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Summary This paper discusses numerical methods for Bayesian mixture models. First is a
sequential seating algorithm, called the weighted Chinese restaurant process, which uses a
Bayesian predictive argument to assign customers (i.e., data) sequentially to tables, resulting in
a random partition of the data. The distribution of the weighted Chinese restaurant process
concentrates on partitions formed by clusters of data that arise from the same distribution. A
Monte Carlo approximation of the posterior distribution of the Bayesian mixture models can be
obtained by an iid sample from the weighted Chinese restaurant process. Next, a Gibbs sampler
for sampling partitions is discussed. The transition probability function is defined based on the
predictive seating probabilities of the weighted Chinese restaurant process. While the sequential
weighted Chinese restaurant process seats customers so that the seating tends to result in a
clustered partition, the Gibbs sampler weighted Chinese restaurant process moves from one
partition to the other and, in the process it shuffles the data into clusters. Ergodic theory for a
finite state Markov chain defines a Monte Carlo approximation of the posterior distribution of
the Bayesian mixture model. A comparison of experiments is established to show that the Gibbs
sampler sampling partitions produce a less variable approximation than a previously studied
Gibbs sampler, which sequentially imputes missing values to complete a Gibbs cycle.
Approximate seating algorithms, which are easier to implement, are introduced and shown to
behave well. Extensions to mixture hazard rate models are discussed. Finally, hierarchical
Bayesian mixture models with regression parameters are discussed. A Metropolis—Hastings
algorithm nested within a Gibbs sampler weighted Chinese restaurant process defines an
appropriate Markov chain Monte Carlo approximation to posterior quantities. Numerical

examples are given.



1. Introduction

The Chinese restaurant process (Aldous 1985) takes its name from a seating procedure
reportedly witnessed by Jim Pitman in a Chinese restaurant. Before any customers arrive, one
table is set up, and other tables are stacked against a wall with their legs folded up. The first
customer to arrive is seated at the open table. When the second customer arrives, with some
probability he is seated at the table with customer one; otherwise a new table is set up for him.
When customer three arrives, he may be seated with customer number one, or with customer
number two (or with both, if customer two was seated with customer one), or a third table may
be opened for him. The process continues until n customers have been seated. Note that except
for the first one to arrive, all customers are seated randomly. Thus different random seating
rules define different variants of the Chinese restaurant process and correspond to different ways
of choosing a random partition of the integers {1, ..., n}. The Chinese restaurant process just
described is sequential; that is, customers are seated one at a time as they arrive, and once they
sit at a table, they remain there. One can also define non—sequential processes, in which
customers are moved randomly from table to table. In either case, when the probability
distributions used for seating depend on a set of sample data (one observation for each
individual in the restaurant), we call it a Weighted Chinese restaurant process (WCR).

A WCR that generates sequentially a random partition of the data based on prescribed
weight functions and a mixing measure is introduced in Section 2. In a (sequential) WCR, the
probability that the next customer sits on a table is proportional to the product of the number of
accupants in that table and the Bayesian predictive weight" of that table. The WCR distribution
assigns high probabilities to partitions formed by clusters of data. The peaking phenomenon of
the WCR has a natural interpretation in terms of (Bayesian) prediction.

Section 3 discusses applications of the WCR in approximating the posterior expectations
for Bayesian mixture models with Dirichlet processes priors. It also represents the posterior
distribution as a weighted average over the WCR. A repeated simulation of the WCR is used as
the basis of an iid Monte Carlo method (iildWCR) to approximate posterior quantities. Section 3
also discusses a Gibbs sampler WCR (gWCR) based on the Bayesian predictive argument [See
also MacEachern (1994) and the following Remark 6.1.] Numerical examples comparing the iid
and gWCRs in Bayesian density estimation are given. The result suggests that the traditional iid
Monte Carlo method, which takes into account a full set of sequential predictive distributions,
fares almost as well as the vastly popular Gibbs sampler in posterior calculations. A class of
approximate WCRs that does not required the computation of predictive weights is proposed.

Numerical results show that this class has an edge in approximating the "true" density.



Section 4 discusses the iid sequential imputation algorithm (iidWP) introduced by Liu
(1996). This is a weighted sampling of a Blackwell and MacQueen (1973) urn process (or an
extended Polya urn process). The corresponding Gibbs sampler imputation algorithm (g\WP)
discussed by Escobar (1988), Escobar and West (1995), and Brunner (1994, 1995) is
discussed. The gWP and gWCR experiemnts are compared theoretically based on Blackwell
(1951, 1953)'s comparison of experiments. An interpretation of Lemma 2 in Lo (1984) results
in the existence of a transition function from the gWCR to the gWP, implying that a Monte
Carlo simulation method based on sampling a gWCR distribution is a Rao—Blackwell
improvement of a simulation method based on sampling a gWP distribution. Another
consequence of the existence of a transition function is that a posterior distribution of the
mixture distribution can be represented as an average over WCR partitions.

Section 5 discusses the application of the WCRs in Bayesian mixture hazard rate models.
A representation of the posterior distribution as a weighted average over the WCR is given.
Such models are popular in reliability theory and in emission tomography. A convenient
reference is Chapter 3 in Snyder and Miller (1991). Approximation methods for the posterior
distribution are identical to the Bayesian mixture density discussed in Sections 3 and 4.

The analytic Bayesian solutions for mixture density and hazard rate models (Theorem 5.1
and Theorem 3.1) express posterior quantities as WCR—averages of partitions. In both cases,
the WCR distributions peak at clustered partitions and they seem to be a fitting model
distribution for statistical cluster analysis. Nevertheless, it is not the objective of this paper to
venture into a theory of statistical models for cluster analysis; the latter is explored elsewhere.

Section 6 discusses hierarchical Bayesian mixture models with Dirichlet priors. The
posterior distribution of the parameters is represented as a weighted average of a WCR. The
analytic solution suggests natural iid and Markov chain Monte Carlo algorithms based on
Bayesian predictions for its evaluation. Noted that MacEachern's (1994) Gibbs seating algorithm
(see the following Remark 6.1), relies on a "joint", rather than a "predictive" weight in its
construction. The Markov chain algorithm is constructed by nesting a Metropolis—Hasting step

within a Gibbs sampler cycle for random partitions. Numerical examples are given.



Section 2. Sequential seating: a weighted Chinese restaurant process.

The (unweighted) Chinese restaurant process is a procedure for randomly partitioning the
integers {1,...,n} into subgroups that are called tables (or cells). It takes its name from a seating
process allegedly witnessed by Jim Pitman in a Bay Area Chinese restaurant he frequented
[Aldous (1985); see also Kuo (1986)]. A Chinese restaurant process with parameter n>0 selects
a random partition by sequentially assigning the integers to tables/cells as follows: Customers
1,...,n enter the restaurant in the order written and they are seated one after the other. Initially,
all tables in the restaurant are folded up. When customer 1 comes in, a table is set to seat
him/her. After customers labelled 1,....k—1 (k=2) are seated, customer k will be seated at an
empty table with probability n/[n+k-1]; otherwise, he/she sits at an occupied table with
probability proportional to the number of occupants at that table. The seating process will
continue until all customers are seated. (In this paper, we only consider restaurants with n or
more tables.) The Chinese restaurant process p with parameter m has the density
2.1) aI)=n"PXTT, i cp(py(ei= 1Y/ MW+ Dx..x(n+n=1)],
where p={C1,...,Cn(p)} is a partition of {1,...,n} into n(p) tables/cells (i.e., disjoint subsets of
{1,...n}) and e,...Cn(p) are table sizes.

