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ABSTRACT

Studying transient phenomena, such as individual pulses from pulsars, has garnered considerable

attention in the era of astronomical big data. Of specific interest to this study are Rotating Radio

Transients (RRATs), nulling, and intermittent pulsars. This study introduces a new algorithm named

LuNfit, tailored to correct the selection biases originating from the telescope and detection pipelines.

Ultimately LuNfit estimates the intrinsic luminosity distribution and nulling fraction of the single

pulses emitted by pulsars. LuNfit relies on Bayesian nested sampling so that the parameter space can

be fully explored. Bayesian nested sampling also provides the additional benefit of simplifying model

comparisons through the Bayes ratio. The robustness of LuNfit is shown through simulations and

applying LuNfit onto pulsars with known nulling fractions. LuNfit is then applied to three RRATs,

J0012+5431, J1538+1523, and J2355+1523, extracting their intrinsic luminosity distribution and burst

rates. We find that their nulling fraction is 0.4(2), 0.749(5) and 0.995(2) respectively. We further find

that a log-normal distribution likely describes the single pulse luminosity distribution of J0012+5431

and J1538+1523, while the Bayes ratio for J2355+1523 slightly favors an exponential distribution. We

show the conventional method of correcting selection effects by “scaling up” the missed fraction of radio

transients can be unreliable when the mean luminosity of the source is faint relative to the telescope

sensitivity. Finally, we discuss the limitations of the current implementation of LuNfit while also

delving into potential enhancements that would enable LuNfit to be applied to sources with complex

pulse morphologies.

Keywords: pulsars

1. INTRODUCTION

Neutron stars result from the remnants of massive stars after they have undergone core-collapse supernova. Rapid

rotation of neutron stars likely emerges due to angular momentum conservation following stellar collapse. The
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rapid rotation combined with beamed radiation creates a lighthouse effect and results in pulsed signals at obser-

vatories on Earth. The observed emission exhibits a frequency-dependent delay due to cold-plasma dispersion,

imparted onto the radio signal as it traverses the interstellar medium. The dispersion is dependent on the in-

tegrated line-of-sight electron density and is inversely proportional to the square of the observing frequency (i.e.

∆t = 1
2.41×10−4 s DM pc/cm3 ((ν1/GHz)2 − (ν2/GHz)2) (Lorimer & Kramer 2004) where ∆t is the time delay and ν1

and ν2 are the upper and lower observing frequencies. DM is the dispersion measure). The conventional technique

to detect pulsars is to first correct for the dispersion and then fold the observation on the pulsar period to build

signal-to-noise (S/N). Therefore, pulsar detection sensitivity can be significantly boosted by longer integration times.

Pulsar survey strategies must strike a balance between integration time and sky coverage when using conventional

single-dish radio telescopes (Manchester et al. 2001; Cordes et al. 2006; Stovall et al. 2014). Often, but not always, this

leads to surveys focussing on the Galactic plane. A counter-example is the Green Bank North Celestial Cap survey

which surveyed the whole northern hemisphere (Stovall et al. 2014). Because of the large sky coverage, the survey

only dwelled for 120 s per pointing. The contemporary pulsar astronomy landscape operates in a distinctly different

parameter space such as the Canadian Hydrogen Intensity Mapping Experiment (CHIME) and the Low-Frequency

Array (LOFAR) (CHIME/FRB Collaboration et al. 2018; Sanidas et al. 2019). Their wide field of view allows for

simultaneous significant sky coverage and long dwell times. With these new capabilities, intermittent pulsars, nulling

pulsars, and RRATs become easier to find and characterize.

It has long been known that some pulsars do not emit on every rotation (Backer 1970). This phenomenon is called

nulling, and up until recently, the population of known nulling pulsars has been small compared to the total pulsar

population, likely due to the aforementioned survey methods (Konar & Deka 2019). With access to instruments with

wide fields of view, this may be changing. For example, Ng et al. (2020) showed that even long-known pulsars thought

to be persistent emitters could exhibit nulling behavior. It is important to understand the nulling phenomenon as

this can lead to better models for pulsar emission mechanisms (van Leeuwen et al. 2003). On the extreme end of the

nulling pulsar spectrum are RRATs, highly intermittent pulsars that can only be detected via their single pulses. As a

large portion of the pulsar population likely consists of RRATs (McLaughlin et al. 2006; Keane & McLaughlin 2011),

understanding their intrinsic characteristics is vital to understanding the pulsar population. However, RRATs can not

be folded to increase S/N and thus may require long observations to detect appreciable amounts of single pulses.

A critical aspect of population analysis lacking in the current literature is probing the intrinsic luminosity function

and burst rate of highly intermittent sources using only the detected pulsar single pulses. Many studies of RRATs

only describe an observed burst rate (e.g. Karako-Argaman et al. 2015; Deneva et al. 2016; Good et al. 2021; Dong

et al. 2023) rather than correcting for selection effects to probe the intrinsic values. There have been attempts to probe

the intrinsic parameters for nulling pulsars (Ritchings 1976; Kaplan et al. 2018; Anumarlapudi et al. 2023) and also

another similar class of astrophysical phenomena, repeating Fast Radio Bursts, luminous extragalactic radio bursts

with similar burst characteristics to RRATs (Li et al. 2021). The most established method described in Ritchings

(1976) relies on forming histogram bins and calculating ∆ = ON−NF×OFF for each histogram bin, where ON and

OFF are the histogram bins of the integrated intensities during the on-pulse window and off-pulse window respectively

and NF is the nulling fraction. One would then minimize |∆| by changing NF to find the preferred nulling fraction.

However, this method and the Gaussian mixture model in Kaplan et al. (2018) operate on the folded time series of

the pulsar observations and necessarily requires two conditions: the first of these conditions is a period and a correctly

identified pulse arrival phase. This is not always possible with RRATs due to their extreme sporadicity (i.e. Dong

et al. 2023). The second requirement is recording the full-time series for the observation, even during times of no

emission. This is problematic for some contemporary commensal instruments such as CHIME/FRB (CHIME/FRB

Collaboration et al. 2018), which only save data segments around detected single pulses. While the method described

in Li et al. (2021) looks at only single pulses, they account for the missed pulses by “scaling up” by the measure

detection fraction. However, we show in section 5.1 that this method can be unreliable, especially when the source

has emitted many bursts below the observing telescope detection threshold. In an attempt to avoid the limitations of

earlier works, we implement a new method, Luminosity and N fit (LuNfit), that utilizes Bayesian inference using the

nested sampling algorithm (Skilling 2004) to constrain the intrinsic single pulse luminosity distribution and the burst

rates simultaneously. LuNfit is designed to remove any systematic biases in the single pulse luminosity distribution

and burst rate by empirically measuring the selection effects of the telescope and detection pipeline.

