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Abstract

Parametric bivariate copula families have been known to flexibly capture various
dependence patterns, e.g., either positive or negative dependence in either the lower
or upper tails of bivariate distributions. In this paper, our objective is to construct a
model that is adaptable enough to capture several of these features simultaneously. We
propose a mixture of 4-way rotations of a parametric copula that can achieve this goal.
We illustrate the construction using the Clayton family but the concept is general and
can be applied to other families. In order to include dynamic dependence regimes, the
approach is extended to a time-dependent sequence of mixture copulas in which the
mixture probabilities are allowed to evolve in time via a moving average and seasonal
types of relationship. The properties of the proposed model and its performance are
examined using simulated and real data sets.

Keywords: Bayesian inference, dynamic dependence models, moving average process, sea-

sonal model, time varying copulas.

1 Introduction

Copulas have emerged in recent years as viable tools for modeling dependence in non-

standard situations in which the usual “suspects” such as multivariate Gaussian, Student

or Wishart distributions are not appropriate. Besides being an important tool for method-

ological development and having considerable potential for applications, copulas have gained

popularity due to several features that are desirable to a statistician. Allowing the separation
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of modeling effort for the marginal models and the dependence structure continues to rank

high, but so is the flexibility it exhibits in capturing dependence patterns using paramet-

ric families, especially for bivariate data. In higher dimensions this flexibility is expressed

through the use of C- or D- vine copulas that make efficient use of bivariate conditional

copulas to flexibly model multivariate ones [5].

In the analysis of extreme value data, it is often desirable to measure the tail depen-

dence in a bivariate vector. Some copulas are able to capture tail dependence, for instance

the Clayton/Gumbel copula with positive θ parameter exhibits upper/lower tail dependence

[22]. However, while one can identify copula families able to capture a bivariate distribu-

tion’s various patterns of lower or upper tail dependence, be they positive or negative, there

is interest for developing more flexible parametric families that can capture several such

patterns simultaneously. The first attempt was done by [15] who proposed the Joe-Clayton

Archimedean copula which is able to model lower and upper tail dependence. Later, [14]

proposed the use of a three-component mixture of Gaussian, Gumbel and survival Gum-

bel copulas that allows for no, lower or upper tail dependence. Alternatively, the survival

Gumbel copula was replaced by the Clayton copula in the mixture [20].

A survival copula is a 180o rotation of any copula. The advantage of such rotation is that

tail properties are reflected with respect to the v = 1− u line in the unit square. However,

other degrees of rotations, like 90o and 270o, are also possible. For instance, [16] considered

all four rotations of a Clayton copula and developed model selection criteria for selecting the

correct one. On the other hand, [26] proposed a jointly symmetric copula with an equally

weighted mixture of the four way rotations of a copula with the same parameter. In a similar

fashion, [29] proposed two rotation mixtures of 0o−180o and 90o−270o, both with the same

dependence parameter, in order to tackle both serial and cross sectional dependence.

In time series analysis, copulas have been used to capture serial dependence. For example,

[11] proposed a dynamic copula model in which copula parameters follow an autoregressive
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process, and [21] factored the joint density of a unit vector u = (u1, . . . , uT ) as c(u) =∏T
t=1 f(ut | ut−1) assuming Markov conditional distributions. They further used a bivariate

copula to model the transitions, i.e. f(ut | ut−1) = c2(ut−1, ut). Specifically for the bivariate

copula they use a mixture of rotations of degrees 0o − 90o.

In this paper, we first generalise the concept of bivariate tail dependence to the four

corners of the unit square and propose a flexible copula that is able to capture multiple

types of tail dependence. Our goal is achieved by mixing the four rotated instances of the

Clayton copula, to 0, 90, 180 and 270 degrees. Furthermore, the 4-dimensional mixture

weights πt are all different and are allowed to change over time through a moving average

type of process of order q and a seasonal cponent of order p that maintains the marginal

distribution invariant over time. For each of the mixture copula components, dependence

parameters are allowed to vary over time and are, a priori, assumed to be exchangeable.

Our context is not a traditional time series problem in the sense that we do not follow a

single individual through time. We monitor the dependence of several individuals in time,

and individuals might not be the same in different times. So our context is a time series of

distributions (copulas).

The rest of the paper is organized as follows. In Section 2 we provide the motivation of

the paper and the required notation. Section 3 contains the four-way tail dependence and

show that the Clayton rotations measure the four types of tail dependence. In Section 4 we

define our mixture model for a specific time and define the time dependent mixture weights

and association parameters. Section 5 provides prior and posterior distributions to achieve a

Bayesian analysis of the model and an illustration of its performance is reported in Section

6. Section 7 contains conclusions and directions for future work.
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2 Motivation and Notation

The emergence of copulas as important tools for modeling dependence has its origins in

Sklar’s paper [28] which demonstrated that the link between any continuous multivariate

distribution and its marginals can be completed via a unique copula C : [0, 1]m → [0, 1].

The latter is a multivariate distribution with uniform marginals on the interval [0, 1]. Specif-

ically, if F is a multivariate cumulative distribution function (CDF) with marginal CDFs

F1, . . . , Fm, then F (x1, . . . , xm) = C{F1(x1), . . . , Fm(xm)}. Additionally, the copula function

can be obtained as C(u1, . . . , um) = F{F−1
1 (u1), . . . , F

−1
m (um)}, where F−1

j for j = 1, . . . ,m

are the marginal inverse CDFs or quantile functions.

There is a large body of literature devoted to identifying parametric copula families that

are able to capture various dependence patterns in the tails [15]. For instance, in the analysis

of extreme value theory an important concept is that of dependence in the upper-right or

lower-down quadrants of a joint bivariate distribution. This is quantified by the so-called

upper and lower tail dependence coefficients [7, 15].

Let (X1, X2) be a bivariate vector with marginal CDFs, F1 and, respectively, F2, such

that the joint CDF is given in terms of the copula C as F (x1, x2) = C(F1(x1), F2(x2)).