The seating probabilities are parameters that define a sequential seating process. In the
weighted Chinese restaurant process (WCR) case, these seating probabilities are defined in terms
of a (prior) mixing measure o(du), the number of customers to be seated n, and a nonnegative
and finite (likelihood) weighting function wj(u) for customer j, j=1,...n. Define the "marginal”
weight for a table C by
(2.2) P(O=Tjccwjwa(du).

If C={k}, p(C) is denoted by p(k). The marginal weights are assumed to satisfy p(C)<.
Since p(C)=0 implies that p(r,C)=0 for rC, we define a "predictive" weights (of r with respect
to table C) by the ratio

(2.3) p(r|C)=p(r,C)/p(C), for r&C; =0 if p(C)=0.

If a "posterior distribution" of u given table C is defined by m(du|C) Hjecwj(u)a(du),

p(r|C) is the predictive weight of r given C, given by fwr(u)n(du|C).

By (2.3), for any table C, the marginal weight p(C) can be written as a product of
predictive weights, by adding customers one at a time, starting from an empty table. The order
of seating customers at each table is irrelevant. For example, suppose C has e elements, and

i1,15,...,1¢ 18 any ordering of them, the product rule of probability states that

(2.4) P(O)=p(i XTIy jceP il -



The essence of this argument is that the numerator of a term in the product cancels with the
denominator of the next term. A similar cancellation reduces the Kaplan—Meier estimator to the
empirical distribution function in the absence of incomplete observations.

In WCR, customer r is seated at an empty table with a probability proportional to p(r);
otherwise, he/she sits at an occupied table with probability proportional to the product
eixp(r|Ci). More precisely, the WCR algorithm for seating customers 1,...,n is: Set A(0)=p(1).
(2.5) Step 1. Assign 1 to the first table with probability p(1)/AM0)=1.

Step r (r=2,...,n). Given p={C1,C2,...,Cn(p)} with table sizes €15-€n(p) from
step r—1, calculate )\(r—l)=p(r)+21Sisn(p)eip(r|Ci). Assign r to a new table C,; with probability
p(r)/Mr-1); otherwise, r sits at table C; with probability e;p(r|C;)/Mr-1), i=1,....n(p).

The completion of Step n results in a WCR process p={C}.Cy.....Cqp)} With table
sizes €>Cn(py respectively.

The n-step WCR algorithm with the product rule (2.4) operating at each step results in
a density of the WCR, q(p|o,w), given by
o.W)=0(P)/(Ap_y).
where ¢(P)=Hlsisn(p)(ei—1)!P(Ci)a and A,_=M0)x...xA(n-1).

Lemma 2.1. q(p

The weighted Chinese restaurant process q(p|o., W) reduces to the Chinese restaurant
process q(p|n) if w;j(u)=1, and the measure a(.) is finite with total mass 7. In this case, the
predictive weight p(k|C) equals the constant one for all nonempty tables C. The Chinese
restaurant process and the WCR is connected by

(2.6) (n1)xq(P| DXIT i p)P(C)=Ap_ <Pl W).

The way incoming customers in the WCR are assigned to occupied tables deserves
notice as it reveals a Bayesian method of performing (random) cluster analysis for a set of data
{X;, i=1,....,n} by means of predictions rather than the usual (deterministic) method based on a
distance function defined between (groups of) data [Duda and Hart (1973), and Arabie, Hubert,
and De Soete (1996)]. Identify the observation x; with customer i, i=1,...,n, and say that a new
customer r is "similar" to the e; customers at table C; if e;xp(r|C;) is large. The sequential
seating WCR builds up a partition by seating customers sequentially, one after the other. It adds
customers so that those who are "similar" are likely to sit together. Hence, eventually a partition
is likely to be formed by tables occupied by customers who are "similar".

If the mixing measure a(du) has a finite a(R), the WCR takes a neat form: Given
p-{Cl,CZ,...,Cn(p)
i=0,...,n(p), where Cy denotes an empty table; p(r|/Cq)=w (u)o(du)/a(R).

} from step r—1 (r=2,...,n), seat r on table C; with probability e;xp(r|C;),



Section 3. A Bayesian mixture model and seating algorithms.

A mixture model is a family of densities defined by
(3.1) f(x|G) =/k(x|u)G(du), GEB®,
where the parameter space © is the collection of distributions; x and u are points in Euclidean
spaces and G is a distribution of u. The kernel k(.|.) is given, and for each u, k(.|u) is a
density of x. The kernel densities {k(.|u), all u} are the extreme points of the model (3.1). The
model densities have desirable smoothness properties, which sometimes can be characterized via
extreme point representations. On the other hand, the mixture model often arises as a result of
missing information in the sense that a complete observation (x,u) is not available. Instead, one
observes the variable x, which is a randomization of u. Let Xl,...,Xn|G be i.i.d. observations
from the mixture density f(x|G). The problem is to estimate G based on a sample X=(X{,e0sXp)-
The classical frequentist approach to this problem has been conveniently summarized in Lindsay
(1983, 1995). Here we discuss a Bayesian approach. Assuming a Dirichlet process prior to G
[Ferguson (1973)] with shape measure o(.), Lo (1978, 1984) represents explicitly the posterior
distribution of G as a mixture of Dirichlet processes [Antoniak (1974)], and the posterior mean
of a linear function of G as an average of the partitions of the set {1,...,n}. The number of
partitions of the set {1,...,n} is called Bell's number, which increases roughly as the factorial of
n. As a result, the exact evaluation of the posterior mean is formidable for sample sizes larger
than twelve. This section discusses simulations of random partitions that can be used in Monte
Carlo approximations to the stated sum over partitions. To describe it, one needs the notation of
a micro—Bayesian system.

The shape measure a(.) of a Dirichlet process is a finite mixing measure with total mass
a(R)=eq. u has a (micro-)prior distribution nt(du)=a(du)/a(R), and yyq....,yy|u are iid k(.|u).
For a table C, the "marginal function" of yj,jEC is defined by m(yj,jEC)=jHj€Ck(yj|u)a(du).
The predictive density of a next observation y given {yj,jEC} is

m(y|C)=m(y.y; JEC)/m(y;JEC); m(y|C)=m(y) if C is empty.
o.k). The WCR

Putting w;(u)=k(x;|u), i=1,...,n defines a WCR with density q(p
algorithm also simplifies to: Given p-{Cl,CZ,...,Cn(p)} from step r-1 (r=2,...,n), seat r on
table C; with probability eip(k|Ci), i=0,...,n(p), where C denotes an empty table and

p(r|Co)=fk(x |w)a(du)/e is the no—sample predictive weight of r. A posterior mean of a linear

function of the mixing distribution G(u) is an average of q(p|o.k)n.. In particular, the posterior
mean of the mixture density f(t|G) has the representation [Theorem 2 in Lo (1984)]

(32) f(O=EIf(t|G)|x] o Zp{m(0+Z) gianpyeim(Ci) }xAy_1q(plok),



where A, is defined in Section 2 (with w;(u)=k(x;|u).)

The predictive density f(t) is a two-layer mixture of micro—predictive density m(t/C;)s,
which are kernel functions with variable bandwidths. This contrasts significantly with the
classical kernel estimator [Rosenblatt (1956), Parzen (1962) and Cencov (1962)], which is a
one-layer mixture of kernels with a fixed bandwidth.

The case of a statistical deconvolution model deserves a note. This model corresponds to
a location or scale mixture model, i.e., k(x|u)=k(x—u) or k(x|u)=uk(xu), and is in general
identifiable in the mixing distribution G. As such, it would be of interest to evaluate the
posterior mean of G, G(u)=E[G(u)|x]. However, G(u) has the same expression as (3.2) if one
defines A(n) to be a(u)+leiSn(p)ein(u|Ci) at the completing of the WCR algorithm:
a,nk).