This study is presented in the following way. Section 2 describes the CHIME instrument and the implementation

of LuNfit. We discuss the likelihood and derivation of LuNfit. Section 2.1 described the underlying luminosity
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Table 1.

CHIME/Pulsar

Receiver noise temperature ∼50K

Frequency Range 400-800MHz

Number of beams 10 (Tracking)

Beam width (FWHM) 30’(400MHz)-15’(800MHz)

Time resolution 327.68µs

Search Frequency Resolution 390.625kHz

Coherent Dedispersion Yes

distributions used. Section 2.2 details the priors used in LuNfit. Section 2.3 addresses the issue of discrete parameters.

Section 2.4 details the CHIME/Pulsar backend, the detection of pulses, and how single pulse characteristics are

retrieved following the detection of pulses. Section 2.5 details the process of injecting simulated pulses into the

CHIME/Pulsar detection pipeline to find the selection biases of the telescope. Section 3 details the simulations we

performed to show the efficacy and robustness of LuNfit. Section 3.1 compares LuNfit results with the known nulling

fractions of two pulsars, B1905+39 and J2044+4614. Section 3.2 describes the conversion to flux units. Section

4 applies LuNfit to three RRATs, J0012+54, J1528+2345, and J2355+1523. We present their intrinsic luminosity

distributions and burst rates. Finally, Section 5 compares LuNfit and conventional methods of correcting selection

biases and discusses LuNfit’s potential future applications to pulsars, RRATs, and FRBs.

2. METHODS

CHIME is a commensal transit radio telescope situated in British Columbia, Canada. It comprises three

backend instruments: CHIME/cosmology, CHIME/FRB, and CHIME/Pulsar (CHIME/FRB Collaboration et al.

2018; CHIME/Pulsar Collaboration et al. 2021; CHIME Collaboration et al. 2022). Our study only utilizes the

CHIME/Pulsar backend, which processes up to 10 simultaneous steerable tracking beams as sources transit the CHIME

sky. The properties of CHIME/Pulsar are provided in Table 1. The transit nature of the CHIME telescope allows it

to cover the whole northern sky every day, and while each observation is only around ∼ 10 minutes CHIME/Pulsar

can achieve daily cadence on astrophysical sources. Every day CHIME/Pulsar can observe ∼ 500 individual sources.

For this study, CHIME/Pulsar collects high-time resolution spectra in the form of Sigproc1 style filterbank data.

CHIME’s sensitivity changes relative to the zenith angle of the source; therefore, to maintain consistency within each

observation, we use only the data in which pulses from the nominal pulsar position would be visible through the entire

frequency range.

For this study, we are focussed on RRATs, which are only detectable via single pulses. A Bernoulli process is

sequence of binary random variables i.e. they take only values of 0 or 1. Each pulse from an RRAT can be described

as one of these binary variables where 0 represents non-detection, and 1 represents detection. While RRAT pulses

have not been modelled as Bernoulli process previously, RRATs are often assumed to follow a Poisson distribution,

the extreme case for the Bernoulli process (e.g. Chen et al. 2022; McKenna et al. 2024). During any observation of a

RRAT, any radio telescope will detect only a portion of the emitted pulses due to limited sensitivity. This is called

the “selection’ of the telescope. Therefore, Assuming the selection effects of the telescope are understood, we forward

model the intrinsic luminosity function of the RRAT. For N pulses emitted by a RRAT, the likelihood is a series of

Bernoulli trials for each pulse emitted. This can be written as

L(N,ϕ1...ϕN ) ∝
N∏
i=1

ϕd
i (1− ϕi)

1−d (1)

where L is the likelihood, i is the pulse number, N is the total (but unknown) number of pulses emitted by the RRAT,

ϕi is the probability of detecting pulse i and d = 1 if a detection was made, or d = 0 otherwise. Removing the terms

1 https://sigproc.sourceforge.net/
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in the product that go to one (e.g., when d = 1, then the terms (1− ϕi)
1−1 = 1), we can rewrite this as

L(N,ϕ1...ϕN ) ∝
( n∏

i=1

ϕi

)( N∏
j=n+1

(1− ϕj)

)
(2)

where n is the number of detected pulses. The first product results from all the pulses detected by the telescope,

and the second product results from all those not detected by the telescope. In practice, ϕi depends on the pulse’s

brightness and the intrinsic luminosity function of the RRAT. Therefore,

ϕi(Si,det, α⃗) = P (det|Si,det)

∫
P (Si,det|ST , σd)P (ST |α⃗)dST (3)

where Si,det is the detected brightness of pulse i. ST is the true intrinsic brightness as emitted by the RRAT. We

emphasize the difference between ST and Sdet where Sdet is the detected brightness and comes with the errors due to the

stochastic background noise of the telescope. ST is the intrinsic brightness of the pulse emitted from the source without

any noise applied to it. The latter, even if inherently low, can be amplified by random noise fluctuations, rendering it

detectable and vice-versa. Expressed differently, Sdet = ST+Sσ where Sσ is the stochastic noise of the data. Depending

on the chosen Si,det cutoff this effect can be non-negligible. Figure 2 shows that this effect is most apparent at the

turn-off locations, near detection fractions of 0 and 1. P (det|Si,det) encodes all the selection biases of the telescope

and detection pipeline. P (ST |α⃗) is the probability density of the intrinsic luminosity distribution of the RRAT where

α⃗ is a vector containing the parameters of the luminosity model, that is, α⃗ = [µ, σ], or α⃗ = [k] for a log-normal

or exponential distribution, respectively. This is discussed in further in section 2.1. P (Si,det|ST , σd) designates the

Gaussian detection error with σd being the known and fixed error. σd is measured empirically by performing injections,

as discussed in Section 2.5. Due to ST being an unmeasurable parameter, we marginalize over it. A computational

efficiency boost is achieved by realizing that P (Si,det|ST , σd) is a Gaussian and P (Sdet|ST , σd) = P (Sdet − ST |0, σd)

allowing the right-hand integral of equation 3 to be written as a convolution.