Tail dependence coefficients are defined as limits of the conditional probabilities that both

variables are above an upper quantile of order 1 − ν, or both variables are below a lower

quantile of order ν, as ν approaches zero. We denote

λUU = lim
ν→0

P{X1 > F−1
1 (1− ν) | X2 > F−1

2 (1− ν)}

for the upper-right (upper-upper) corner, and

λLL = lim
ν→0

P{X1 ≤ F−1
1 (ν) | X2 ≤ F−1

2 (ν)}

for the lower-down (lower-lower) corner (the sub indexes U and L stand for upper and lower),

respectively. However, it is possible that both variables have comovements in the opposite
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tails, that is, one variable has values in the upper quantile and the other in the lower quantile,

or conversely. In this case the opposite tail dependence is defined as

λUL = lim
ν→0

P{X1 > F−1
1 (1− ν) | X2 ≤ F−1

2 (ν)}

for the upper-lower corner, and

λLU = lim
ν→0

P{X1 ≤ F−1
1 (ν) | X2 > F−1

2 (1− ν)}

for the lower-upper corner.

These four tail dependence coefficients can be written entirely in terms of the copula. It

is straightforward to show that

λUU = lim
ν→0

2ν − 1 + C(1− ν, 1− ν)

ν
, λLL = lim

ν→0

C(ν, ν)

ν
, (1)

λUL = lim
ν→0

ν − C(1− ν, ν)

ν
, λLU = lim

ν→0

ν − C(ν, 1− ν)

ν
.

It is well known [e.g. 33] that the Clayton copula exhibits lower-lower tail dependence,

whereas the Gumbel copula has upper-upper tail dependence. One way of defining copulas

with the four types of tail dependence (1) is by means of rotation as in [16]. It is easy to

see from (1) that for most copulas, the four tail dependence coefficients will be different.

In the next section, we develop a mixture of copulas that allows identical tail dependence

coefficients.

Before we proceed, let us introduce some notation. Let Ga(α, β) denote a gamma density

with mean α/β, Be(α, β) a beta density with mean α/(α+β), Dir(α) a Dirichlet density with

parameter vector α, and Mult(c,p) a multinomial density with total trials c and probability

vector p. The density evaluated at a specific point x, will be denoted using the notation for

the density, e.g. Ga(x | α, β), in the gamma case.
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3 Four-way tail dependence

In what follows, we illustrate the four-way mixture using the Clayton copula, but the con-

struction is general and can be applied to other copula families.

Let C be a copula in the Clayton family, indexed by parameter θ and defined as C(u1, u2) =

(u−θ
1 + u−θ

2 − 1)−1/θ for θ ≥ −1. If θ = 0 Clayton copula reduces to the independence copula

and for θ > 0 the lower-lower tail coefficient is λLL = 2−1/θ, and the Kendall’s tau association

parameter is τ = θ/(2 + θ). Furthermore, the Clayton family is in the class of Archimedean

copulas with generator φ(t) = t−θ − 1.

To understand the rotations, let us consider the unit square [0, 1]2 and divide it into four

quadrants as in Figure 1. To define the 90-degree rotation, we consider the probability in

quadrant II, P(U1 > u1, U2 ≤ u2) = P(U2 ≤ u2) − P(U1 ≤ u1, U2 ≤ u2), which in terms of

the copula becomes u2 − C(u1, u2). Finally by making the transformation U ′
1 = 1 − U1, we

maintain the marginal uniformity in U ′
1 and can obtain a new CDF (copula) of the form

CII(u1, u2) = P(U ′
1 ≤ u1, U2 ≤ u2) = u2 − C(1− u1, u2).

To define the 180-degree rotation, we consider the probability in the quadrant III, P(U1 >

u1, U2 > u2) = 1 − P(U1 ≤ u1) − P(U2 ≤ u2) + P(U1 ≤ u1, U2 ≤ u2), which in terms of the

copula becomes 1− u1 − u2 +C(u1, u2). Again, making the transformation U ′
1 = 1−U1 and

U ′
2 = 1− U2 we get a new CDF (copula)

CIII(u1, u2) = P(U ′
1 ≤ u1, U

′
2 ≤ u2) = u1 + u2 − 1 + C(1− u1, 1− u2).

Lastly, to define the 270-degree rotation we consider the probability in the quadrant IV,

P(U1 ≤ u1, U2 > u2) = P(U1 ≤ u1)− P(U1 ≤ u1, U2 ≤ u2), which in terms of the copula can

be written as u1 − C(u1, u2). Making the transformation U ′
2 = 1 − U2, we obtain the new

CDF (copula)

CIV (u1, u2) = P(U1 ≤ u1, U
′
2 ≤ u2) = u1 − C(u1, 1− u2).

6



For completeness, we denote the original, un-rotated, copula as CI(u1, u2).

It is not difficult to prove that each of the previous four rotated copulas have the same tail

dependence coefficients, but in different corners, i.e., lower-lower tail coefficient for copula

I, upper-lower tail coefficient for copula II, upper-upper tail coefficient for copula III and

lower-upper tail coefficient for copula IV are the same. Using (1), the tail coefficients become

λI
LL = λII

UL = λIII
UU = λIV

LU = lim
ν→0

(
2ν−θ − 1

)−1/θ

ν
= lim

ν→0
(2− νθ)−1/θ = 2−1/θ, (2)

for θ > 0, and any other tail dependence coefficients are zero for the four rotated copulas.

4 Dynamic Clayton mixtures

Let (U1t, U2t) be a bivariate vector with Unif(0, 1) marginal distributions for each t =

1, 2, . . . , T . The idea is to model the joint distribution between U1t and U2t through a

flexible copula Ct which is able to capture any kind of tail dependence as it evolves in time.

For that we define the following mixture copula

Ct(u1t, u2t | πt,θt) =
4∑

k=1

πtkCk(u1t, u2t, | θtk), (3)

with parameters πt = (πt1, . . . , πt4) and θt = (θt1, . . . , θt4), where Ck is a rotated Clayton

copula as defined in Section 3, but expressed in arabic numbers instead of roman numbers for

simplicity, with a different association parameter θtk > 0 for each rotated copula k = 1, . . . , 4.