G(u) * Ep{(WHZ gy (p)eiTulC I Ap_;a(P
Notice that 7(.|C;) peaks for a large table C;. Since G(u) is basically an average of
a(u)+215i5n(p)ein(u|Ci), it is approximately a mixture of step functions. This contrasts with the
maximum likelihood estimator of G(u) which is exactly discrete [Lindsay (1983, 1995)].
3.1 An iidWCR and a gWCR. Kuo (1986) proposed an iid Monte Carlo method to
evaluate posterior quantities of the mixture model based on sampling p from a (unweighted)
Chinese restaurant process q(p|o(R)). One feature of the Chinese restaurant process is that a
large table (large e;) has a higher probability of receiving newcomers and, as a result, it will
grow larger still. According to Korwar and Hollander (1973), the number of occupied tables in
a Chinese restaurant process is approximately o(R)xlog(n). The presence of only a very few
occupied tables in a random partition results in peaked integrands, the product of which is
highly variable. This variability in effect drastically reduces the efficiency of Kuo's method
based on sampling a Chinese restaurant process q(p|o(R)) [Ji (1991)]. On the other hand, the
weighted Chinese restaurant process accounts for the peaked integrands in the course of the
simulation and the problem of highly variable peaked integrands diminishes. An added twist is
that the growth of a tabe C; is controlled by a balance between e; and p(r|Ci): a large table may
not continue to grow since p(r|C;) could be small (if r is "far away" from C;) so that the
product e; x p(r|Ci) is relatively moderate.

At the completion of the nth step of the WCR algorithm, one defines

K(n)=m(t)+2ISiSn(p)eim(dCi). In this notation, the mixture density estimate (3.2) becomes
(3.3) f(t)=[a(R)+n]~! xEpAnd(plok)/ZpAn_1a(plok).
Run the WCR process M times independently to get M iid partitions and compute A;_;(m),

Ay(m), m=1,...M (set x;,, =t.) The iidWCR approximation to f(t) is



fM(t)=[0‘(R)+n]_1 x2 1 cmeMAnM/Z1 cmemAp_1 ().

An 1ildWCR approximation to a higher posterior moment of a linear function of G(u) is
essentially an extension of the algorithm to more steps. A higher posterior cross moment is a
similar sum over partitions of the set {1,.....,n,n+1,....n+k—1} where k is the total order of the
cross moments. As such, it can be written as an expectation with repect to q(p'|a.,n+k-1,k")
where p' is a partition of {1,...,n+k—1} and k' has n+k—1 components. A WCR, extended to
n+k—1 steps, provides an appropriate approximation.

A fine point of the WCR is that it depends on the sequential order in which customers
enter the restaurant. Numerical studies based on the location mixture model and location—scale
mixture of normals model show that sorting the data in descending and ascending order and
Siegel-Tukey ranking the data produce almost identical fM(t) for nested sample sizes n=10, 50,
150, and 300. These numerical results suggest that the dependence of WCR on the ordering of
the data is minor.

The Markov chain Monte Carlo method can also be used to approximate posterior
quantities. A posterior mean of a linear function of G has an representation of the form
(3.4) Zph(P)W(p),
where W(p) & O(P)=IT iy pylei=D!P(CI=Ay_1q(plotnk)
is a probability distribution of p. For example, in the case of f(t) in (3.3), h(p) is
{m(t)+ZISiSn(p)eim(t|Ci)} /[oR)+n]; likewise for G(u). The aim is to simulate a Markov chain
sequence of partitions pg,p{,...Pm»---» Which has a stationary distribution w(p). According to
the law of large numbers of an ergodic Markov chain [see for example Chung (1967)], the
average of h(py),....h(pyp) approximates th(p)w(p) with an error of O(M_l/ 2). The Gibbs
sampler method [Geman and Geman (1984); see also Tanner and Wong (1987) and Gelfand and
Smith (1990)] translated into the present situation dictates that to move from one state (a
partition) to the next (partition), one reseats the n customers one by one using prediction.
Suppose a present pg is given. One performs a cycle step to move from p) to the next state p;
as follows: Remove j from p to obtain a "skip—j" partition denoted by p. Given p, which is a
partition of {1,...,n}—{j}, we can reseat j to get a refreshed p; according to a predictive seating
probability distribution [defined in (4.2) below]. Use this method to reseat j=I,...,n
successively, and in the order written, completing a cycle. The random partition obtained at the
completion of one cycle is the new state p;. The cycling process repeats (using p; as pg) to
generate p,, and so on, to get the sequence of random partitions {p, }.

MacEachern (1994) proposed such a skip—j algorithm for a hierarchical location mixture

of normals model. His method, discussed in the following Remark 6.1, depends on a "joint



weight" that blurs the predictive nature of the underlying cluster process. Here we bring in the
predictive weight of the WCR to reseat j to the skip—j partition. Suppose the present partition is
Po- Suppose the last integer to be reseated is n and the delete—n partition is §={éi,
i=1,...,n(p)} with table sizes ¢;, i=1,...,n(p). From the WCR algorithm, the seating
(conditional) probability for the event that n seats in (~31|'f) is proportional to eixp(n|éi),
i=1,...,n(p). (The proportionality constant depends on p and n.) The next result states that a
similar seating probability prevails if j, rather than n, is the last customer to be seated.
Lemma 3.1. Given 'f)={éi, i=1,..,n(p)], which partitions {1,....n}-{j} with table sizes {e;,
i=1,...,n(p)}, the conditional probability that j sits at table Clﬁ) is proportional to éixp(j|éi).
Proof. Note that p is a function of p, and p differs from p only at the table containing j. The
(joint) density of p (and p) is proportional to ¢(p)=H15rSn(p)(er—1)!p(Cr) [see Lemma 2.1.]
Suppose j sits at table C;, where i€{0,1,...,n(p)}. The product rule p(C;)=p(j|C;)xp(C;) yields
OP)=8ixpGICHxo(D),

where ¢@)=Hlsisn@)(éi—1)!p(éi) is a function of p only and is a proportionality constant. ||

The WCRs cluster the data by adding customers one after the other so that those who
are "similar" are likely to sit together. Hence, a partition is likely to be formed by tables
occupied by customers that are "similar". The gWCR accomplishes clusters differently. An
initial partition is chosen quite arbitrarily. Customers will be removed and then reseated at tables
one after the other. Repeatedly reseating the customers results in tables occupied by customers
who are "similar". In short, the gWCR shuffles the customers one by one so that eventually
"similar" customers are likely to sit together.

Customer r is "similar" to those at table C; if the seating probability e;xp(r|C;) is large,
and "similar" means closeness somewhat in the usual distance sense [Duda and Hart (1973),
Arabie, Hubert, and De Soete (1996)]. For a location mixture of normals with variance 1,
p(r|Ci) o< a N(ave{xj,jECi},l) density evaluated at X, and a location and scale mixture of
normals model yields p(r|C;) o a t—density evaluated at x. where the df=e;, location~
ave{xj,jECi}, and precision=1 /Variance{xj,jECi}. In both cases, "similar" means essentially
that |xr—ave{xj,j€Ci}| is small. A contrast is provided by a scale mixture of normals, which has
p(r|C;) = a t—density evaluated at x, where df=e;, location 0, and precision 1 /ave{sz,jECi}.
Here "similar" means that the ratio xrz/ave{sz,jECi} is small.

