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Abstract: When independent variables are measured with error, ordinary least squares regression can yield 

parameter estimates that are biased and inconsistent. This article documents an inflation of Type I error rate 

that can also occur. In addition to analytic results, a large-scale Monte Carlo study shows unacceptably high 

Type I error rates under circumstances that could easily be encountered in practice. A set of smaller-scale 

simulations indicate that the problem applies to various types of regression and various types of measurement 

error. The Canadian Journal of Statistics 37: 33-46; 2009 ? 2009 Statistical Society of Canada 

Re'sume': Lorsque les variables independantes sont mesurees avec erreur, la r6gression des moindres carr6s 

ordinaires peut conduire a une estimation biaisde et incoherente des parametres. Cet article montre qu'un 
accroissement de l'erreur de type I peut aussi se produire. En plus de resultats analytiques, une etude par 
simulations Monte-Carlo de grande envergure montre que, dans certaines conditions que nous pouvons 
rencontrer facilement en pratique, l'erreur de type I peut etre trop 61ev6e. Une autre 6tude de Monte-Carlo 
de moindre envergure suggere que ce probleme se rencontre aussi dans plusieurs types de regression et 

differents types d'erreur de mesure. La revue canadienne de statistique 37: 33-46; 2009 ? 2009 Societe 

statistique du Canada 

1. INTRODUCTION 
This is a story about something everyone knows, but few seem to appreciate. It is well known 
that when standard regression methods are applied to data in which the independent variables are 

measured with random error, serious difficulties can arise. Expressions of concern go back at least 
to Stouffer (1936), who observed that estimates of partial correlations can be biased when the 
variables for which one is controlling are measured with error. By the seventh edition of Statistical 
methods for research workers, Fisher (1938) was warning scientists about the problem, again in 
the context of partial correlation. For multiple regression proper, earlier discussions are reviewed 
and clarified by Cochran (1968), who shows that when the independent variables are measured 
with error, ordinary least squares estimates of the regression coefficients can be inconsistent and 
biased, even asymptotically; also see McCallum (1972). 

The misleading quality of measurement error in the independent variables has figured in 
one important political debate. Initial analyses of data from the Head Start program (Cicirelli, 
1969; Barnow, 1973) suggested that even controlling for socioeconomic status, students receiving 
a shorter (summer-only) version of the program performed worse on an educational test than 
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students who were not exposed to any version of the Head Start program. The conclusion was 
that Head Start could actually be harmful. This claim was challenged by Campbell & Erlbacher 

(1970) on the grounds that socioeconomic status was measured with error, and so attempts to 
control for it using ordinary least squares would not completely correct for differences between 
the treatment group and the non-randomized comparison group. 

In subsequent debate and re-analysis of the data allowing for measurement error (Magidson, 
1977, 1978; Bentler & Woodward, 1978), harmful effects are entirely ruled out, and disagreement 
is limited to whether the data provide evidence of a positive effect (not a negative effect) for 

White children receiving a summer-only version of the program. What we take from this example 
is that it is more difficult to get away with ignoring measurement error in data that have political 
significance. 

If measurement error is not to be ignored, it must be included in the statistical model. The mod 

elling of measurement error in the predictor variables has a long history, especially in economics; 
see Wald (1940), Madansky (1959), and Wickens (1972) for references to early writings. Today, 
there is a well-developed literature on regression models that incorporate measurement error; for 

example, see the discussions and references in Fuller (1987), Cheng & Van Ness (1999), Wansbeek 
& Meijer (2000), and Carroll et al. (2006). Many common measurement error models are special 
cases of the structural equation models that have long been popular in the social and biomedical 

sciences; see for example Joreskog (1978), Bollen (1989), and the generalizations of Skrondal & 
Rabe-Hesketh (2004), Muth6n (2002), and Muth6n & Muthdn (2006). Gustafson (2004) discusses 
the adjustment of more traditional regression methods to account for measurement error. 

So, it is widely recognized that measurement error can present a problem for ordinary least 

squares regression, and a class of high-quality alternatives is in place. But please glance at the 

regression text that is closest to hand. It may or may not contain a warning about measurement 

error, but look at the examples and sample data sets. You will be reminded that in practice, 
individuals at all levels of statistical sophistication are encouraged to apply ordinary least-squares 
regression to data where the predictor variables are obviously measured with error. 

When we shield our students and clients from technical difficulties in this manner, presumably 
we are guided by the famous principle "Essentially all models are wrong, but some are useful." 