Specifically,

C1(u1, u2 | θ1) =
(
u−θ1
1 + u−θ1

2 − 1
)−1/θ1

,

C2(u1, u2 | θ2) = u2 −
{
(1− u1)

−θ2 + u−θ2
2 − 1

}−1/θ2
, (4)

C3(u1, u2 | θ3) = u1 + u2 − 1 +
{
(1− u1)

−θ3 + (1− u2)
−θ3 − 1

}−1/θ3
,

C4(u1, u2 | θ4) = u1 −
{
u−θ4
1 + (1− u2)

−θ4 − 1
}−1/θ4

.

Parameters πtk > 0 are mixture weights such that πt1 + πt2 + πt3 + πt4 = 1 for t = 1, . . . , T .
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It is not difficult to derive association coefficients, like the Kendall’s tau, and tail de-

pendence coefficients for a mixture copula in terms of the corresponding coefficients for the

individual copulas. In particular, the Kendall’s tau for the mixture copula (3) is

τt = 4E{Ct(U1t, U2t | πt,θt)} − 1 = 4
4∑

k=1

πtkE{Ck(U1t, U2t | θt)} − 1

=
4∑

k=1

πtk [4E{Ck(U1t, U2t, | θt)} − 1] =
4∑

k=1

πtkτtk,

where τtk is the individual Kendall’s tau for each of the mixture copula components Ck.

Since all mixture components Ck as in (4) are Clayton copulas, individual Kendall’s tau

coefficient are τtk = θtk/(2+ θtk) for k = 1, 3 and τtk = −θtk/(2+ θtk) for k = 2, 4. Therefore,

the Kendall’s tau coefficient for the mixture copula (3) becomes

τt = πt1
θt1

2 + θt1
− πt2

θt2
2 + θt2

+ πt3
θt3

2 + θt3
− πt4

θt4
2 + θt4

. (5)

Now, tail dependence coefficients (1) for mixture copula (3) at time t, considering the

upper-upper tail, becomes

λUU,t = lim
ν→0

2ν − 1 + Ct(1− ν, 1− ν)

ν
= lim

ν→0

2ν − 1 +
∑4

k=1 πtkCk(1− ν, 1− ν)

ν

=
4∑

k=1

πtk lim
ν→0

{
2ν − 1 + Ck(1− ν, 1− ν)

ν

}
=

4∑
k=1

πtkλ
(k)
UU,t,

where λ
(k)
UU,t is the individual upper-upper tail dependence coefficient for individual copula

Ck at time t. Similar equations are obtained for the other three tail dependence coefficients.

Therefore, considering that the only tail dependence coefficients for the mixture components

of (3) are those in (2), the overall tail dependence coefficients in the case of the Clayton

family are

λt1 = πt1 2
−1/θt1 , λt2 = πt2 2

−1/θt2 , λt3 = πt3 2
−1/θt3 and λt4 = πt4 2

−1/θt4 (6)

which denote lower-lower, upper-lower, upper-upper and lower-upper tail dependencies, re-

spectively.
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In summary, our mixture copula proposal (3) is flexible enough to capture a larger class of

dependence associations and the four tail dependencies, according to the copula parameters

πtk and θtk for k = 1, . . . , 4 and t = 1, . . . , T .

5 Bayesian analysis

5.1 Prior distributions

To allow for temporal dependence in the parameter estimation, we propose a prior dynamic

process for π = {πt}1≤t≤T , where πt = (πt1, πt2, πt3, πt4). Since
∑4

k=1 πtk = 1 for all t, the

natural marginal prior for πt would be a Dirichlet distribution with parameter a0p, where

p = (p1, p2, p3, p4) such that a0 > 0, pk > 0 and
∑4

k=1 pk = 1. To relate a set of Dirichlet

random variables, we use ideas from [25], who defined dependence in univariate random

variables whose distribution belongs to the exponential family, and define a dynamic prior

with temporal dependence as follows.

Let ηt = (ηt1, . . . , ηt4) ∈ R4 be a latent vector corresponding to each πt and let ω =

(ω1, . . . , ω4) be a unique latent vector such that

ω ∼ Dir(a0p) and ηt | ω
ind∼ Mult(at,ω), (7)

with at ∈ N, ηtk ∈ N and
∑4

k=1 ηtk = at. Then, the prior dependence in πt is modeled

through a subset ∂t of previous latent variables {η1, η2, . . . , ηt−1}

πt | η
ind∼ Dir

(
a0p+

∑
j∈∂t

ηj

)
. (8)

We denote this construction as DDir(a0, a,∂) with a0 > 0, a = (a1, . . . , aT ) and subsets

∂ = {∂t} of lags. Different temporal dependencies can be induced by an appropriate selection

of subsets of lags. For instance: moving average type of order q can be induced by defining

∂t = {t, t− 1, . . . , t− q}; (9)
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seasonal dependence of order p can be induced by defining, for seasonality s,

∂t = {t, t− s, t− 2s, . . . , t− ps}; (10)

or a combination of moving average of order q and seasonal dependence of order p. In general,

the only requirement is that t ∈ ∂t.

Properties of this prior are given in the following proposition.

Proposition 1 Let π = {πt} ∼ DDir(a0, a,∂) a sequence of vectors whose probability law

is defined by (7) and (8) for a0 > 0, at ∈ N and subsets ∂. Then,

(i) The marginal distribution for each πt is Dir(a0p),

(ii) The correlation between πt,k and πr,k, for t ̸= r and k = 1, . . . , 4, does not depend on k

and is given by

Corr(πt,k, πr,k) =
a0

(∑
j∈∂t∩∂r aj

)
+
(∑

j∈∂t aj

)(∑
j∈∂r aj

)
(
a0 +

∑
j∈∂t aj

)(
a0 +

∑q
j∈∂r aj

)
(iii) If at = 0 for all t = 1, 2 . . . then the πt’s become independent.

Proof

For (i) we rely on conjugacy properties of the Dirichlet multinomial Bayesian updating [3].