The WCRs can be specialized to apply for mixture models that generate unimodal
mixture densities. A list includes the scale—mixture of exponentials [Jewell (1982)], of uniforms

[Brunner and Lo (1989, 1997)], and of normals. Finite mixture models [Everitt and Hand
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(1981); Titterington, Smith, and Markov (1985); Diebolt and Robert (1994)] form a finite
dimensional subset of the mixture model considered in this paper. The posterior quantities that
result from assuming a finite mixture model are also sums over partitions and corresponding
WCR algorithms can be constructed by a properly chosen discrete a(.). A more interesting
example is provided by mixture models with multimodal mixture densities. Conjugate priors [see
for example De Groot (1970)] exist for mixtures of text—-book parametric models, and we shall
use them to accomplish explicit expressions for seating probabilities. The (micro—)posterior
distribution with respect to a non-conjugate prior can be obtained by reweighting the posterior
density with respect to a conjugate prior with a weight being the ratio of the conjugate and the
non—conjugate prior densities.

In this section we illustrate the WCRs in Bayesian density estimation using the location—
scale mixture of normals model: k(x|u) is Tk(t(x-s) where u=(t,s) is two dimensional and k(.)
is a standard normal density. The idea is that by allowing G to carry mass at T close to zero, the
consistent behavior of a shrinking kernel in the classical kernel density estimator can be
captured. Suppose a(du)/o(R) is gamma-normal (a,1/b; m,1/t): T is gamma (a,1/b) and ult is
normal (m,1/(tt)). [The mean of gamma (a,1/b) is a/b.]. The micro—posteriors are gamma—
normal (a;,1/b;; m;,1/t;) where tj=t+e;, m;=(mt+X;e;)/t;, a;=a+e;/2, and bi=b+2—1[2jec(i)(xj—
Xp2+(m-X;)2/(t"1+e;~D)]. The micro—sample predictive density m(x|C;) is a t—density with
degrees of freedom 2a;, location m;, and precision (ai/bi)ti/ (t;+1). See for example, DeGroot
(1970). The interplay between the prior parameters a, b, m and t is subtle. Inspection of the
micro—predictive t—density suggests that if t is very large, m;=m and f(t) will be approximately
unimodal with a mode close to m. On the other hand, a small t results in a predictive t—density
centered at X; and reveals the data structure better. Such a choice of t results in a f closer to the
"true" density. To keep matters simple for discussion, we assume a and |m| are moderate, say,
bounded by 2. If b is large, the precision (ai/bi)ti/(ti+1) for the predictive t—densities will be
small, resulting in a flat f(t); we shall avoid a large b.

Two "true" densities are chosen to be sampled. A U(0,1) density is selected to test the
resolution of the WCR approximations as it has sharp discontinuities at 0 and 1. Another parent
density is a three—peak mixture of normals,

(3.5) 0.6N(-5,0.25)+0.25N(0,1)+0.15N(5,2.25),

which serves to test the peak—detecting ability of the WCR approximations. In the numerical
results that follow, unless otherwise stated, ou(R)=2.5 and the Monte Carlo sample size is
M=1000. Figure 3.1 displays the Bayesian density estimate based on iidWCR (dotted) and
gWCR (solid) for sampling from a U(0,1) density based on n=400 and 2000 observations. The

11



micro—prior parameters are set to be a=1.5, m=0, and t=0.0005. The three rows display results
based on b=1.5 (first row), 0.005, and 0.0005 (last row), respectively. Computer printouts
indicate that with the micro—prior parameters defining the first row routinely yield partiions of
very few tables (less than 5) with one dominatingly large table and a few very small tables. This
results in the unimodal iidWCR approximations appearing in the first row. Figure 3.2 displays
iidWCR and gWCR approximations for the three—peak density (3.5) based on n=300
observations. The figures show that on the average, the gWCRs stay closer to the "true"
density.

3.2. An approximate WCR. The WCR is defined through a predictive weight p(r|C) which
is an averaging of the kernel by a micro—posterior distribution at a table. In the case that such
an averaging operation is hard to evaluate explicitly, one could replace the micro—posterior
distribution mt(du|C) by its first-order approximation: a point mass probability at the posterior
mean (or its relative, the mle) in the averaging operation. That is, define a predictive weight by
(3.6) p(r|C)=k(x i)

where ﬁc is the posterior mean, mle or a umvu (whenever definable) estimator for the micro—
model of table C. The seating algorithms are defined with no changes. [The only difference is
that p(C) [i.e., (2.4)] depends on the order the customers arrived at table C as the product rule
may not apply. This dependence will not matter much if the sample size n is not too small.] We
illustrate the case that u, is the maximum likelihood estimator with respect to table C. Here, a
slight inconvenience is that u. may not be definable for tables of small sizes. (By comparison, a
posterior mean is usually well-defined for all table sizes.) In any event, if u, exists for the
micro—model on table C, the mle predictive weight is defined to be p(r|C)=k(Xr|ﬁC); otherwise it
is p(r|C)=k(x|ug) where ug is a pre—determined initial missing value. We call the resulting
WCRs the WCR.mle. We examine the performance of the WCR.mle for the density estimation
using the location and scale mixture of normals model. An initial kernel k(.|mg,0¢) is chosen;
the m), 0 are matched with the chosen micro—prior parameters a,b,m,t so that my=m and

0y =1/precision=(b/a)x(t+1)/t. Set a=1.5, b=0.005, m=0.0 and t =0.0005. Figure 3.3 displays
gWCR approximations using the U(0,1) data with b=1.5 (first row), 0.005, and 0.0005, so that
0p=44.7, 2.58 and 0.81, respectively. Compared with Figure 3.1, the gWWCRs reveal the "true"
density better than the iidWCRs. Figure 3.4 displays the gWCR.mle, the iidWCR.mle
approximations for the density function where data are n=300 observations from the three peak
density (3.5). Compared with the WCRs, the WCR.mles perform surprisingly well. In fact, a
case can be made that the WCR.mles outperform the original WCRs in approximating the "true"

parameter. The WCR.mles are more robust against changes in prior parameter values. If the mle
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parameter N(m,,, 0,?) gives rise to a density that is "orthogonal" to the data likelihood, the
seating probability for the second customer is very small, and this creates a numerical problem
that results in an incomplete execution of the computer codes. The missing of the iidWCR.mle
graph corresponding to 0,2 =0.07 illustrates a case in point.

Numerical examples indicate that the WCR.mles run more quickly than the WCRs. The
latter require managing and sampling from t—densities which is more time consuming than
sampling from normal densities for the WCR.mles. At M=1000, the CPU times in seconds on a
Sun SPARC-20 running compiled C code are approximately 360 secs (gWCR; b=0.0005), 405
secs (ildWCR; b=0.0005), 49 secs (gWCR.mle; 0(=0.81), 50 secs (iildWCR.mle; 0y=0.81). At
M=1, both iidWCR (b=0.0005) and 1idWCR.mle (0(p=0.81) run for less than one second. We
do not list the time for gWCRs for M=1 as they run initially very slow.

The approximate predictive weight (3.6) could be used when non—conjugate priors
o(du) are used for the model {k(.|u), all u}. In the case that conjugate priors do not exist, say
k(.|u) is Cauchy with location u, we recommend the use of p(r|C)=k(x.[u.) where U, is the

sample medium at table C.
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Section 4. Posterior distributions and imputation algorithms.