(Box & Draper, 1987, p. 424). But the operative term here is some; Box's rule was never intended 
to justify the use of imperfect models in situations where their imperfections almost guarantee 
false conclusions. This article is a reminder of how misleading standard regression methods can 

be when the independent variables are measured with error. 

The main message is that if two independent variables in a regression are correlated, mea 

surement error in one of them can drastically inflate the Type I error rate in tests of the other 

predictor. This artefact is not observed in the case of simple regression, where ignoring measure 

ment error in the single predictor yields an estimated slope that is asymptotically biased toward 
zero. Familiarity with this case can actually lull the data analyst into a false sense of security, for 

it can give the impression that the effect of measurement error generally is to weaken the apparent 

relationships among true (error-free) variables. 

But with two or more independent variables, the effects of measurement error are more com 

plex. In particular, traditional methods of "controlling" for risk factors or potential confounding 

(lurking) variables are only partly successful. The result is that even when a predictor variable 

of interest is conditionally independent of the response given the risk factor, the usual test may 
still reject the null hypothesis with high probability. This holds under circumstances that can 

easily be encountered in practice, and applies to various types of regression and various types of 

measurement error. 

We focus upon Type I error rate rather than bias, because tests of statistical significance 
are often used in the biological and social sciences as a kind of filter, to reduce the amount of 
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random noise that gets into the scientific literature. In fact, we view this as the primary function 
of statistical hypothesis testing in the discourse of science. Essentially, P < 0.05 means that it 
is socially acceptable to speak. Therefore, when a common statistical practice can be shown to 
inflate the Type I error rate, there is a problem?a problem that may be taken seriously by empirical 
scientists who are unmoved by calculations of asymptotic bias. 

Of course there is a connection between asymptotic bias and Type I error rate. If the asymptotic 
bias occurs when the null hypothesis is true, and the estimated standard deviation of the estimator 
tends to zero under the incorrect model, then the power of the test to detect a non-existent effect 

goes to one, and the Type I error rate necessarily increases to unity. This accounts for passing 
references?for example by Fuller (1978, p. 55), Cochran (1968, p. 653), Carroll et al. (2006, 
pp. 52-53)?to incorrect Type I error rates and incorrect conclusions when measurement error is 

ignored. What we are doing in this article is documenting the connection and making it explicit 
for a particular class of examples. 

In Section 2, we revisit a canonical example with two independent variables, discussed by 
Cochran (1968). Cochran showed that when all the random variables involved are normal, ignoring 
measurement error in one of the predictors can produce an inconsistent least-squares estimate of 

the regression coefficient for the other predictor. We show that the inconsistency applies regardless 
of distribution, and that the Type I error rate of the usual F or t test tends almost surely to one as 
the sample size approaches infinity. These analytic results are supported by a large-scale Monte 
Carlo study showing unacceptably high Type I error rates, even for small amounts of measurement 
error and moderate sample sizes. 

Section 3 describes a set of smaller-scale simulations. First, we present an example in which 

ignoring measurement error results in rejection of the null hypothesis virtually always when the 
null hypothesis is false?but with the sample regression coefficient having the wrong sign. Then, 
we combine references to the literature and small Monte Carlo studies to show that ignoring 
measurement error in the independent variables can inflate Type I error rate for various types of 

regression (such as logistic regression and Cox proportional hazards regression for survival data), 
and various types of measurement error, including classification error for categorical independent 
variables. This calls into question many non-experimental studies which claim to have "controlled" 
for potential confounding variables or risk factors using standard tools. This issue is particularly 
troublesome in epidemiologic studies (Fewell, Smith & Sterne, 2007). 

Modelling measurement error is preferable to ignoring it, and good solutions are available. 
However, the typical data set has only a single measurement of each predictor variable. In the 
absence of additional information, this means models that include measurement error will not be 
uniquely identified in the model parameters, so that consistent estimation of the model parameters 
is impossible. For linear regression with classical additive measurement error, a simple solution is 
to measure the independent variables twice. If it can safely be assumed that errors of measurement 
on different occasions are uncorrelated, appropriate methods can be applied in a routine manner. 

2. INFLATION OF TYPE I ERROR RATE IN LINEAR REGRESSION 
Consider a multiple regression model in which there are two independent variables, both measured 
with additive error (a classical measurement error model). This situation has been thoroughly 
studied, notably by Cochran (1968), but the following is a bit more general than usual. 