This states that if ηt, t = 1, 2, . . . are conditionally independent given ω from Mult(at,ω),

and the prior distribution for ω is Dir(a0p), then the posterior distribution for ω given the

ηt’s is Dir (a0p+
∑

t ηt). Replacing ω in the posterior by πt we obtain that the marginal

distribution for πt is the same as the prior for ω which is Dir(a0p).

For (ii) we first note that for a specific k, the distributions for ωk, ηtk and πtk reduce to beta,

binomial and beta, respectively. To obtain the correlation we rely on iterative formulae. The

covariance is Cov(πt,k, πr,k) = E{Cov(πt,k, πr,k | η)} + Cov{E(πt,k | η),E(πr,k | η)}, where
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the first term is zero due to conditional independence. Then

Cov(πt,k, πr,k) = Cov

{
a0pk +

∑
j∈∂t ηj,k

a0 +
∑

j∈∂r aj
,
a0pk +

∑
j∈∂r ηj,k

a0 +
∑

j∈∂r aj

}
,

which after cancelling the additive constants and using the linearity of the covariance becomes

Cov(πt,k, πr,k) =
1(

a0 +
∑

j∈∂t aj

)(
a0 +

∑
j∈∂r aj

)Cov{∑
j∈∂t

ηj,k,
∑
j∈∂r

ηj,k

}
.

After using the iterative formula for a second time we get

E

[
Cov

{∑
j∈∂t

ηj,k,
∑
j∈∂r

ηj,k

∣∣∣∣∣ω
}]

+ Cov

{
E

(∑
j∈∂t

ηj,k

∣∣∣∣∣ω
)
,E

(
q∑

j∈∂r

ηj,k

∣∣∣∣∣ω
)}

. (11)

Within each sum we can isolate the common part as
∑

j∈∂t ηj,k =
∑

j∈∂t∩∂r ηj,k+
∑

j∈∂t−∂r
ηj,k

and
∑

j∂r
ηj,k =

∑
j∈∂t∩∂r ηj,k+

∑
j∈∂r−∂t

ηj,k, and using covariance properties and conditional

independence, (11) becomes

E

{
Var

( ∑
j∈∂t∩∂r

ηj,k

∣∣∣∣∣ωk

)}
+ Cov

{∑
j∈∂t

ajωk,
∑
j∈∂r

ajωk

}
.

The first expected value, after obtaining the conditional variance is E{
∑

j∈∂t∩∂r ajωk(1 −

ωk)} = (
∑

j∈∂t∩∂r aj)E(ωk − ω2
k) with E(ωk − ω2

k) = E(ωk)− E2(ωk)− Var(ωk) = a0Var(ωk).

The second term is (
∑

j∈∂t aj)(
∑

j∈∂r aj)Var(ωk). In conclusion, we obtain

Cov(ωt,k, ωr,k) =
a0

(∑
j∈∂t∩∂r aj

)
+
(∑

j∈∂t aj

)(∑
j∈∂r aj

)
(
a0 +

∑
j∈∂t aj

)(
a0 +

∑
j∈∂r aj

) Var(ωk).

Since ωk, πt,k and πr,k all have the same beta marginal distribution, (ii) is demonstrated.

For (iii) we note that at = 0 for all t implies that ηt = 0 with probability one so the

dependence disappears and πt become independent with marginal distribution Dir(a0p). ⋄

The strength of dependence in the prior for π depends on the model parameters a0, a

and subsets ∂. Larger values of any of the first two induce stronger dependence. More

shared elements in ∂t and ∂r also indicate stronger dependence. However, if the intersection

between sets ∂t and ∂r is empty, the correlation is still positive.

11



Prior distributions are completed by assigning hierarchical gamma distributions for each

θtk, so that information is shared across times t for each k. That is,

θtk | βk
ind∼ Ga(dk, βk), and βk ∼ Ga(ek, gk) (12)

for t ≥ 1 and k = 1, . . . , 4.

5.2 Posterior distributions

LetUti = (U1ti, U2ti) for i = 1, . . . , nt a sample of size nt from model (3) for each t = 1, . . . , T .

Let Zti be a latent vector that identifies the mixture component which is observation i’s pdf,

that is, Z′
ti = (Zt1i, Zt2i, Zt3i, Zt4i) ∼ Mult(1,πt). Assuming for the moment that together

with Uti we observe Zti, then the extended likelihood has the form

f(u, z | π,θ) =
T∏
t=1

nt∏
i=1

4∏
k=1

{πtkfk(u1ti, u2ti | θtk)}ztki ,

where

f1(u1, u2 | θ1) = (θ1 + 1)(u1u2)
−(θ1+1)

(
u−θ1
1 + u−θ1

2 − 1
)−(1/θ1+2)

,

f2(u1, u2 | θ2) = (θ2 + 1){(1− u1)u2}−(θ2+1)
{
(1− u1)

−θ2 + u−θ2
2 − 1

}−(1/θ2+2)
, (13)

f3(u1, u2 | θ3) = (θ3 + 1){(1− u1)(1− u2)}−(θ3+1)
{
(1− u1)

−θ3 + (1− u2)
−θ3 − 1

}−(1/θ3+2)
,

f4(u1, u2 | θ4) = (θ4 + 1){u1(1− u2)}−(θ4+1)
{
u−θ4
1 + (1− u2)

−θ4 − 1
}−(1/θ4+2)

.

The prior distribution for (π,θ) is defined by equations (7), (8) and (12). Again, extend-

ing the prior to include the latent variables η and ω we get

f(π,η,ω) = Dir(ω | a0p)
T∏
t=1

Dir

(
πt

∣∣∣∣∣a0p+
∑
j∈∂t

ηj

)
Mult(ηt | at,ω)

and

f(θ) =
4∏

k=1

Ga(βk | ek, gk)
T∏
t=1

Ga(θtk | dk, βk)

independent of each other.
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Posterior distributions are characterised through their full conditional distributions. These

include actual parameters as well as latent variables and are given as follows.

(a) The posterior conditional for Zti is

Zti | rest ∼ Mult(1,π∗
t ),

where π∗ = {π∗
tk} and

π∗
tk =

πtkfk(u1ti, u2ti | θtk)∑4
j=1 πtjfj(u1ti, u2ti | θtj)

,

with fk is given in (13) for k = 1, . . . , 4.