Liu (1996), studying binomial mixture of normals, proposed a sequential sampling
scheme that samples a Blackwell-MacQueen (1973) urn sequence weighted by the binomial
kernel. The extension to a general kernel k(.|.), called a weighted Polya process (WP), goes as
follows. Assume the mixture model (3.1) and G has a Dirichlet process prior D (dG|a)
[Ferguson (1973)] with shape measure a(.), the posterior distribution of G is an average with
respect to the distribution of an extended Polya sequence as follows [see the derivation in Lo
(1984)]: u=(uy,...,up):

4.1) n(dG,du|x) « D (dG|oc+2i6ui)Hik(xi|ui)u(du|oc),

where u(du|o)=IT, ; . (a+Z] <; Si_léuj)(dui).

The normalized w(du|o), w(du|o)xI'(c(R))/T(a(R)+n)), is the distribution of the extended
Polya sequence [Blackwell and MacQueen (1973)]. The sequential WP algorithm works as
follows. Set k(0)=m(x) and let u; has distribution m(dulx;). Given uy,uy,...,uj_y, calculate
K(k—1)=m(xj)+k(xg|u)+...+ k(xg|up_1). Let ug equal uj with probability k(xk|uj)/1<(k—1),
j=1,..k-1; otherwise, uj has distribution 7t(du|x)). The WP distribution is

k) =[TLk(x;[upu(dulo)]x[K,_,1-!,

p(du
K,,_1=K(0)x...xk(n—1). The posterior mean of f(t|G) is
(4.2) f(t) o« [{m(O+E) gizn k(tho)}xKp_pp(dulouk).
Similar to the iidWCR, an iidWP samples from p(du|a.k) independently. The WP algorithm is

a straightforward simulation of the "missing value" u; based on k(.|.) and a(.). The computation
of predictive weights is limited to the marginal weight m(t); computation of predictive weights
such as m(t|C) is replaced by sampling from st(du|x;). There is a trade off: the WP does not
account for the data reduction part, i.e., ties, of the missing value u;s. Another issue is a prior—
sensitivity problem. At the kth step of the WP algorithm, uy would be an observation from
n(du|xk), or else it is one of the previous uy,...,u;_;. Since n(du|xk) differs from m(du) only

by one observation, the u;s are close to a sample from the micro—prior s(du). This implies that
if the data likelihood and the micro—prior st(du) are approximately "orthogonal" (for a lack of a
better word), the iidWP would be more sensitive to the prior. The coefficient of variations (CV)
of the WCR and WP iid weights for the three—peaked data in Figure 3.2 are listed below.

Table 4.1. The coefficient of variations for the iid weights in Figure 3.2 wer (wp)

13.14 (30.01) 1791 (24.4)
24.92 (31.62) 2.13 (20.75)
31.63 (31.12) 22.48 (30.13)
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The smaller CVs for the iidWCR weights seems to signal that it provides a more credible
approximation to the posterior mean than the iidWP [Kong, Liu, and Wong (1997)]. Notice that
the approximation with smallest CV provides a best fit to the "true" density.

Similar to the gWCR, a Gibbs sampler WP (gWP) can be defined to approximate
posterior expectation with respect to the missing value representation (4.1) [see Escobar (1988)].
This approach was discussed by Escobar and West (1995) for a location mixture of normals
model and by Brunner (1994, 1995) in general mixture models. Specifically, the stated Markov
chain moves from a present state U to the next state u; by going through a skip—j prediction
cycle. The skip-j predictive probability distribution is defined by: Given {u;, i#j}, Uj equal u;
with probability k(Xj|ui)/m(Xj)+2i #jk(xﬂui), i=j; otherwise, uj has distribution TE(du|Xj). The
stationary distribution of the gWP is
4.3) v(du) o« K, ;xp(duja,k) where [v(du)=1.

Similar to the iidWP, the gWP enjoys the flexibility of not having to compute the explicit
predictive weights p(j|C) [except the marginal weight p(j)=m(Xj); note that sampling from
n(du|xi)s is also required.] However, the lack of data reduction remains a theoretical defect
which, according to Blackwell's notion of comparison of experiments [Blackwell (1951, 1953);
see also Strassen (1965) and De Groot (1970)], can not be eliminated. To see this, one requires
to establish a conditional distribution of u|p where the marginal distribution of u is v(du) and
that of p=C1,...,Cn(p) is

w(p) * Mjgicnp)lei=D!P(CI,
i.e., the stationary distribution of the gWCR chain.
Lemma 4.1. Suppose the (marginal) distributions are u~v(du) and p~w(p). There exists a
conditional distribution of u|p given by

(1) tj|p has distribution 7t(dt|C;); i=1,....n(p),

(ii) tl,...,tn(p)|p are independent,

(ii1)  for i=1,...,n(p), duplicate t; a total of e; times and, with an abuse of notation,
denote them by ;s JEC;; i=1,...,n(p).

Proof. It suffices to show that
4.4) I sisnhi(ui)V(du)=2p {IT4 sisn(p)ﬁnj ECihj (w)]re(du|C)) }w(p)
for all nonnegative functions h;(u;)s. Putting gi(ui)=hi(ui)k(xi|ui), i=1,..,n in Lemma 2 in Lo
(1984) results in
(4.5) JI o <nhi (U)K, xp(dulok)
=251 ci<n(p)lei 1)! ﬂHjEChj (u)k(xj |u)]ou(du)]
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=2lesisn(p) {f[H_]ECIh_] (u)]n(du|Ci)x(ei—1) ! Xp(Cl) } .
Putting h;=1 results in an equality for the two normalization constants

JKp_<p(dufak)=ZpIT) iy L (€= DIxp(Cp .
Devide both sides of (4.4) by the normalization constants, respectively, to get (4.4). ||

Lemma 4.1 and expansion (4.1) combine to yield

(4.6) G|(p,u) has distribution D (dG|a+ZlSiSn6ui).

Lemma 4.1 and (4.6) complete the description of the posterior distribution of G (and u), and
the n—folded integral in (4.1) can be strengthened.

Theorem 4.1. The joint posterior distribution of G and the missing value u;s have the
following representation

n(dG.dulx) = £pD (dG|0+E <iz )0y, T cis (U CIW(P)

where w(p) < ¢(p)=IT} i<y pylei—D!P(C)].

Let us examine the implication of Lemma 4.1 and Theorem 4.1 in terms of comparing
Monte Carlo Gibbs sampler experiments. Suppose one wishes to evaluate a posterior integral
which is expressed by the missing value representation (4.1), i.e., E=[T(u)v(du). Using
Theorem 4.1 this integral can be expressed alternativelyby E-ZPS(p)w(p), and necessarily
S(p)=E[T(u)|p]. Since S(p) is a Rao—-Blackwell improvement of T(u), it is less variable in the
following sense.

Corollary 4.1. For any convex function c(.), fc(T(u))V(du)zch(S(p))w(p).

The objective of gWP is to simulate u~v(du) and evaluate T(u), and the objective of
gWHCR is to simulate p~w(p) and evaluate S(p). These objectives are achieved upon the Markov
chains converging to stationarity. The foregoing argument dictates that T(u) is more variable
than S(p), and hence u beats p, at least eventually.

The application of this result requires the explicit computation of S(p)=E[T(u)|p]. This
does not present difficulty in evaluating posterior cross—-moments of G (or of u;s) discussed in
the paragraph after expression (3.3). An example is given by the Gibbs sampler approximation
of §=f(t)=E[f(t|G)|x]. From (3.2) and (4.2),

T(w)=m(t)+2; 5 k(t|u;) and S(p)=m(t)+2lsiSn(p)eim(dCi).