For pulses that aren’t detected, we assume that the probability of non-detection is the same for every pulse. That

is,

1− ϕj(α⃗) = 1−
∫

P (det|ST )P (ST |α⃗)dST . (4)

This assumption must be made as there is no way to know the brightness of a pulse that is not detected. Finally,

as the pulses are assumed to be independent, the order does not matter. The independence assumption does not

consider refractive scintillation or the clustering of RRAT pulses. Refractive scintillation can change the overall shape

of P (ST |α⃗) and occurs on timescales of weeks (Narayan 1992). Therefore, when applying LuNfit to data that spans

longer than a few weeks, we point out that the fitted luminosity function will be the intrinsic luminosity function

modulated by refractive scintillation. However, carefully accounting for the effects of refractive scintillation with

different classes of luminosity functions is out of the scope of this study. We note that in this study, the timescales

for observations in Section 4 span months and therefore, the luminosity function that has been fit is likely modulated

by refractive scintillation. We do not make any attempts to remove these effects. Despite this, as seen in Section 4, it

is unlikely that the shape of the luminosity function is much different from a log-normal or exponential distribution.

Any clustering of RRAT pulses should not cause a problem for LuNfit as there is no dependence on each pulse’s arrival

time. We assume that all pulses from each cluster conform to a global luminosity distribution and do not consider the

case where each cluster possesses an independent luminosity distribution. Thus, the likelihood is multiplied by
(
N
n

)
and becomes

L(α⃗, N |n, Sdet) =

(
N

n

)(
1−

∫
P (det|ST )P (ST |α⃗)dST

)N−n n∏
i=1

P (det|Si,det)

∫
P (Si,det|ST , σd)P (ST |α⃗)dST . (5)

For this analysis, we take a Bayesian approach utilizing nested sampling (Skilling 2004) through the dynesty package

(Speagle 2020)2. Bayesian nested sampling is a method which breaks up the posterior into many nested “slices”,

assigns weights and volumes to each slice and recombines it again to form the posterior and evidence. It is a distinct

2 https://dynesty.readthedocs.io/en/stable/
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Table 2. Prior types and parameters

Parameter Prior Type p1 p2

µ Gaussian 0 4

σ Inverse Gamma 1.938 1

k Inverse Gamma 1 1

N Uniform n Nrot = (Tobs/Period)

way to approach Bayesian analysis compared to Markov Chain Monte Carlo and possesses multiple benefits. For

example, nested sampling can sample the whole parameter space and avoid problems with multimodal distributions.

By extension, obtaining the model evidence (marginal likelihood) for model comparisons through the Bayes ratio is

trivial. Both these features are crucial for LuNfit.

We use the detected signal to noise (S/N) for Si,det. The strict definitions are given in section 2.4. Nevertheless,

other brightness metrics, like detected flux density or fluence, can be employed instead. Details of changing to flux

density units are given in section 3.2.

2.1. Underlying Luminosity Distributions

One caveat in this formulation is the luminosity distribution chosen to describe the detected single pulses, where

choosing the incorrect model can significantly alter the luminosity and nulling characteristics of the source in question.

However, as we employ a Bayesian nested sampling approach, we use the Bayes ratio to differentiate between different

models. In section 3, we demonstrate with simulations that the Bayes ratio is robust in general. For this reason, we

have selected two models to describe pulsar emission characteristics. The first model is the log-normal distribution

parameterized by the location, µ, and scale, σ, described by

P (ST |µ, σ) =
1

STσ
√
2π

exp

(
− (lnST − µ)2

2σ2

)
. (6)

The second model is the exponential distribution parameterized by k, given by:

P (ST |k) = k exp(−kST ). (7)

We chose these two models because they have demonstrated their ability to explain various neutron star single pulse

emission phenomena, such as RRAT pulses (Burke-Spolaor et al. 2011; Mickaliger et al. 2018; Meyers et al. 2018, 2019;

Good et al. 2021; Dong et al. 2023), giant pulses (Bera & Chengalur 2019; Karuppusamy et al. 2010; McKee et al.

2019), and regular single pulses (Burke-Spolaor et al. 2012; Liu et al. 2015; Bilous et al. 2022). Repeating FRBs have

shown double-peaked Gaussian distributions which could also be considered in future studies (Li et al. 2021) .

2.2. Priors

We assign general priors for both the luminosity function parameters and the number of pulses. These priors are

given in Table 2. Unlike Markov Chain Monte Carlo methods that do not necessarily require normalized priors, we

need the Bayes Ratio for model comparisons and thus need robust evidence estimates. The priors are chosen according

to expected behavior. However, they do not restrict unexpected behavior. To achieve this, all priors do not have strict

limits unless those limits are unphysical, such as in the case of N . All chosen values on the priors have been chosen

based on simulations of pulsars for CHIME, where the underlying unit is S/N. Users of LuNfit should adjust these

values if they are using flux, fluence, or other brightness metrics.

For µ, we choose a Gaussian prior described by the following equation

P (µ) =
1

p2
√
2π

exp

(
− (µ− p1)

2

2p22

)
(8)

such that the prior contains ∼ 68% of the probability mass between −4 and 4. This ensures little bias towards

particularly faint or bright pulsars. Note that µ has units of ln(S/N), such that -4 corresponds with S/N≈0.02 and

4 corresponds to S/N≈54.60. Therefore, we allow a wide range of median values. If the user knows that the pulsar

of interest is particularly bright/faint relative to the telescope sensitivity, the prior on µ should be adjusted to reflect

that prior knowledge.
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For σ and k we choose an inverse gamma distribution as the prior. They are described by

P (α) =
pp1

2

Γ(p1)
(1/α)p1+1 exp(p2/α) (9)

These priors ensure support for σ and k across the viable parameter range between 0 and ∞. However, we choose p1
and p2 such that for σ, ∼90% of the probability mass is between 0 and 2, and for k, ∼90% of the probability mass is

between 0 and 10. The ranges represent the most likely parameter space for detectable pulsars. Since σ is unitless, we

believe that the priors chosen for σ should be near universal for all pulsars. We note that the prior on σ did not need

to be altered in any set of simulated parameters. Although k is also unitless, k determines the mean of an exponential

distribution. Like µ, the chosen prior for k can differ if the pulsar is particularly bright/faint relative to the telescope

sensitivity.

The prior for N is determined by the number of detections made and the amount of time we have observed the

source. We assign a uniform distribution between n and Nrot = ⌊Tobs/P ⌋ where ⌊⌋ is the floor function, Tobs is the

amount of observation time, and P is the pulsar period. If P is unknown, we set Nrot = ⌊Tobs/1ms⌋.

