and thus remove a step in the analysis
process. The HMM approach also allows us to
detect compound flares more easily. Moreover,
these can be used to give a probabilistic sense
to the duration of the flares, making it possible
to produce more comprehensive distributions of
the energies of the flares.

The inclusion of a state associated with decay-
ing and the capability to simultaneously perform

detrending and state decoding constitute a rele-
vant benefit of our proposed method. Through
our injection recovery experiment and analysis
of a real star, we have shown that celeriteQFD
can produce better and more stable estimates of
the long-term trend of a light curve than celerite
alone. The agreement between the results ob-
tained for synthetic cases (where the ground
truth is known) and real data cases indicates
that biased estimation of the trend is indeed
an issue that can arise when detrending is done
prior to flare detection. It also provides some
reassurance that our model is better equipped
to handle the problem and prevent such bias.
Further, we have shown that our HMM method
can detect flares of lower energy that might be
missed by other methods, even sensitive meth-
ods such as 1 − 3σ clipping. Thus, the HMM
approach to flare detection could be well-suited
for detecting flares in more “inactive” G-type
stars.

It is worth mentioning that our flare recovery
experiments are in no way exhaustive of flare
morphologies present in stars. While it is true
that stellar flare templates are more physically
motivated than celeriteQFD, and that celerite-
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Figure 8. An example comparison of our HMM approach and standard sigma-clipping for identifying flares,
using real data part of the TIC 031381302 light curve. Top row: celeriteQFD, that simultaneously models
the trend with celerite and assigns states to each point in the time series. Bottom row: the sigma-clipping
approach that uses celerite alone to model the trend, with outliers beyond 3σ used to identify flares. The
right-hand column shows a zoomed-in portion of one of the flares identified in both methods.

QFD is not a generative model, HMMs still clas-
sify states very well even when the generative
process is not specified correctly Ruiz-Suarez
et al. (2022). Also, note that we do not make
any strong assumptions about the nature of flare
events. The few restrictions on the matter are
made through the state-dependent distributions,
which parameters are estimated. This provides
flexibility for the model to produce different re-
sults in different contexts. We intend to explore
this further, and conduct energy recovery ex-
periments on different types of simulated flares,

assessing our method’s performance and con-
trasting it with that of other methods.

Considering the ultimate goal of estimating
flares’ energies and their distributions, this
method paves a new way to calculating stellar
flare energy. celeriteQFD could prove be gener-
ally applicable and quantitatively reliable. We
plan to continue this work by using our model on
other light curves from different stars measured
by TESS.

6. CONCLUSIONS & FUTURE WORK

In this paper, we have introduced a hidden
Markov model for discovering stellar flares in



16 Esquivel et al.

time series data of M-dwarf stars. Our approach
has some notable advantages over previous ap-
proaches.

First, our method simultaneously fits a celerite
model for the quiescent state of the star and
a three-state flaring model through a hidden
Markov process. With this approach, we not
only obtain a better estimate of the quiescient
state of the star, but also eliminate the need
for sigma-clipping approaches and iterative fit-
ting of time series data. Moreover, with the
combined approach of celerite and the HMM,
celerite does not absorb early or late parts of
the flares. Concurrently, the HMM better iden-
tifies the whole course of the flare, and can also
identify compound flares easily.

Second, through our flare injection recovery
experiment, we find that our HMM method for
flare detection achieves the same or better sensi-
tivity and positive predictive value compared to
sigma clipping (Figure 5).

Third, our method enables a coherent path
for uncertainty quantification. Rather than pro-
viding a single most-likely flare state sequence
for the time series, we obtain a posterior dis-
tribution of most-likely flare state sequences by
propagating the uncertainty from our parameter
estimates. This allows us to capture the vari-
ability and uncertainty on the duration of each
flare.

While our approach has significant advantages,
one potential disadvantage is computation time.
Currently, it can take on the order of a couple of
hours to run the HMM model on a single star’s
time series as measured by TESS, on modest
resources (see Section 3.5). We are currently ex-
ploring approaches to overcome this challenge, as
the advantages of our method seem to outweigh
this minor (and surmountable) drawback.

Another potential criticism of our approach is
that we have not developed the HMM to real-
istically simulate stellar time series with flares.
That is, in this work, we are measuring the ca-

pacity of our proposed HMM plus the celerite
model to identify flares well, but we are not eval-
uating the model’s generative properties. This
is something that could be improved upon and
explored in the future.

Overall, this work is a promising initial step
and proof-of-concept in developing a robust flare
detection algorithm that does not rely on sigma-
clipping or iterative approaches. There many
avenues that we plan to explore in future work:

• We aim to speed up the computation time
so that we can apply our HMM approach
to a large sample of M-dwarf stars ob-
served by TESS and recover stellar flares.

• In a follow-up paper, we will estimate
both the flare energy distribution and
flare frequency distribution (FFD) through
the posterior distribution of the Viterbi
state-decoded sequences. Through this ap-
proach, we will be able to propagate the
uncertainties in the duration of the flare
from the state sequences to the energy of
the flare in a coherent way. This, combined
with the improved sensitivity and PPV of
our method in detecting small and large
flares, should produce better estimates and
increase our confidence regarding the FFD
of M-dwarf stars.

• Further work may explore incorporating
multivariate data (i.e., time series data
across multiple bands) through a hierar-
chical Bayesian paradigm.

• Ultimately, it could be fruitful to design a
hierarchical model that includes the FFD
parameters at the population level. In this
way, many M-dwarf stars could be fit with
our HMM approach simultaneously, and
both their individual parameters and the
population-level parameters of the FFD
would be modeled in a coherent way.
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• After detecting stellar flares in a star, and
obtaining the state-decoded sequences that
quantify the uncertainty in the duration of
each flare for that star, one could still use
stellar flare templates to model the flares
and obtain parameter estimates of inter-
est. A study comparing this approach with
standard approaches in the literature could
provide further insight into the benefits (or
not) of using HMMs in this framework.

• The HMM technique presented here could
also be further developed for time se-
ries data measured across multiple bands,
which is now becoming more commonplace
(Joseph et al. 2024, e.g.,). This would allow
a HMM analysis of stellar flares measured
by future data sets (e.g., CubeSat Poyatos
et al. 2023).

To our knowledge, this paper is one of the first
applications of HMMs to an astronomy problem,
and the first to do so for stellar flare detection.
This statistical method has promise not only for
stellar flare detection but also for other areas
in astrophysics with time series data, such as
gamma ray bursts, fast radio bursts, and quasars.
Our hope is that this paper is useful as a starting-
off point for the astronomical community to use
this method in both stellar flare detection and
other areas of astronomy.
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