Another example is given by the approximation of missing values u. The Rao-Blackwell
improved S(p)=E[u|p]=(fun(du|C1),...Jun(du|Cn(P)) beats T(u)=u. The integral fum(du|C) is a
micro—posterior mean which is easily evaluated if one uses conjugate micro—priors.

Remark 4.1. In the unweighted case, p has a marginal density q(p|o(R)) and u has a
marginal distribution u(du|o)xI'(o(R))/T(au(R)+n)). Korwar and Hollander (1973) constructed a
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conditional distribution of u given p where (i) is replaced by (i') uj|p has distribution
o(du)/a(R), for i=1,...,n(p). The existence of the conditional distribution u|p in (i') supports
Kuo's (1986) initial proposal to use the (unweighted) Chinese restaurant process rather than the
Blackwell and MacQueen (1973) urn to perform an iid Monte Carlo approximation to posterior
quantities. Unfortunately, the contribution from the peaked integrands dominates and blurs the
otherwise observable improvements.

Remark 4.2. A referee points out that counting the ties of missing values in a gWP chain
automatically produces the required gWCR partitions; see West, Muller and Escobar (1994).
While the comparison of experiments result favors the directly simulated gWCR partition, the
method based on counting ties may be useful if the seating probabilities are difficult to calculate

and sampling from the micro—posteriors m(du|x;)s does not cause problems.
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Section 5. The mixture hazard rate model.

The likelihood function of a hazard rate point process model is proportional to
(5.1) [T <z 1)) exp{={Y($)r(s)ds}
where 1(s) is a hazard rate, I is the interval in which the point process is being observed, x;,
i=1,...,n are the uncensored failure times, and Y(s) is a left continuous integer valued function
of the data. The likelihood function of the multiplicative point process models [Aalen (1981)]
involves a product of these likelihood factors, each of which can be treated independently (by a
Bayesian), and creates no additional complexities [Lo and Weng (1989)]. The hazard rate model
(4.1) and its multiplicative extension include point process models such as life testing models
with censored data, Poisson models and competing risk models, among other point process
models. In a mixture hazard rate model, the hazard rate r(.) depends on a kernel k(.|.) and a
mixing measure w(du) on the "missing" variable u such that
(5.2) t(s|v)=fk(s|u)v(du);
k(.|.)=0 and satisfies integrability conditions in both variables. Often, it is convenient to assume
that for each u, k(.|u) is a density. In some cases, the kernel k(.|.) generates a hazard rate that
has desirable smoothness properties. For example, the scale mixture of uniforms generates
monotone hazard rates, and the scale mixture of exponentials generates "completely monotone"
hazard rates [see page 20 in Feller (1971)]. On the other hand, the mixture hazard rate model
often arises as a result of missing information. The most renowned example is perhaps the
emission tomography model where the data are in fact from a Poisson point process with
mixture hazard rates [Chapter 3 in Snyder and Miller (1991)].

In their discussion of the Bayesian mixture hazard rate model, Lo and Weng (1989)
argue that the likelihood function (5.1) [and (5.2)] looks like a gamma density in v(.), and
suggest a weighted gamma process prior for v(.). A random measure y(.) is a gamma process
with a (o—finite) shape measure o(.) if (i) y(.) is an "independent increment" process, and (ii)
for each A, y(A) is a gamma (a(A),1) random variable. The theory of Dirichlet process can be
understood via a gamma process in the sense that y(.)/y(R) is a Dirichlet process with a finite

shape measure a(.). The random process v(.) defined by v(A)=/[ ABWy(du) is called a weighted
a,p).

gamma process with shape o(.) and multiplier f(.)=0; its distribution is denoted by G (dv
See Lo (1982) for the calculus of weighted gamma processes. In this gamma process prior
setting, hazard rates, which are scale mixtures of uniform kernels, were considered by Dykstra
and Laud (1981) in life testing models. Theorem 4.1 in Lo and Weng (1989) represents the

posterior distribution of v for model (5.1) and (5.2) as a WP mixture of gamma processes,
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given by
(5.3) n(dv,dujx) « G (dv|a+216ui,[3*)Hik*(xi|ui)u(du|a),

where B*(w=Pw)/[1+Bw)fY (O)xk(t[u)dt],

s (tu)=p*wk(u),
and w(du|a) is defined in (4.1); the index i runs through the indice of uncensored observations
X;s. The mixture of gamma processes (5.3) resembles (4.1), where k*(xi|u) plays the role of the
likelihood weight k(xi|u). The WCRs and WPs for a hazard rate model can be defined by a
change to the *-notation: wi(u)=k*(xi|u) in the definition of the WCR; the definitions of A*,_,,
A*,, m*(t|C;) and q(p
in Lo and Weng (1989)], Kn*(t)=m*(t)+21SiSn(p)eim*(t|Ci),
(5.4) f(t)=ZpA*nq(p (x,k*)/ZpA*n_ 19(p|o.k*).

This expression is identical to the expression of f(t) in (3.3), except for the factor [a(R)+n]-1,

o..k*) follow. The posterior mean of r(t|v)=E[r(t|v)|x] is [Theorem 4.2

which has been incorporated in k* through *. Sampling the WCR from q(p|a.,k*) results in
an iid Monte Carlo approximation to r(t) and to posterior moments of v. The Gibbs chains for
WP and WCR are defined similarly. One could also incorporate a regression model here by

J
The following Lemma 5.1 specifies a conditional distribution of u|p where the shape

letting wj(u)skj(xj|u), which depends on a regression variable z;.

measure o is o—finite. It suffices to assume the setting in the general case (Section 2): a is 0—
finite, w;(.)=0, and for each table C, p(C) is finite. The marginal distribution of u is v(du) and
that of p is w(p) where
vidu) o [Hwi(u)ITT gjgn(0+2 ) gji—1 Oy, (duy)
w(P) * Hjgicyp)(€=D!p(C)).
Lemma 5.1. For all non-negative functions g;,
SO i) v (W= (T iy i, g (WU |Cp xw(p).
Proof. Since a is o-finite, there exists a sequence of sets Ay such that a(Ay) is finite and
a(Ay) increases to a(R). Recall ¢(P)=Hlsisn(p)(ei—1)!p(Ci)- The equality
(5.5) mi[Wi(u)(a+21sjsi_15uj)(dui)]=2p¢(P)
is true if au(.) is restricted to Ay [Lemma 2 in Lo (1984)]. As k increases to infinity, both sides
increase to an identical finite limit since p(C) is finite. Next,
T, inlgi(u) Wi (043 1 gji 19, ) ()]
=2p[nlsisn(p)(ei_1)!]XHlsisn(p)IHjECi[gj(u)Wj(u)]a(du)

=2pi Hlsisn(p)ﬂ_[jecigj (wm(du|Cy) } x¢(p);
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the last equality follows from the product rule of probability. Put g (u)=1 in the last equality to
conclude that (5.5) is true for a o—finite o.. ||

The equality in Lemma 5.1 defines a conditional distribution exactly as Lemma 4.1, and
the missing value representation for a posterior distribution (5.3) can then be strengthened to
Theorem 5.1. For the Bayesian mixture hazard rate model with posterior distribution (5.3),

n(du.dulx) = 25G (dM|0t+21sisn(p)eif>ui,ﬁ*)[H1sisn(p)ﬂ(dui|Ci)]W*(P),
where w*(p) = A _;q(p|o.k*).

It follows that Corollary 4.1 is also valid for a mixture hazard rate model, and the
simulation of p~w*(p) beats the simulation of u~v*(du) in terms of average convex loss

functions.
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6. Mixture models in the presence of additional parameters.