2.3. Discrete N

Discrete parameters are non-trivial to implement in Bayesian nested sampling. As N is necessarily discrete, we im-

plement a pragmatic approach approximating its discreteness. Dynesty draws samples from the inverse cumulative dis-

tribution function (CDF). Therefore, to ensure discrete values of N are drawn, we use the scipy.stats.randint.ppf3

function. This applies the following CDF:

CDF =
⌊N⌋ − n+ 1

Nrot − n
(10)

While this implementation may cause errors if n and N are O(1), in the case of this study, both n and N and their

associated errors are much greater than 1. Therefore, we do not expect significant effects on the inference of N.

2.4. CHIME and detection of pulses

Here, we describe how we obtain Si,det for each of the detected pulses. To identify single pulses from known

RRATs and pulsars, we first search the CHIME/Pulsar filterbank data using the CHIME/Pulsar Single-pulse PIPEline

(CHIPSPIPE) (Dong et al. 2023). Once we detect a pulse, we extract 2 seconds of data around the Time of Arrival

(TOA) and downsample it by a factor of 3, achieving a time resolution of approximately 1 ms. Next, we mask the

channels contaminated by Radio Frequency Interference (RFI), dedisperse the data to the nominal DM of the pulsar,

and average the data in frequency, producing a single time series per pulse. To remove the underlying baseline, we

remove the pulse from the data and fit polynomials up to 10th order. For each fit, we calculate a reduced χ2 value

and accept the fit where the reduced χ2 is closest to 1. This process is important as the CHIME/Pulsar baseline can

be highly variable. Once the baseline is fit, we subtract it from the frequency collapsed time series, and the remaining

background noise is described by the standard deviation of Xn, the baseline-subtracted, pulse removed time series

(σnoise).

To determine the amplitude of the pulse, we subtract the fitted baseline from the original 2-second chunk of data.

Then, we perform a maximum likelihood fit of a Gaussian pulse given by the equation:

F (X) = A exp

(
−1

2

(X −Xloc)
2

W 2

)
+B (11)

where Xloc represents the location of the Gaussian peak, X is the frequency collapsed time series, A is the peak

amplitude, W is the Gaussian width, and B accounts for any remaining DC offset in the time series. Throughout

our study, unless otherwise specified, we use S/N = Sdet =
A

σnoise
. We perform the Gaussian pulse fit on each pulse

detected by CHIPSPIPE. After fitting, we discard all Sdet < 2 to ensure that every pulse is a good fit to the Gaussian.

This fiducial cut-off is also reflected in the selection effects that are measured.

3 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.randint.html
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Figure 1. The width effects of CHIPSPIPE. The plot shows the probability of retrieval for different Sdet at varying widths. For
regular slow pulsars, the Gaussian widths are generally greater than 10ms. Thus, they are not affected much by CHIPSPIPE
selection effects. For sources that exhibit high levels of pulse-to-pulse width variability, one needs to model the width along
with Sdet in LuNfit. For the current iteration of LuNfit, we only chose pulsars with Gaussian widths larger than 5 ms to avoid
the sensitivity drop-off.
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Figure 2. The selection effects of CHIPSPIPE. This plot shows the probability of detection given Si,det or ST . The left shows
the fitted P (det|ST ) compared to the forward modeled P (det|Si,det). The right shows how the forward model P (det|Si,det)
compared to the measured values. This study uses the LuNfit implementation. We show the full selection effects here, but when
performing LuNfit, we cut off the selection at Si,det = 2 to ensure robust pulses and retrieval probability measurements. The
dotted line indicates this cut. The blue line is a best-fit polynomial for P (det|ST ).

2.5. Injections

In this section, we describe the process of obtaining P (det|Si,det), P (det|ST ), and P (Si,det|ST , σd), with the primary

goal of empirically determining the retrieval probability (or detection fraction) at different ST and Si,det. These values

are obtained empirically since the complexity of CHIME/Pulsar and CHIPSPIPE makes it impossible to derive them

analytically. We inject simulated Gaussian pulses into real CHIME/Pulsar data. The simulated pulses are broadband

with flat spectral indices and widths equal to the mean of the observed widths of the source in question. CHIPSPIPE
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Figure 3. The detected CHIPSPIPE single pulse search S/N vs the injected ST value. Not all injected pulses are detected for
detections of ST <∼ 3. Thus, the CHIPSPIPE S/N will be biased high as higher S/N pulses are being preferentially detected.
This causes the flattening of the dependence at low ST .

is not sensitive to width changes for regular slow pulsars or RRATs, so injecting with one width per pulsar is sufficient.

Figure 1 shows the effects of width on pulse retrieval for CHIPSPIPE. We find that as long as most pulse widths

remain above 10 ms then the width effect of CHIPSPIPE is minimal. Discussions of situations where one must

include width effects in the likelihood are provided in more detail in section 5.3. Since there are hundreds of hours

of CHIME/Pulsar observations for each source spread across hundreds of observations, we spread out the injections

over multiple observations to perform about 20,000 injections per pulsar. Spreading the injections across multiple

observation epochs allows for an accurate description of day-to-day RFI variations.

For a given injection we find the amplitude of the injected pulse in the following way. We subtract the baseline by

fitting a polynomial around each injection TOA, and we measure σnoise in the same way that is described in section

2.4. One can only control ST and not Sdet when injecting. Thus, we inject the desired ST based on the σnoise. For

each ST , we inject multiple copies at different TOAs in different observation files. The injected “observations” are

saved and processed using the same pipelines for real pulsar data. An example of the recovery rate is shown in Figure

2, and binomial errors are assumed for each data point

(√
p(1−p)

m

)
, where p is the measured recovery fraction and

m is the total number of injections at a specific ST . The low ST values observed here are due to a matter of S/N

definition, and Figure 3 illustrates the conversion between CHIPSPIPE/PRESTO detection significance and ST .

We assume that P (Si,det|ST , σd) is Gaussian, and as ST is a controlled parameter, σd is the only unknown. To

measure σd, we fit each injected pulse as described in section 2.4. Therefore for each group of injected ST we obtain

a group of detected Si,det. We then take the standard deviation of the retrieved Si,det for each of the three brightest

values of ST to use for σd. Since P (Si,det|ST , σd) is dominated by the stochastic noise in the data, we assume σd is

constant across all injected ST .

Two disparate methods are provided to measure P (det|Si,det). The first approach involves measuring Si,det directly

from the injected “observations”. For each injected pulse, we measure Si,det by the method outlined in section 2.4.

We bin them and calculate the recovery fraction at each bin by comparing them with the detected injections. This

approach is the most accurate but may not be feasible for systems like CHIME/FRB, where one cannot go back

through the data stream to calculate Sdet for non-detections. However, we injected into filterbank data, and even

non-detections can be fitted as we know the data segment where the injections were placed. This is shown by red

circles in the right panel of Figure 2.
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In cases where the first approach is not feasible, a second approach is provided, where one can forward model based

on P (Si,det|ST , σd) and P (det|ST ). It is found that for CHIPSPIPE, P (det|Si,det) can be well fit by a piecewise

nth-order polynomial.