Independently for / = 1, ..., n, let 

WU2 

A> + j8iXu+ftX/,2 + 6; 

vi + Xit\ +<5/j 

V2 + X/,2+5i,2, (1) 

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique 

This content downloaded from 142.150.190.39 on Mon, 21 Oct 2013 21:32:33 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


36 BRUNNER AND AUSTIN Vol. 37, No. 1 

where fio, f$\, and are unknown constants (regression coefficients), and 

*/,2 

Var 

*/,2 

= <p 
01.1 01,2 

01.2 02,2 

k2 
Var 

hi 

= e 0i,\ oU2 

#1,2 #2,2 

E[ t] = 0 Var [6/] = a2. 

The true independent variables are \ and X-u2, but they are latent variables that cannot be 
observed directly. They are independent of the error term 6/ and of the measurement errors i 
and <SZ?2; the error term is also independent of the measurement errors. The constants v\ and v2 

represent measurement bias. For example, let \ be true average minutes of exercise per day for 

subject /, and let Wjj be reported average minutes of exercise. Then v\ is the mean amount by 
which people exaggerate their exercise times. 

Also, it is reasonable to allow the measurement errors to be correlated. Again, suppose 
that Xij is true amount of exercise and is reported amount of exercise, while X/,2 is true 

consumption of snack food and W^2 is reported consumption. If people who exaggerate how 
much they exercise tend to under-report how much snack food they eat, the covariance parameter 

01,2 would be negative. 

When a model such as (1) holds, all one can observe are the triples (W^\, W/,2, Yi) for i = 

1,..., n. Even if all the intercepts and expected values were zero or known, it would be impossible 
to estimate the model parameters uniquely without additional information, and such information 
is usually unavailable in practice. We view this as a shortcoming of the data, not of the model. 

The model could well be approximately correct, but the variables that are measured do not allow 

all the model parameters to be recovered, even from an infinite number of cases. 

Suppose the interest is in testing whether X/t2 is related to Yi, conditionally on the value of 

X/, i; that is, the null hypothesis is Ho : = 0. The parameters of Model (1) cannot be estimated 

from the available data, so the analyst takes as a surrogate for X^\ and W/,2 as a surrogate 

for Xi 2, fits the incorrect model 

Yi=Po + P\WiA+/32Wi,2 + ei (2) 

by ordinary least squares, and (assuming normal) tests the null hypothesis Ho : @2 = 0 using 
the usual t or F-test. Gustafson (2004) calls this the "naive" approach, and indeed it is. 

Notice that the same symbols are deliberately used for the regression coefficients in the correct 

Model (1) and the incorrect Model (2). This is because when there is measurement error in the 

independent variables, estimators and tests based on Model (2) are really just ad hoc methods for 

the regression coefficients of the more realistic but elusive Model (1). 

Suppose that Model (1) is correct, and that Ho : P2 = 0 is true. We now observe that except 
under special circumstances, the least squares quantity P2 based on Model (2) converges almost 

surely to a quantity different from zero as the sample size increases, with the F-value of the 

standard test going to zero and the Type I error rate going to 1. 

2.1. Almost Sure Disaster 

The ordinary least-squares estimate P2 is a function of the sample variance-covariance 

matrix, which by the Strong Law of Large Numbers converges almost surely to the true 
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variance-covariance matrix of the observed data. This variance-covariance matrix is in turn 

a function of the parameters of the true Model (1). So by a continuity argument, the ordinary 
least-squares estimate converges almost surely to the corresponding composite function of the 
true model parameters. 

Our focus is upon Type I error rate for the present, so we examine the case where Ho : ft = 0 
is true. Setting ft = 0 and simplifying, we find that as n tends to infinity, 

~ a.s. 
_ft(01,201,1 

~ 

01,101,2)_ _ ft(01,201,1 
~ 

01,101,2) ^ Pl ~* 
(01,1 +01,l)(02,2 + 02,2)~ (01,2 +01,2)2 

~ 
|4> + 0| 

Expression (3) is the asymptotic bias of ft as an estimate of the true regression parameter ft, 
in the case where ft = 0. It does not depend upon any of the expected value terms in Model (1), 
and it is zero only if ft = 0 or if 0i,20i,i = 01,101,2- The denominator will be positive if at least 
one of 4> and 0 are positive definite; this condition is required for convergence. 

Note that if 0ii2 = 01,2 = 0, there is no correlation between either the measurement errors 

or the latent independent variables. In this case there is no asymptotic bias in ft under the null 

hypothesis, and in Section 2.2 we will see that there is also no inflation of the Type I error rate. 