We shall discuss the case of mixture density as the mixture hazard rate case amounts to a
change of notation. The data x=(x,...,x) are assumed to have a joint density
(6.1) f(x]6,G)=IT < <n/k;(x;|u,0)G(du)
where, for each i and u, k;(.|u) is a density. Allowing 6 to be a (possibly multi—dimensional)
regression parameter [Bunke (1985), Brunner (1995)] allows for regression analysis based on
different kernel k;s. The model seems flexible enough to include Poisson, binomial, normal,
nonlinear and multivariate regression models as special cases. The prior on the pair (0,G) is
specified by the following:
(6.2) (6,M) has a distribution 7t(d6,dA) and G
measure o (.) denoted by D (dGlayg ).

0,A is a Dirichlet process with shape

The parameter A is a mixing parameter and it generates the so—called hierarchical
Bayesian mixture models [Antoniak (1974)]. Antoniak (1974, Sections 4 and 5) derived explicit
expressions for posterior expectations for a sample size of two. The parameter 0 plays the role
of a regression parameter. The following representation describes the joint distribution of

(8,,A,G) given x. Fix (8,)), use k;j(xj|u,0) and o0 in the definition of the WP and WCR in

Section 2 to define g (dy;|C;), Py (Cy). and g, (P)-
Theorem 6.1. The joint distribution of (6,A,G,u) given the data X, is given by
n(d6,dA,dG,du|x)
* 2pD (dGog 42 1<izn(p)idu,) M1 isn(py 0.1 )1} 0o 0 (PI(dB.dM).
Proof. The joint distribution of (6,A,G,u) given the data x is determined by,
(6.3) m(d6,d\,dG,du|x)
« f(x|6,G)D (dGlog ;)m(d6,dA)
« D (dGlag+2 ISisn)aui)[Hik(Xi 10,u)] [T ; <n(®g ) +Z1 <j<i-1 6uj)(dui)]n(d6,d7\).
Fix (A,0) and apply Theorem 4.1 to conclude that the last expression is proportional to
D (dG|og 121 <in(p)idu) M 1<isn(pyTo.1(Aui|Ci)10g 2 (PI7(dB,dN). |
In hierarchical Bayesian mixture models, it is often assumed that D (dGlag ;)=D

(dG|oy) which is independent of 6. However, this does not simplify posterior calculations as

u,0)s.

Hlsisn(p)”e,x(dui|ci) in Theorem 6.1 still depends on 6 through the kernel k;(x;
Theorem 6.1 and (6.3) state that given X, the posterior distribution of (6,A,p,u,G) can
be specified as follows:

6.4) (1) (8,\) has distribution w(d0,d\) and p|(6,\) has distribution wo(P) = dg (D)
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(i)  uj/(8,Ap) has distribution mg;(du|C;); i=1....n(p),

(iii) ul,...,un(p)|(6,}\,p) are independent,

(iv)  for i=l,...,n(p), duplicate u; a total of e; times and, with an abuse of notation,
denote them by ;s JEC;; i=1,...,n(p),
and (v)  GJ|(8,A,p,u) has distribution D (dG|a+ElsiSn6ui).

It follows than a posterior expectation of a function of (6,A,G) (and u) can be represented as
E=E[T(0,\,u)] where the expectation E is with respect to the coherent system specified by (i) to
(v). The Rao—Blackwell improvement of the integrand (estimator) T(6,A,u) is

(6.5) S(P)=E[T(0,A,w)|p].

Jensen's inequality for conditional distribution states that

Corollary 6.1. If ¢(.) is a convex function, E[c(T(8,h,u))]=E[c(S(p))]

where w(d0,d\,p) is defined by (i) above.

For a hierarchical location mixture of normals model (0 is a constant), Escobar and West
(1995) proposes a Gibbs sampler for a mixture of WPs to simulate the missing value u;.
MacEachern (1994) proposes a Gibbs sampler based on sampling a partition p which has a
mixture of WCR distribution (the mixing distribution being the posterior distribution of A|x) and
he also presents some numerical studies of his method. This corresponds to the case that
T(\u)=u; and according to Corollary 6.1, the Rao-Blackwell improved S(p)=E[u; |p] beats u;.
[Note however that MacEachern (1994) essentially uses skip—j partitions rather than the full-
information partition in his numerical examples.] The conditional distribution of u|p can be read
off from (i) to (v).

Except in isolated cases, sampling a partition p which has a mixture of WCR distribution
has difficulties; Example 6.2 is a case in point. Theorem 6.1 suggests a more natural Monte
Carlo method for evaluating posterior expectations. According to Theorem 6.1, the posterior
expectation can be written concisely as a mixture of three variables (8,A,p) with a mixing
distribution w(d0,dA,p) specified by (i) above. The issue is to sample the triple (6,A,p) from
w(d0,d\,p) sequentially.

The 1iidWCR is easy to implement. Select (0,A) from wt(d0,d\). Next, given (6,A),
simulate a WCR partition p with o ;(.) playing the role of a(.). The usual conjugate prior and
posterior analysis operates on each table [for a given (0,\)], and simulation can be done

u,0). Calculate A(n—1) [which

efficiently if ag;(du) is a conjugate prior for the model k;(.
depends on (6,M)]. Repeat to get (01,A,Py)s---(Oyp APy and A(n=1),...,Apq(n=1). An
iidWCR approximation to E[h(0,\,G)|X] is

(6.6) 2 kel O MaPOA=D/Z ) 4 Ak (=1),
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where L(G,)x,p)=fﬂ1(6,7\,G) D (dG| 0(.9,)\+2 ISiSn(p)eiﬁui) [H 1 SiSn(p)ne,K(dui | Cl)] .

The gWCR requires the construction of a Markov chain (61,A,p1),-...(0pp. AP
with a stationary distribution w(d6,dA,p) and uses X;_; sML(ek’xk’Pk)/M rather than the
weighted average (6.6) as an estimator. The Markov chain moves from a present state
(89-Mp-Pg) to the next state (6,A;,p;) as follows:

(6.7) Step 1. Given a present state (6,A,Pp), use a skip—j cycle to move p, to py;

the seating probability is defined with aeo’)‘o(') and ki(Xi u,0) playing the role of a(.) and
k(x;|u).

Step 2. Given (8,Aq,p;), sample (6,A) from (8,M)|py to get (B1,A).

The sampling of (8,\)|p may not be easy. If (6,\) has a density m'(6,A). The

conditional density of (0,A) given p is a weighted 7'(6,A),
(6.8) 90 2(PIT (.0 A (P)7 (0.1)dOd .
First is a case where a direct simulation from (6,\)| p is possible.
Example 6.1. A hierarchical location mixture of normals. This is the hierarchical
Bayesian mixture model considered by MacEachern (1994); see also Escobar and West (1995).
Here ki(.|u) is N(u,l1 /ri) where T;s are known. The prior can be specified by m(df,dA) which
degenerates at a constant for the 6 factor and is N(my, 1 /to) for the A factor. G|\ is a Dirichlet
process with an expectation a N(A,1/tg) distribution. Given A, the micro—predictive density of
X, given table C, m, (x,|C), ré£C, is N(u,,1/t,) where
(6.9) MC()»)=(IO)\+2JECIJ-XJ-)/ (TO*’ZjECtj)’ rc—1=to—1+(ro+2jectj)—l.
The conditional density of A|p is proportional to ¢, (p;)exp{—(to/2)(A-mg)?}, which simplifies
to a N(w(p),1/x(p)) density where

UP)=Z(cizn(p)li- N WP)=Z(izn(p)imi/TP);

m;= jECintj/ZjECitj’ and ti-1=fco-1+(2jecitj)‘1, i=1,....n(p).
Since Alp is an explicit N(u(p),1/t(p)), use the average of {E[h(A)|p,,], m=k+1,...k+M} to
x].
Remark 6.1. MacEachern (1994) proposed a seating probability for j seats at table éi (éo is

approximate the posterior mean E[h(\)

the empty table) proportional to (essentially) a [1+n(p)]-folded multiple integral

&/ jHOqun(p)HjEéqkr(xr|uq)a;\(duq)n(d7»), i=0,...,n(p).