P (det|Sdet) =


0 Sd < Sd0

c0 + c1x1 + c2x2
2...+ cnx

n
n Sd0 < Sd < Sd1

1 Sd > Sd1

(12)

where Sd0 is determined by when P (det|Sdet) first reaches 0 and Sd1 is when P (det|Sdet) first reaches 1, enforcing the

function to be continuous.

P (det|ST ) =

∫
P (det|Sdet)P (Sdet|ST )dSdet (13)

Equation 13 shows the relationship between the measured probabilities, P (det|ST ), and the derived property

P (det|Sdet). Forward modeling can be done by using the user’s preferred fitting method. In this case, we show a

maximum likelihood fit for P (det|Sdet) in Figure 2. We perform many maximum likelihood fits with the polynomials

of equation 12 ascending from first order to tenth order. The polynomial with the closest reduced χ2
r to 1 is accepted.

Therefore, the polynomial order can change for each set of injections depending on the best fit.

3. SIMULATIONS

To assess the limitations of LuNfit, we simulate various sets of pulsars with different luminosity parameters and

numbers of detected pulses. For each set of luminosity parameters, we simulate a pulse, add Gaussian noise based on

the measured P (Si,det|ST , σd), and then determine whether it will be detected according to the measured P (det|Si,det).

This process is repeated until the desired number of pulses is obtained. We then employ LuNfit to characterize each

set of simulations. In total, 20 different sets of parameters are simulated for each luminosity distribution. We simulate

one realization for each set of α⃗ parameters for the following scenarios:

1. 150 detections, which represents the minimum required for a reliable fit for LuNfit.

2. 500 detections, a reasonable number typically observed for the most prolific RRATs discovered by CHIME (Dong

et al. 2023).

3. 1000 detections, approximately the number of detections made by the Five-hundred-meter Aperture Spherical

Telescope (FAST) for the most prolific FRBs (Zhou et al. 2022; Li et al. 2022; Zhang et al. 2023).

4. 5000 detections, The best case scenario that can be achieved for the most prolific RRATs.

These simulation results are presented in Appendix Figure 10 and 11. Note that all simulations of the log-normal

luminosity model were made with σ = 0.5. In summary, we recover the correct parameters in almost all situations,

with the exponential model requiring fewer detections for the same error region compared to the log-normal model.

This is due to the fact that the log-normal distribution is characterized by two parameters (as opposed to one for

an exponential distribution) which allows more flexibility when modelling the data. The recovered parameters are

generally more accurate when there are more detected pulses and (or) the median luminosity is higher. The true N

will be lower for a higher median luminosity, and LuNfit will not need to account for as many missed pulses, leading to

smaller error regions. Conversely, for lower median luminosities, LuNfit accounts for more missed bursts, and the error

regions are larger. This characteristic is universal across luminosity models. These simulations allow us to understand

the limitations of LuNfit and provide valuable insights into its performance under various scenarios.

We compare the exponential and log-normal luminosity distributions via the Bayes ratio to see if LuNFit can

correctly identify the correct true underlying distribution. We simulate four scenarios for both the log-normal and

exponential distributions: 150, 500, 1,000, and 5,000 detections (that is, the true underlying distribution is log-normal

or exponential). We simulate 20 parameter sets for each scenario. We vary µ from -0.5 to 1 for the log-normal model

while keeping σ = 0.5. For the exponential distribution, we vary k from 0.5 to 2. Appendix Figures 12 and 13 show

the Bayes ratios between the log-normal and exponential models for all of our simulations. LuNfit can retrieve the
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Figure 4. (a) LuNfit for B1905+39, as expected, the nulling fraction peaks at ∼ 0. The shaded region is forbidden due to
negative nulling fractions. We show this region to demonstrate that even when physical constraints are not set, LuNfit converges
on reasonable values. (b) LuNfit for B1905+39 again, with the physical limits for nulling fraction. (c) LuNfit for J2044+4614.
The predicted nulling fraction according to the method outlined in Ritchings (1976) is ∼0.41. This is shown by the red dashed
line. The red-shaded region shows the allowed nulling fractions provided by Ng et al. (2020). The black dashed lines show the
68th percentile, 95th percentile confidence intervals and the median.

correct luminosity distribution for most cases. In general, when a pulsar follows an exponential distribution, LuNfit

can always choose the correct model. On the other hand, with only 150 detections, the Bayes ratio is always low for

the log-normal distribution. The Bayes ratio for log-normal distributions increases as more detections are made or µ

increases. The reason for the µ dependence is that log-normal distributions approach exponential distributions for low

values of µ. Therefore, it becomes more difficult to parse the two distributions apart.

3.1. Validation on known pulsars
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We validate our method by performing LuNfit on two pulsars with known nulling fractions, where the nulling fraction

is given by NF = 1 − N
Nrot

and Nrot =
Tobs

P is the total number of rotations that the observation time allows. This

is shown in Figure 4. B1905+39 (P=1.236 s) is a bright, slow isolated pulsar and not known to exhibit any nulling.

Indeed, we find no evidence of nulling in the LuNfit results given in Figure 4. We used one CHIME/Pulsar observation

on MJD 59161, totaling 871 s, and detected 473 pulses. When LuNfit is applied to this pulsar, it accurately indicates

a nulling fraction of −0.02(5), consistent with 0 and confirming its non-nulling nature. In this calculation, we have

lifted the prior on N and thus allow NF < 0 to show the efficacy of LuNfit. This is shown in Figure 4 (a) and (b).

In Figure 4 (a), we remove the constraints on the prior for N to show that LuNfit converges on the correct value even

when not constrained. The constraints on N are then reapplied in Figure 4 (b).

J2044+4614 (P=1.393 s), on the other hand, is a known nulling pulsar, and its nulling properties were previously

discovered in Ng et al. (2020). We used 39 CHIME/Pulsar observations from MJD 58808 to MJD 58579 and detected

585 bursts with 34130 s of observations. We show the LuNfit results in Figure 4. To compare our results with

previously documented methods, we use the nulling measurement method discussed in Ritchings (1976). The LuNfit

derived nulling fraction is 0.4(2) and agrees with the Ritchings (1976) method value of ∼ 0.41. The two methods are

shown in Figure 4 (c). In addition, the nulling fraction as measured by Ng et al. (2020) is >9%, consistent with our

findings and shown as the shaded region in Figure 4 (c).