(b) The posterior conditional for πt is

πt | rest ∼ Dir

(
aop+

∑
j∈∂t

ηj +
nt∑
i=1

zti

)
.

(c) The posterior conditional for ηt is

f(ηt | rest) ∝


4∏

k=1

(
ωk

∏
l∈ϱt πl,k

)ηtk
Γ(ηtk + 1)

∏
l∈ϱt Γ

(
a0pk +

∑
j∈∂l ηj,k

)
 I

(
4∑

k=1

ηtk = at

)
,

where ϱt = {l : t ∈ ∂l} is the set of inverse subsets.

(d) The posterior conditional for ω is

f(ω | rest) = Dir

(
ω

∣∣∣∣∣c0p+
T∑
t=1

ηt

)
.

(e) The posterior conditional for θtk is

f(θtk | rest) ∝ θdk−1
tk e−βkθtk

nt∏
i=1

{fk(u1ti, u2ti | θtk)}ztki ,

where fk is given in (13).

(f) The posterior conditional for βk is

βk | rest ∼ Ga

(
ek + Tdk , gk +

T∑
t=1

θtk

)
.
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Posterior inference will rely on the implementation of a Gibbs sampler [30] based on

the previous posterior conditional distributions. Sampling from (a), (b), (d) and (f) is

straightforward since they are of standard form. To sample from (c), since ηt is a vector of

dimension 4 with a sum restriction, it is easier if we sample from each of the components ηtk

for k = 1, 2, 3 using f(ηtk | rest) ∝{
ωk

∏
l∈ϱt πl,k/

(
ω4

∏
l∈ϱt πl,4

)}ηtk
I
(
ηtk ∈ {0, 1, . . . , at −

∑3
j ̸=k ηtj}

)
Γ(ηtk + 1)

∏
l∈ϱt Γ

(
a0pk +

∑
j∈∂l ηj,k

)
Γ(ηt4 + 1)

∏
l∈ϱt Γ

(
a0p4 +

∑
j∈∂l ηj,4

) ,
with ηt4 = at −

∑3
j=1 ηtj. Sampling from (e) will require a Metropolis-Hastings step [32].

We suggest to use an adaptive random walk proposal defined as follows. At iteration (r+1)

sample θ∗tk ∼ Ga(κ, κ/θ
(r)
tk ) and accept it with probability

α(θ∗tk, θ
(r)
tk ) =

f(θ∗tk | rest)Ga(θ
(r)
tk | κ, κ/θ∗tk)

f(θ
(r)
tk | rest)Ga(θ∗tk | κ, κ/θ

(r)
tk )

,

where α is truncated to the interval [0, 1] and κ is a tuning parameter that controls the

acceptance rate. We adapt κ following the method of [23]. The adaptation method uses

batches of 50 iterations and for every batch h we compute the acceptance rate AR(h) and

increase κ(h+1) = κ(h)1.01
√
h if AR(h) < 0.3 and decrease κ(h+1) = κ(h)1.01−

√
h if AR(h) > 0.4,

with κ(1) = 1 as starting value. This adaptation scheme satisfies diminishing adaptation as

h → ∞ and in the applications we restrict the parameters to a compact thus ensuring that

the sampler is valid [27].

Implementation code for our dynamic Clayton mixture model can be found at the GitHub

repository https://github.com/RuyiPan/TD-MRC.

6 Numerical analyses

6.1 Simulation study

We conduct a comprehensive simulation study to evaluate the performance of the pro-

posed model. The true generative model is set using θt = (θt1, θt2, θt3, θt4) = (5, 3, 4, 3)
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for t = 1, . . . , T , with T = 20. The weights of rotated Clayton copulas are chosen to

be linearly dependent in time. More specifically, we first set π1 = (π11, π12, π13, π14) =

(0.4, 0.25, 0.1, 0.25) as the initial values at t = 1 and subsequently the weights are constructed

using πt1 = 0.95πt−1,1, πt1 = 1.05πt−1,2, πt3 = 0.1, πt4 = 1 −
∑3

i=1 πti for t = 2, . . . , 20. We

sampled nt = 300 realizations from this model for each time t = 1, . . . , T as the simulated

data.

For the prior distributions, we set hyper-parameters a0 = 1, and ek = gk = 1. To evaluate

the performance of the model for capturing the temporal dependence, we considered a moving

average type of order q, that is, the subsets of lags are defined by (9). We considered different

hyper-parameters for the dynamic process: at = 0, 1, 3, 5, 10, 20, 30, 40 and q = 0, 1, . . . , 7.

The model with at and q is denoted as Mat,q. We ran the MCMC for 7, 000 iterations. To

determine the burn-in, we monitor the adaptive κ parameter and the acceptance rate for

each batch. These are included in Figure 2 where we observe that the κ becomes stable

after 60 batch iterations, and the acceptance rate stabilizes between 0.3 and 0.4 after 60

batches. Therefore we set the burn-in to be equal to 3, 000 iterations. This also confirms

that the adaptation method proposed at the end of Section 5 performs well. Computing

time is around 50 minutes for each run in an Intel Core i9 processor at 2.3 GHz with 32 GB

of RAM.

To assess model performance, we computed two goodness of fit (gof) measures, the log-

arithm of the pseudo marginal likelihood (LPML) [8] and Watanabe–Akaike Information

Criterion (WAIC) [34]. Table 1 shows these values. In general, the two gof measures concur

in determining the best model for each value of q. Briefly put, for smaller values of at, better

fitting is achieved for larger orders of dependence q in the πtk, whereas for larger values of

at, smaller orders of dependence q produce better fit. Overall, the best model is, M30,7,

obtained with at = 30 and q = 7.

Two more comparisons are also included in Tables 1. The case of independence across
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times for πtk is obtained when at = 0, regardless of the value of q. Goodness of fit statistics

show that the independence fitting is not the worst, but is definitely underperforming in

comparison to the other dependence models. Additionally, we also consider the model that

assumes independence in the θtk. This is achieved by considering a very low variance in βk,

as obtained by setting ek = dk = 1000. This latter model produces inferior gof measures

compared to Mat,q.