This quantity can be called a "joint" weight. Given A, the independence of Ugs (see Lemma 4.1)

reduces the inner n(p)-folded integral to an n(p)—folded product of single integrals

(6.10) éixmosqsn(p)p}\(éq)n(dh), i=0,....n(p),
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where pk(é Q= erEé k(X [woy (du)}.
q

These expressions do not involve the predictive weight pr|Ci)’ and in view of the averaging
by m(dA) in (6.10), sampling a partition based on this seating probability is equivalent to
sampling a partition that has a mixture of WCR distribution. However, a mixture of WCR
distribution usually has complicated seating probabilities [see MacEachern (1994)]. Furthermore,
averaging out A implies that the evaluation of a conditional expectation given p is rarely easy
(see the discussions following Example 6.2).

The problem of sampling from (6,A)|p is often non-trivial even for natural mixture
models equipped with micro—conjugate priors. Note that pg3(C;) in (6.7) is the mixture density
of the observations Xj» JEC;, with mixing distribution ag ;(du), and pg 3 (C;) is often
summarized by a micro-sufficient statistic of a fixed dimension (the Cauchy kernel is notably

excluded), say s; for the ith table. The model is the following: s;|0,A are independent and
nonidentically distributed with densities that can be read from the expression for pg,(C;); the
prior density for (6,M) is 7w'(6,)A). Sampling the posterior density of (6,A) given the data s;,
i=1,...,n(p) can be done via the rejection method [see for example Chibb and Greenberg
(1995)]. However, it may take several rejections to produce an acceptable (68,A) since the
expected number of rejection is a prior number that is difficult to choose.

Another approach is to nest a Metropolis—Hastings rejection step within a Gibbs cycle
[Hastings (1970), Chib and Greenberg (1995); see also Brunner (1995)]. This procedure
replaces Step 2 in (6.7) by a randomization step:

(6.11) Step 2a. Sample (0%,A*) from m'(6,A). Let (81,A)=(0%A*) with probability
min{Qgs 3+(P1)/Pg, 1 (P1)-1}: otherwise (B1.h1)=(8g.Ao).

This algorithm accepts the new value (6%,1*) as (81,A1) if ¢g= 3+(p;) dominates G010 P1)-
and it retains a positive probability of accepting the new value (8*,A*) even if g )+(py) is
dominated by ¢ 0’)‘O(p1)' The last step allows the algorithm to avoid being caught at a local
maximum ¢90,k0(p1).

Example 6.2. A location model with a scale mixture of normals error. A scale

mixture of normals is heavy-tailed and could be an appropriate model for data with outliers.

8.u) is N(67,%;/u)

This model is also a stamping ground for regression problems. Here k;(.
where 0 is the "regression" parameter. To simplify the discussion, we assume that all variables
are univariate and the predictor z; and covariance matrix X; are a constant 1. The prior
specification is: 6 and G are independent, 6 is N(u, 1 /to) and G|6 is Dirichlet with shape

probability a gamma (a,1/b) distribution; a(R)>0. Given 6, the micro—posteriors are also

24



gamma: 719(du|C;) is gamma (a;,1/b;(6)) where
(6.12) a;=a+e;/2 and bi(6)=b+2—1[ZjECi(xj—ﬁi)z]+ei()_(i—6)2] for all 6.

The micro—predictive density me(xr|Ci) is a t-density with degrees of freedom 2a;, location 9,
and precision 2ai/bi(6), evaluated at x.. The implementation of the 1idWCR is rather straight
forward and was discussed. A gWCR requires an additional simulation from the conditional
density of 6|p proportional to do(p)exp{—ty(0—uy)?}. This conditional distribution is the
posterior distribution of 6 under the following sampling plan: 6 has density 7'(0), §i|6 isat-
density with df=2a;-1, location=6, and precision ei(Zai—l)/bi()_(i), i=1,...,n(p). From another
viewpoint, the posterior density of 6|p, say m'(8|p), is (proportional to) a product of
independent yet non-identically distributed t-densities and 7'(8). Given 6=0), the Gibbs cycle
gives p=p;. To get the next value of 8=0, sample 8=6* from N(uo,l/to). Accept 0% as 0
with probability min{dg«(p;)/Pg 0(p1),1 }; otherwise keep 0 as 0. In the present setting,
(6.13) Po+(P1/ b, (PD=T 1 <i<n(p 1)[bi(eo)/ b;(0%)]%.

Proceed with the next gWCR cycle to simulate p,|6;. Repeat to get a sequence of states
(01,p1), (05,p2),..., which will be the basis of the Markov chain Monte Carlo approximations.

Suppose one wishes to approximate the posterior distribution of the location parameter,
say E=/h(0)m(dB|x). Gelfand and Smith (1990) pointed out that the average of conditional
expectations E[h(em)|pm], m=k+1,...k+M (k is the warm-up time) is a Rao—Blackwell
improvement to the average of h(6 ), m=k+1,...k+M. This is good as long as the conditional
expectation E[h(_)|p,,] can be evaluated explicitly (see Example 6.1). However, for
hierarchical Bayesian mixture models, this is the exception rather than the norm (see Example
6.2). Often, the computation of E[h(Gm)|pm] requires a numerical routine such as Newton's
method, which drastically reduces the benefit of conditioning. For this reason, we shall use the
"marginal values" h(0y, ), h(0y,»)...., rather than the conditional expectations, as the marginal
values are already available in a realization of the Markov chain.

Figure 6.1 plots the cumulative distribution function of (6, ,0y,2,...) which
approximates the posterior distribution of 0; data are n=300 observations from standard normal
(column 1) and standard Cauchy (column 2) densities. Prior parameters are set at a= 1.5,
wp=0.5, t;=0.05, and 6,=4.22810 which is an observation from N(u,1 /to).

The warm-up time has little effect in this nested algorithm. When the parameter b
decreases to 0.005, a value which was found to having good resolution in approximating a
U(0,1) density, the cumulative distribution of 6 (dashed) becomes unacceptable. Table 6.1

summarizes the numerical result.
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Table 6.1 normal Cauchy
warm-up b mean SD mean SD
———————— 1.5 ~0.0876 0.10691 0.07403 0.13984
k=0 0.005 ~0.0084 0.10976 0.17813 0.19549
1.5 ~0.0390 0.04690 0.10091 0.08859
k=2,000 | 0.005 0.00472 0.01877 0.07193 0.01050
________ 1.5 ~0.0428 0.06649 0.08993 0.08338
k=5.000 10,005 0.03163 0.02847 0.04476 0.00671
1.5 ~0.03396 0.05079 0.12245 0.05832
k=50.000" 17 50 0.02497 0.03916 0.09724 0.04156

To estimate the mixture density, we note that given 0 and p, an estimate of the density
is given by [see (3.2)]
(6.14) Fo(t1P)=Zzin(py €3/ (0 M) Imp(t]Cy).
Figure 6.2 plots the average of fe(t|p)s evaluating at (8,p)=(0y.1,Py 1) (OksM-Pk+M)>

which is a Markov chain approximation of E[f(t

0,G)|x]. The convergence is fast and the
warm-up time has no effect.
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