3.2. Conversion to flux density units

Conversion from the S/N based Sdet to Jy-based units can be done by applying the single pulse radiometer equation

(e.g Good et al. 2021),

Speak = S/N
Tsys

G
√
∆ν∆t np

(14)

to each detection. Then one would repeat the analysis detailed in section 2 with Speak in place of Sdet, being careful

to apply the same radiometer conversion factor to both the P (det|Si,det) and P (Si,det|ST , σd). We show the results

of this in Table 3. Only the luminosity function is altered in this change of variables, and thus, the result for N does

not change in Table 3. We caution, however, that due to CHIME/Pulsar’s poor flux density calibration issues (Good

et al. 2021; Dong et al. 2023), these values should only be taken as a lower limit.

An alternative method for converting the flux is to transform the resultant distribution. We can directly transform

the units of the luminosity distribution to flux density by

P (S/N)dS/N = P (Speak)dSpeak. (15)

Where P (S/N) is the probability distribution of the S/N, and P (Speak) is the probability distribution of the peak flux

density. Rearranging and applying equation 14 gives

P (Speak) = P (S/N)

(
Tsys

G
√
∆ν∆t np

)−1

. (16)

4. RESULTS

We present our findings concerning the constrained luminosity function, the intrinsic nulling fractions, and the

total pulse number for three RRATs discovered in Karako-Argaman et al. (2015) and Dong et al. (2023). They are

J0012+5431, J1538+2345 and J2355+1523. Detailed results are summarized in Table 3, while visual representations

of the dynesty nested sampling fits can be found in Figures 5, 6, and 7.

Upon examination, a notable trend emerges; the fitted exponential distribution consistently exhibits a higher median

ST than the log-normal distribution, encompassing all pulsars outlined in Table 3. This distinction consequently results

in a diminished total pulse count, N, for the exponential distribution.

J0012+5431 is a RRAT first discovered in Dong et al. (2023). As a result, we had an abundant amount of

CHIME/Pulsar data available for this analysis. The LuNfit results for J0012+5431 are presented in Figure 5. While it

initially appears to be extremely sporadic (∼ 1.6 pulses per hour), LuNfit shows that this source is actually very faint

and potentially less sporadic than initially thought. Consequently, CHIME/Pulsar appears to be detecting only the

most intensely luminous tail of the distribution. We folded multiple observations to find signs of continuous emission

without success. However, this is in line with expectations, considering the source’s faintness, prolonged rotational

period, and the brevity of CHIME/Pulsar observation windows. The long rotational period dictates that within the
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Table 3. Table of results for J0012+5431, J1538+2345 and J2355+1523. While both exponential and log-normal fit parameters
are provided, Two of the three RRATs favor the log-normal model. Whereas J0012+5431 only weakly favors the log-normal
distribution, J1538+2345 is has a strong preference for the log-normal distribution. The only RRAT to favor the exponential
model is J2355+1523, but it is a weak Bayes ratio with large errors. In either case, both distributions for J2355+1523 strongly
suggest a high nulling fraction. All the uncertainties provided are the 68th percentile confidence intervals.

Pulsar J0012+5431 J1538+2345 J2355+1523

# of detections 194 6272 453

µ -0.8(2) 1.48(3) 0.1(3)

σ 0.62(5) 1.01(2) 0.8(1)

Nlogn 88000(36000) 9400(200) 2300(1900)

k 2.1(1) 0.141(2) 0.62(3)

Nexp 39032(8700) 8910(70) 2010(160)

µflux -4.0(2) -1.94(3) -3.1(6)

σflux 0.62(5) 1.01(2) 0.8(1)

kflux 51(5) 4.31(6) 16(1)

Observation Time (s) 442410 129196 352933

Period (s) 3.025 3.449 0.913

Nulling Fraction 0.4(2) 0.749(5) 0.995(3)

lnZln − lnZexp 0.7(3) 299.3(4) -0.6(5)

brief ∼ 10-minutes of a CHIME/Pulsar observation, accumulating a substantial number of rotations to bolster the

signal-to-noise ratio significantly is unattainable. This suggests that follow-up with a more sensitive instrument with

longer integration times such as FAST or the GBT could confirm our findings. With the Bayes Ratio only slightly

leaning in favor of the log-normal model, we present LuNfit’s results for both the log-normal and exponential models

in Figure 5.

J1538+2345 is a RRAT first discovered in Karako-Argaman et al. (2015). For this RRAT, LuNfit heavily favors the

log-normal distribution. Thus, only that is provided in the LuNfit results in Figure 6. This source is extremely prolific

for a RRAT with a nulling fraction of 0.749(5). As many telescopes have observed this source, we compare our results to

that of the observational burst rates reported by the Low Frequency Array (LOFAR) (Karako-Argaman et al. 2015),

the Green Bank Telescope (GBT) (Karako-Argaman et al. 2015) and the Five Hundred Meter Aperture Synthesis

Telescope (FAST) (Lu et al. 2019) who reported observational nulling fractions of 0.94, 0.93, and 0.71 respectively.

The FAST observations align the best with our selection corrected nulling fraction of 0.749(5). This is likely due to the

extreme sensitivity of FAST, enabling it to probe the intrinsic properties of J1538+2345. We obtained a much higher

number of observations than Lu et al. (2019). Therefore, we likely have a more accurate long-term average. The slight

discrepancy between the LuNfit results and the FAST results is likely due to the length of observations. The study

by Lu et al. (2019) was conducted with only four observations, each lasting 30 minutes. The initial two observations

yielded significantly elevated levels of emitted pulses from J1538+2345, which likely contributed to the lower nulling

fractions reported by FAST.

J2355+1523 is a RRAT first discovered in Dong et al. (2023). Among the RRATs in that study, it was one of the

most prolific sources identified, making it an ideal candidate for LuNfit. The LuNfit results are shown in Figure 7.

We find that the Bayes ratio marginally favors the exponential distribution. Thus, we provide LuNfit results for both

models in Figure 7. In either case, the source is bright, and the predicted nulling fraction is close to 1.