To assess in more detail our model’s performance, we compare posterior estimates of

π and θ with the true values. We use the best fitting model and use posterior means as

point estimates, together with quantiles 2.5% and 97.5% to produce 95% credible intervals.

Figure 3 shows posterior estimates of πtk as time series for t = 1, . . . , 20 in four panels for

k = 1, . . . , 4. Posterior estimates follow very closely the path of the true values. Similarly,

Figure 4 shows posterior estimates of θtk as time series in four panels. All the true values lie

within the 95% credible intervals. We note that credible intervals are narrower for θt1 (top-

left panel) and θt4 (bottom-right panel) as compared to those for θt2 (top-right panel) and

θt3 (bottom-left panel). Wider credible intervals are due to smaller weights (less data points)

associated to the corresponding mixture components. Specifically, the higher variability for

θt3 for larger t is a consequence of the smaller weights for the third component πt3.

We compare the best fit produced by Mat,q with the dynamic copula model of Hafner

& Manner [11]. This latter model assumes a Gaussian copula with time-varying associa-

tion parameter ρt. It relies on a Fisher transformation (inverse hyperbolic tangent) of the

association parameter as λt = (1/2) log ((1 + ρt)/(1− ρt)) and models the dynamics via

an autoregressive process of the form λt = α + βλt−1 + ϵt with ϵt ∼ N(0, τ). We perform a

Bayesian analysis for this model with vague prior distributions α ∼ N(0, 0.01), β ∼ N(0, 0.01)

and τ ∼ Ga(0.01, 0.01). We will refer to this model as dynamic Gaussian.

As a second competitor, we consider a simple Clayton copula, which is the result of

assigning fixed weight one to the mixture model and keeping the exchangeable prior on the
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association copula time varying parameters.

To compare, we compute the log predictive scores (LPS) defined in [9]. We fit models with

data up to time t−1 and compute the LPS for time t, that is, LPS(t) =
∑nt

i=1 log f(uti | ut−1),

where the predictive distribution is approximated via Monte Carlo as

f(uti | ut−1) = (1/R)
R∑

r=1

f(uti | π(r)
t ,θ

(r)
t )

and (π
(r)
t ,θ

(r)
t ) are obtained from the posterior distribution f(πt,θt | u1, . . . ,ut−1) for a total

of R iterations.

The LPS measures at t = 20 as well as the LPML and WAIC for the different models are

reported in Table 2. The performance of the simple Clayton copula is the worst, as expected.

The dynamic Gaussian improves a little the goodness of fit measures, but is far behind the

dynamic Clayton mixtures. When removing the n20 data points from the fitting, the best

performance is achieved when taking at = 20 and q = 7.

6.2 Real data analysis

We also assess how well our model can capture the relationship between variables in a real life

application where data is generated from some unknown distribution, rather than directly

from a mixture copula.

We used the Environment and Climate Change Canada (ECCC) data catalogue from

the government of Canada. The ECCC managed the National Air Pollution Surveillance

Program (NAPS), which began in 1969 and is now comprised of nearly 260 stations in 150

rural and urban communities reporting to the Canada-wide air quality database (for more

details about the dataset, please visit https://data-donnees.az.ec.gc.ca/data/air/monitor).

Specifically, we selected ozone (O3) and particulate matter with diameters 2.5 and smaller

(PM2.5) as the bivariate data. We used the hourly data from the years 2017 to 2019. Due to

a large number of missing values, we took averages across hours and across days to produce
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monthly data for each station, t = 1, . . . , T with T = 36 for a total time span of three years.

The number of stations varies across months, given that some of them have missing values

for the whole month. On average, sample sizes range around nt ≈ 200 for each t.

Since our focus is not on the marginal distributions, but on the association between

these two variables, we applied the modified rank transformation [6] to produce data in

the interval [0, 1]. Specifically, if observed data is denoted by (X1ti, X2ti), we compute the

empirical cdf’s, independently for each variable, say F̂X1 and F̂X2 and apply the inverse

transformation U1ti = F̂−1
X1

(X1ti) and U2ti = F̂−1
X2

(X2ti).

To explore the data, we computed empirical Kendall’s tau and Spearman’s rho association

coefficients per month. These are shown in Figure 2. In both cases the dependence is cyclical

around zero, reaching its maximum in June/July and its minimum in October/November.

This suggests that a seasonal specification of our model seems to be a good candidate to

capture these cycles. For completeness we considered three types of models: moving average

type of order q as in (9); seasonal model of order p with annual seasonality s = 12 as in (10);

and a combination of moving average and seasonal. We denote the model Mat,q,p where the

indexes describe chosen values for at, q and p.

Similar to the simulation study, we set the parameters a0 = 1 and bk = ck = 1 to define

the prior distributions. In this real data analysis, we also varied the dependence parameters

at = 0, 1, . . . , 5, q = 0, 1, . . . , 4 and p = 0, 1, 2 to assess the performance of the model under

different strengths of temporal dependence. We ran the MCMC for 10, 000 iterations and

set the burn-in equal to 5, 000. Computing time is around 60 minutes for each run in an

Intel Core i9 processor at 2.3 GHz with 32 GB of RAM. We also used LPML and WAIC gof

measures to assess model fit.

Table 3 shows the LPML and WAIC values for the different prior specifications. The two

gof measures agree on which is the best model. The preferred model is M1,1,2, i.e. when

at = 1, p = 1 and p = 2. In summary, a combination of moving average and seasonality are
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required to model this particular dataset.

In Figures 6 and 7 we show posterior estimates of the weights πtk and copula coefficients

θtk, respectively. The cyclical monthly dependence is captured by the weights. Since the

first and third components of the mixture induce positive dependence, and second and fourth

induce negative dependence, there is an opposite behaviour between the pairs (πt1, πt3) and

(πt2, πt4). The former reaches its peak in the summer and the latter in the autumn-winter,

however the peaks within the second pairs do not occur exactly at the same months, πt2 has

its peak around September-October (autumn), whereas πt4 has its peak around December-

January (winter). Among the four components, component 3 is the one with slightly smaller

weights, apart from the summer of the year 2019 where πt3 has two peaks in May and

September of around 0.75 and 0.5, respectively. Therefore, our mixture model is able to

capture the seasonal dynamics in the data.