5. DISCUSSION

We have shown through this study that LuNfit is an effective tool for probing the intrinsic luminosity function and

burst rate of RRATs. This has been validated through simulation and comparison with pulsars of known nulling

fractions. We then applied LuNfit to three known RRATs, finding their intrinsic luminosity functions and nulling

fractions. Below, we provide a detailed discussion of LuNfit’s limitations, how it compares with other techniques, and
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Figure 5. Corner plot and fit for J0012+5431. The log of the Bayes ratio is 0.7(3). (a) and (b) show the log-normal model, and
(c) and (d) show the exponential model. Figures (a) and (b) show the LuNfit corner plots for J0012+5431. Figures (b) and (d)
show the LuNfit fits as applied to the detections of J0012+5431. The black dashed lines show the 68 percentile, 95 percentile,
and the median. We also provide the selection effect for this source as the blue line.

its use cases. Furthermore, we provide a discussion on how LuNfit can be adapted to be used for exotic radio transients

such as FRBs and radio magnetars.

5.1. Comparisons with other methods

The methods in the literature for correcting for the selection effects of single pulses involve estimating the true burst

count by scaling up by the lost fraction, e.g., for FRB121102 (Li et al. 2021). This method involves sampling the

selection effects like LuNfit. Then, they place each detection into a histogram bin. The histogram bin is divided by

the detection fraction to recover the “true count”. While this method can be effective when the telescope’s sensitivity

accurately captures the “turnover” of the luminosity function, it becomes unreliable in cases where the source is dim,

the telescope lacks sensitivity or a combination of both.
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Figure 6. Corner plot and fit for J1538+2345. As J1538+2345 highly prefers the log-normal model, only that is shown. The
left panel shows the log-normal constraints on J1538+2345, and the right panel shows the fit given the mean values. The black
dashed lines show the 68 percentile, 95 percentile, and the median.

Three factors contribute to the limitations of the Li et al. (2021) approach. Firstly, accurately measuring the selection

effects becomes extremely challenging when the detection fraction is low. As the detection fraction decreases, probing

the selection function requires exponentially more computing resources. To address this issue in our analysis, we cut

off our selection function at a minimum value of Sdet = 2. Secondly, even if the selection effects are well measured, in

parameter spaces where the detection fraction is effectively zero, the simple correction used in conventional methods

leads to nonsensical results, as the corrected values go to infinity. Lastly, the Li et al. (2021) correction requires binning

of the detected brightnesses, losing information in the process.

To illustrate the performance of LuNfit compared to the Li et al. (2021) method outlined, we provide a comparison

in Figure 8 and 9. For the Li et al. (2021) method, we correct each histogram bin by dividing by the detection fraction

of that bin. We perform a maximum likelihood fit to the scaled bin heights to get the luminosity function parameters.

We find that LuNfit exhibits much greater accuracy and precision compared to conventional methods in all cases,

especially when the true N is much higher than the detected n. In summary, LuNfit offers an improved approach

to handling selection effects accurately and can provide more reliable results, especially in cases where conventional

methods may struggle due to low detection fractions.

5.2. Use for intermittent pulsars and comparisons with other tools

LuNfit has the potential to measure the nulling fraction of many intermittent pulsars and RRATs using the vast

observation capabilities of CHIME. While the sample analyzed here is too small to say anything about the population,

it does show that there can exist a large range of nulling behavior between 0 and 1 nulling fractions. If raw filterbank

data were saved, then the Gaussian mixture model (Kaplan et al. 2018) or the Ritchings (1976) method also can

provide comparable results to LuNfit for measurements of the nulling fraction. However, LuNfit has four benefits

over the aforementioned tools. Firstly, LuNfit can provide the single pulse luminosity function of intermittent pulsars.

Although, arguably, the Gaussian mixture model can also provide a similar measure, this is not possible with the

method from Ritchings (1976). Secondly, as transient astronomy enters an era of big data, many observatories and

programs such as CHIME (CHIME/FRB Collaboration et al. 2018), UTMOST (Farah et al. 2019), CRAFT (Macquart

et al. 2010), MeerTRAP (Rajwade et al. 2022) are not saving all observations, rather, only the segments that contain

identified pulses by their real-time pipelines. This poses a problem for the Gaussian mixture model and the Ritchings

(1976) method as they require data measurements during non-detections. LuNfit avoids this problem by only requiring

a measurement of the selection function, which has already been implemented in some experiments like CHIME/FRB

(Merryfield et al. 2023). Thirdly, the Gaussian mixture method and the Ritchings (1976) method require identifying

the pulse phase where the pulsar emits. If the source is extremely intermittent, where there are only a few single

pulses per observation, a few pulses spread across many observations (i.e., some observations contain no detectable
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Figure 7. Fit and corner plots for J2355+1523. The log of the Bayes ratio is 2.7(4). (a) and (b) show the log-normal model,
while (c) and (d) show the exponential model. Figures (a) and (b) show the LuNfit corner plots for J2355+1523. Figures (b)
and (d) show the LuNfit fits as applied to the detections of J2355+1523. The black dashed lines show the 68 percentile, 95
percentile, and the median. We also provide the selection effect for this source as the blue line.

emission), or the source is very faint such that even when folded, no appreciable emission is seen, the analysis becomes

near impossible with both the Gaussian mixture method and the Ritchings (1976) method. This is not a problem for

LuNfit as long as enough single pulse detections were made on the higher luminosity tail of the distribution. This is

because LuNfit does not require pulse phase information, only whether or not detections were made. Finally, LuNfit

gives the ability to select between different physically driven models. In this study, we focused on the exponential and

log-normal distributions. However, other models, such as the double Gaussian, can be used. LuNfit is based on nested

sampling, so the Bayes ratio can always be used to select the preferred model.

5.3. Potential for repeating FRB studies and limitations
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bution with 1000 detections. The red dashed line is the identity line. The ”simple correction” is the method described in Li
et al. (2021), and a full description is provided in section 5.1. All simulations are performed with a true σ of 0.5.

We have outlined here the application of LuNfit for RRATs and intermittent slow pulsars. LuNfit can also constrain

other radio transients, such as repeating FRBs. Tools like the Gaussian mixture model (Kaplan et al. 2018) and the

Ritchings (1976) method can not be used on repeating FRBs due to the lack of strict periodicity. In our current

implementation of LuNfit, we do not include the width of the pulses in the analysis. This decision is based on the ob-

servation that for slow pulsars, the width variations are generally small enough to ignore their impact on the selection

function. However, this assumption may not hold for repeating FRBs that exhibit drastic width variability (Pleunis

et al. 2021). Therefore, LuNfit can only be applied to repeating FRBs that show minimal width variation. Future

iterations of LuNfit will incorporate width dependence to address this issue. As more parameters are introduced, the

computational complexity of the analysis increases. Dealing with selection effects in multiple parameters becomes

more resource-intensive. Therefore, optimizations will be required to retrieve selection effects while including width

variations effectively.

6. CONCLUSION AND FUTURE WORK
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In this study, we demonstrate the importance of accounting for selection biases inherent to the telescope and detection

pipeline. This allows the accurate determination of the intrinsic pulse rate and luminosity function of a slow pulsar or

RRAT. To achieve this, we created an analysis framework named LuNfit utilizing Bayesian nested sampling, leveraging

the dynesty package.

We present detailed simulations and validation procedures for LuNfit in section 2. This involved many sets of sim-

ulations of fake pulsars and characterizing the nulling fraction of two pulsars, B1905+39 and J2044+4614, where the

nulling fraction is known. As a conclusive application of LuNfit, we apply it to three known RRATs, successfully ascer-

taining their intrinsic luminosity functions and burst rates. We show that the LuNfit nulling fractions for J1538+2345

align most closely with the FAST observations. We argue that this is likely due to the impressive sensitivity of FAST,

enabling them to probe the intrinsic properties of J1538+2345 without much selection bias. The nulling fraction mea-

sured by FAST is likely biased slightly high due to short observations. Notably, our findings in section 5.1 highlight the

limitations of conventional techniques in capturing the intrinsic luminosity distribution and burst rate when compared

with LuNfit.

Looking ahead, future work includes improving LuNfit by incorporating width dependence and more model types,

such as the single and double Gaussian. This extension will render LuNfit more versatile, enabling its effective

utilization for sources emitting bursts with complex and varying morphologies. This enhancement will allow LuNfit to

be applied to all repeating Fast Radio Bursts (FRBs), pulsars, and radio magnetars. Additionally, harnessing LuNfit’s

current capabilities, we intend to quantify the nulling fraction for numerous intermittent pulsars and RRATs using

CHIME/Pulsar observations. This will provide a systematic understanding of the nulling slow pulsar population.

Finally, we plan to make the codebase publicly available with the next iteration of LuNfit in the near future.

7. ACKNOWLEDGEMENTS

We acknowledge that CHIME is located on the traditional, ancestral, and unceded territory of the Syilx/Okanagan

people. We are grateful to the staff of the Dominion Radio Astrophysical Observatory, which is operated by the

National Research Council of Canada. CHIME is funded by a grant from the Canada Foundation for Innovation (CFI)

2012 Leading Edge Fund (Project 31170) and by contributions from the provinces of British Columbia, Québec and
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A. SIMULATIONS
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Figure 10. Simulations and recovery capabilities of LuNfit for the exponential distribution. The axes show the LuNfit
recovered quantities against the true simulated quantities. N and k are the parameters constrained for an exponential luminosity
distribution. The red dashed line is the identify line. All points should lie on this line for a perfect fitting algorithm. This
figure shows the recovered k (N) value given a simulated (true) k (N) value. As expected for high true N, the error bars increase
as this corresponds to an intrinsically fainter pulsar. In other words, LuNfit needs to predict more missed pulses for higher
true N values. For an exponential distribution, a fainter pulsar corresponds to a larger k. Therefore, we similarly find that the
errors for k increase for larger k. LuNfit performs significantly better for an exponential distribution compared to a log-normal
distribution due to the smaller parameter space.



19

0 1
True 

0.5

0.0

0.5

1.0

re
co

ve
re

d
 

(a) 150 detections

0 10
index

0.8

1.0

1.2

1.4

re
co

ve
re

d
 

/
Tr

u
e 

(b) 150 detections

0 1 2
True N ×104

0

1

2

3

re
co

ve
re

d
 N

×104

(c) 150 detections

0 1
True 

0.5

0.0

0.5

1.0

re
co

ve
re

d
 

(d) 500 detections

0 10
index

0.8

1.0

1.2

re
co

ve
re

d
 

/
Tr

u
e 

(e) 500 detections

0.0 0.5 1.0
True N ×105

0.0

0.5

1.0

1.5

re
co

ve
re

d
 N

×105

(f) 500 detections

0 1
True 

0.5

0.0

0.5

1.0

re
co

ve
re

d
 

(g) 1000 detections

0 10
index

0.9

1.0

1.1

1.2

re
co

ve
re

d
 

/
Tr

u
e 

(h) 1000 detections

0 1 2
True N ×105

0

1

2
re

co
ve

re
d
 N

×105

(i) 1000 detections

0 1
True 

0.5

0.0

0.5

1.0

re
co

ve
re

d
 

(j) 5000 detections

0 10
index

0.95

1.00

1.05

1.10

re
co

ve
re

d
 

/
Tr

u
e 

(k) 5000 detections

0 5
True N ×105

0.0

2.5

5.0

7.5

re
co

ve
re

d
 N

×105

(l) 5000 detections

Figure 11. Simulations and recovery capabilities of LuNfit for the log-normal distribution. The axes show the LuNfit recovered
quantities against the true simulated quantities. µ, σ, and N are the parameters constrained for a log-normal luminosity
distribution. All simulations shown here have a σ of 0.5. Again, the red dashed line is the identity line. All points should fall
on this line for a perfect fitting algorithm. Like the exponential distribution shown in Figure 10, the fit is worse for high true
N and low true µ as this indicates a fainter pulsar. The uncertainties of the log-normal luminosity model are markedly larger
than that of the exponential luminosity model. This is because of the larger parameter space to explore. All simulations were
performed with σ = 0.5; thus, all data points in the middle column should equal 1 (within uncertainty). This figure shows that
in most cases LuNfit is able to retrieve the correct σ value.
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Figure 12. Bayes ratio for a simulated exponential distribution. The Bayes ratio is given in favor of the exponential distribution
for four sets of exponential luminosities distributions. That is, positive values indicate a preference for the exponential distri-
bution. There are 150 (a), 500(b), 1000(c), and 5000(d) detected pulses in each simulation. If the true underlying distribution
is exponential, LuNfit always correctly identifies this, as shown by the absence of negative values. In general, the Bayes ratio is
larger for low k and a larger number of detections.
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Figure 13. Bayes ratio for simulated log-normal distributions. The Bayes ratio is given in favor of the log-normal distribution
for four sets of log-normal luminosities. That is, positive values indicate a preference for a log-normal distribution. There are
150 (a), 500(b), 1000(c) and 5000(d) detected pulses in each simulation. The σ for these simulations was set to 0.5. The effects
of a brighter median luminosity (higher µ) are much more pronounced for the log-normal distribution than the exponential
distribution. Higher µ values are clearly positively correlated with higher Bayes ratios. This is due to LuNfit being able to
completely fit the “turn-over” in log-normal distributions. Additionally, the log-normal tends towards an exponential for low µ
values. Once again, a larger number of detections aid the differentiation between log-normal and exponential distributions.
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