The strength of the association between the pair (O3, PM2.5) is determined by parameters

θtk. Their posterior estimates are all around slightly below the value of one, with θt2 and

θt4 showing more variability along time. Uncertainty in the estimation of θt3 is somehow

higher, due to the slightly smaller weights πt3 and thus smaller sample size for estimating

θt3. According to θt1, positive dependence is particularly higher in the summer of the years

2017 and 2019 with a lower-lower tail dependence. On the other hand, looking at θt2 and

θt4, negative dependence is high in the winter of the three years.

We can further assess the tail dependence in the four corners of the unit square by

computing the tail dependence coefficients λt, given in (6). These are reported in Figure 8.

We first note that none of them is larger than 1/2, the only exception being the upper-lower

λt2 in October of 2018, where perhaps O3 was extremely high and PM2.5 was extremely

low in that month. The lower-lower and upper-upper tail parameters λt1 and λt3 show very

similar behaviour, they are most of the time close to zero, both with moderate peaks in July

of the three years. On the other hand, the upper-lower and lower-upper tail parameters λ2t
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and λ4t do not behave exactly in the same way. These have wider peaks than the previous

tail coefficients with moderate tail dependencies in the autumn for λ2t and in the winter for

λ4t.

Finally, we show joint density estimates in Figure 9 as heat plots, together with scat-

ter plots of the data for each month t. We particularly concentrate on the months where

the dependence changes from negative to positive. This transition is consistent along the

three years of study for the months of June and July. It is interesting to see that Au-

gust is a transition month, where in 2017 and 2019 the dependence is 4-way, i.e., the four

mixture components of our model are present, in fact the estimated weights and coeffi-

cients are: π2017−8 = (0.41, 0.52, 0.05, 0.02), θ2017−8 = (0.69, 0.69, 0.59, 0.81); π2018−8 =

(0.07, 0.86, 0.03, 0.04), θ2018−8 = (0.48, 0.31, 0.50, 0.84); π2019−8 = (0.11, 0.59, 0.21, 0.09),

θ2019−8 = (0.57, 0.31, 0.58, 0.59). What makes the heat plots to show the 4-way dependence

is a combination of the weight πtk and the intensity θtk.

We compare the fit of M1,1 with the dynamic Gaussian and simple Clayton copula and

carry out two validation studies. In the first validation study we partition the dataset into

two sets, fitting and testing. For each month t = 1, . . . , T we took n1t = 140 observations

for fitting and n2t = nt − 140 for testing. We estimate the model parameters with the

fitting set and use the testing set to predict O3 conditional on the observed value of PM2.5.

For this we use the conditional copula Ct(u1t | u2t,πt,θt) =
∑4

k=1 πtkCk(u2t | u1t, θtk) with

Ck(u2t | u1t, θtk) = (∂/∂u1t)Ck(u1t, u2t | θtk) for k = 1, . . . , 4, and obtain the posterior

predictive mean û2t = E(U2t | u1t,πt,θt) as point prediction.

We assess model performance by computing the mean square error between the observed

u2t and predicted û2t for O3 in the test set, i.e. MSE =
(∑T

t=1 n2tMSEt

)
/
(∑T

t=1 n2t

)
,

where MSEt = (1/n2t)
∑n2t

i=1(u2t − û2t)
2, as well as the LPML and WAIC goodness of fit

measures for the fitting sets. Results from the first validation study are included in Table 4.

All four gof statistics for the dynamic Clayton mixture model are better than those obtained
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with the dynamic Gaussian and simple Clayton copula models, confirming that our model

is preferred for the analysis.

The second validation study consists in comparing the log predictive scores (LPS) defined

in [9]. We fit models with data up to time t− 1 and compute the LPS for time t. We repeat

this for times t = s+ 1, . . . , T and aggregate the scores as

LPS =
T∑

t=s+1

nt∑
i=1

log f(uti | ut−1).

In particular we took s = 30. The values of LPS are reported in Table 5. Here we observe that

the simple Clayton has the worst predictive scores. For times t = 31, 32, 33, 35 the dynamic

Gaussian copula obtains a better predictive score, and for times t = 34, 36 the dynamic

Clayton mixtures has better performance. However, when aggregating the predictive scores

for the six predicted times, our proposed model achieves the best performance.

7 Concluding remarks and future work

We extend a copula’s versatility in capturing dependence patterns using mixtures of copulas

with a dynamic component in the weights. The idea is illustrated using Clayton copulas, but

it can be applied to any other families. The motivation is given by problems where different

extreme regions of the bivariate distribution exhibit patterns that cannot be captured by a

single copula.

In situations in which the dependence varies in time, we propose a dynamic mixture

of copulas model in which the mixture weights and the parameters of the copulas involved

in the mixture are modelled either through a moving average or a seasonal dynamic. The

resulting increase in modelling flexibility is illustrated by all our numerical experiments, be

they synthetic or real.

Dependence in our dynamic Dirichlet prior on the weights is controlled by the triplet

(at, q, p). For the analyses considered here we have kept at to be constant across time, to
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make our prior easy to define. However, this parameter can certainly be chosen to be different

across time, providing additional flexibility in the model. We have left the study of it for

future work.

Additionally, future work will explore extensions of dynamic copulas to higher dimensions.

For instance, one can easily see that if we were to capture dependence in all the extreme

regions of a 10-dimensional copula, we would need 100 mixture components, each component

being a 10-dimensional copula. Although feasible, such an approach is likely impractical as

not all extremes are likely to be significant. In order to impose sparsity, we plan to exploit

a Dirichlet process mixture prior to reduce the number of components needed to model the

data and yet maintain the added flexibility demonstrated in this work. An added question

of interest is the identification of lower dimensional manifolds where a mixture of lower-

dimensional copulas can be used to capture the dependence in the data.
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274–292.

[7] Frahm, G., Junker, M. and Schmidt, R. (2005). Estimating the tail-dependence coeffi-

cient: Properties and pitfalls. Insurance: Mathematics and Economics 37, 80–100.

[8] Geisser, S. and Eddy, W.F. (1979). A predictive approach to model selection. Journal

of the American Statistical Association 74, 153–160.

[9] Geweke, J. and Amisano, G. (2010). Comparing and evaluati9ng bayesian predictive

distributions of asset returns. International Journal of Forecasting 26, 216–230.
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bk, ck at q = 0 q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7
LPML

1 0 1685
1 1 1686 1683 1684 1688 1687 1692 1691 1696
1 3 1685 1690 1692 1694 1697 1698 1699 1700
1 5 1688 1694 1698 1699 1700 1700 1702 1701
1 10 1693 1698 1702 1702 1706 1705 1707 1706
1 20 1696 1702 1705 1705 1707 1706 1707 1706
1 30 1699 1704 1706 1708 1705 1708 1706 1708
1 40 1702 1705 1704 1708 1706 1705 1705 1705

1000 30 1682 1688 1691 1693 1693 1691 1693 1692
WAIC

1 0 -3372
1 1 -3374 -3368 -3370 -3378 -3375 -3384 -3384 -3393
1 3 -3372 -3382 -3386 -3390 -3395 -3397 -3399 -3401
1 5 -3378 -3389 -3396 -3399 -3402 -3401 -3405 -3403
1 10 -3388 -3397 -3403 -3405 -3413 -3410 -3413 -3411
1 20 -3393 -3405 -3409 -3411 -3415 -3413 -3414 -3412
1 30 -3398 -3409 -3411 -3416 -3410 -3415 -3413 -3416
1 40 -3403 -3410 -3409 -3416 -3412 -3410 -3409 -3411

1000 30 -3364 -3376 -3382 -3386 -3386 -3382 -3385 -3385

Table 1: Simulated data. LPML and WAIC gof values of different Mat,q models. Best values
are bolded.

Model / Measure LPS LPML WAIC
M2,2 73.2 1603 -3209
M20,7 74.9 1625 -3250
M30,7 73.1 1624 -3247
D.Gaussian 25.4 146 -292
S.Clayton -12.3 9 -18

Table 2: Simulated data. LPS statistic using times 1, . . . , 19 for fitting and t = 20 for
prediction. The other gof measures, LPML and WAIC, were calculated with the fitting
data.
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LPML WAIC
at MA(0) MA(1) MA(2) MA(3) MA(4) MA(0) MA(1) MA(2) MA(3) MA(4)

S(0)
0 435 -871
1 433 438 436 434 434 -867 -875 -873 -868 -867
2 433 433 433 426 422 -866 -867 -866 -852 -843
3 432 432 428 421 416 -864 -863 -857 -843 -832
4 432 427 421 417 410 -863 -855 -841 -834 -820
5 429 424 417 409 403 -858 -849 -834 -817 -805

S(1)
0 435 -871
1 440 441 439 435 433 -880 -881 -878 -869 -866
2 439 435 433 427 422 -877 -871 -865 -854 -843
3 434 432 427 420 414 -868 -865 -854 -839 -829
4 432 428 422 414 408 -863 -857 -844 -829 -815
5 427 424 416 408 401 -854 -848 -832 -815 -802

S(2)
0 435 -871
1 440 442 438 433 430 -879 -883 -876 -867 -859
2 437 433 433 427 420 -874 -865 -865 -854 -840
3 434 432 427 419 413 -867 -864 -853 -838 -826
4 430 425 424 412 407 -861 -850 -847 -824 -813
5 426 422 418 408 397 -852 -844 -836 -817 -794

Table 3: Real data. LPML and WAIC statistics for different prior choices for Mat,q,p.

Model / Measure MSE LPML WAIC
M1,1,2 0.0751 397 -794
D.Gaussian 0.0763 383 -767
S.Clayton 0.0826 39 -78

Table 4: Real data. Goodness of fit measures in first validation study.
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Model t = 31 t = 32 t = 33 t = 34 t = 35 t = 36 Total

M1,1,0 -10.5 -3.1 -9.1 17.8 21.6 11.4 28.2
M1,2,0 -3.2 -4.7 -12.1 21.8 25.3 12.2 39.3
M1,1,1 -12.4 -3.8 -10.9 16.1 24.0 11.9 24.9
M1,2,1 -5.9 -2.7 -11.6 18.5 26.8 11.6 36.7
M1,2,2 -8.2 -3.1 -10.0 15.4 26.8 12.3 33.2
D.Gaussian 5.2 -1.8 -1.3 -7.1 37.5 6.1 38.8
S.Clayton -79.5 -170.5 -153.6 -258.2 -246.1 -199.8 -1107.6

Table 5: Real data. LPS statistic computed by fitting models from time 1 to t − 1 and
predicting time t.
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Figure 1: Unit square divided in four quadrants.
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Figure 2: The recorded κ(h) and acceptance rate for each batch h. The batch size is 50.
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Figure 3: Simulated data. Posterior estimates of π: posterior mean (solid line) with 95%
credible intervals (shadows), together with the true value (dotted black line).
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Figure 4: Simulated data. Posterior estimates of θ: posterior mean (solid line) with 95%
credible intervals (shadows), together with the true value (dotted black line).
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Figure 5: Real dataset. Empirical Kendall’s tau with estimated vlaues (left) and Spearman’s
rho (right).
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Figure 6: Real dataset. Posterior estimates of π: posterior mean (solid line) with 95%
credible intervals (shadows).
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Figure 7: Real dataset. Posterior estimates of θ: posterior mean (solid line) with 95%
credible intervals (shadows).
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Figure 8: Real dataset. Posterior estimates of λ: posterior mean (solid line) with 95%
credible intervals (shadows).
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Figure 9: Observed real data and estimated joint density from April to September 2017 (top),
2018 (middle), and 2019 (bottom). Dependence patterns tend to vary between seasons with
some months exhibiting transitional regimes.
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