The least-squares quantity ft is the numerator of the /-statistic commonly used to test Ho : 

ft = 0 based on the incorrect Model (2). The denominator, the standard error of ft, is just the 

square root of the quantity Mean Squared Error multiplied by the (3,3) element of (X'X)~l. 
Writing this denominator as Un/*Jn and using the same approach that led to (3), we find that 

as a/Wi + 0l,i)(^(0u |0| + 01,11*1) + I* + ?\(o-2 + 2(/320 + ft/q)2) 
u ^ _y-?- (4) 

l* + ei 

again provided that at least one of * and 0 is positive definite. Consequently, the denominator 

converges to zero, the absolute value of the /-statistic tends to infinity, and the associated P-value 

converges almost surely to zero. That is, we almost surely commit a Type I error. 

2.2. A Monte Carlo Study of Type I Error Rate Inflation 

The preceding result applies as n ?> oo. To get an idea of how much the Type I error rate might 
be inflated in practice, we conducted a large-scale Monte Carlo study in which we simulated data 
sets from Model (1) using various sample sizes, probability distributions and parameter values. 

Since Expression (3) for the asymptotic bias does not depend on any of the expected value 
terms, we set all expected values to zero for the simulations, except for an arbitrary intercept 

ft = 1 in the latent regression equation. Also, we let 0i?2 = 0, so there is no correlation between 
the measurement errors. 

This is a complete factorial experiment with six factors. 

1. Sample size: There were five values; n = 50, 100, 250, 500, and 1,000. 
2. Correlation between latent (true) independent variables: Letting R\, 7?2, and R3 be indepen 

dent random variables with mean zero and variance 1, the latent independent variables were 

generated as follows: 

X\ = y/l 
- 

0i,2 R\ + a/0i,2 #3 and 

X2 = V1 -01,2*2 + \/0u#3, (5) 

yielding Var(Zj) = Var(X2) = 1 and a correlation of 01>2 between Xi and X2. A quiet but 

important feature of this construction is that when 0ii2 = 0, Xi and X2 are independent, even 
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when the distributions are not normal. There were five correlation values: 0i 2 = 0.00, 0.25, 
0.75, 0.80, and 0.90. 

3. Variance explained by X\\ With P\ = 1, fi2 = 0 and Var(Xi) = 0ij = 1 we have Var(T) = 

1 + or2, so that the proportion of variance in the dependent variable that comes from X\ is 
We used this as an index of the strength of relationship between X\ and Y, and adjusted 

it by varying the value of a2. There were three values of explained variance: 0.25, 0.50, and 
0.75. 

4. Reliability ofW\: In classical psychometric theory (e.g., Lord & Novick, 1968) the reliability 
of a test is the squared correlation between the observed score and the true score. It is also the 

proportion of variance in the observed score that comes from the true score. From Model (1), 
we have 

2 

_ 1 " 

i+0lfr 

Thus one may manipulate the reliability by varying the value of the error variance 0\51. Five 

reliability values were employed, ranging from lackluster to stellar: 0.50, 0.75, 0.80, 0.90, and 

0.95. 

5. Reliability ofW2: The same five values were used: 0.50, 0.75, 0.80, 0.90, and 0.95. 

6. Base distribution: In all the simulations, the distribution of the errors in the latent regression 
(et ) are normal; we have no interest in revisiting the consequences of violating the assumption 
of normal error in multiple regression. But the distributions of the latent independent variables 

and measurement errors are of interest. We constructed the measurement error terms by mul 

tiplying standardized random variables by constants to give them the desired variances. These 

standardized random variables, and also the standardized variables R\, R2, and R3 used to 

construct X\ and X2?see Equation (5)?come from a common distribution, which we call 

the "base" distribution. Four base distributions were examined. 
Standard normal. 

Student's t with degrees of freedom 4.1, scaled to have unit variance. 

Uniform on the interval (?a/3, a/3), yielding mean zero and variance 1. 

Pareto (density f(x) = a/xa+x for x > 1) with a = 4.1, but standardized. 

2.2.1. Distributions and base distributions 

Because the simulated data values are linear combinations of standardized random variables from 

the base distribution, the base distribution is the same as the distribution of the simulated data 

only for the normal case. Otherwise, the independent variables (both latent and observed) are 

nameless linear combinations that inherit some of the properties of the base distribution. The t 

base distribution yielded heavy-tailed symmetric distributions, the Pareto yielded heavy-tailed 

nonsymmetric distributions, and the uniform yielded light-tailed distributions. 

2.2.2. Results 

Again, this is a complete factorial experiment with 5x5x3x5x5x4 = 7,500 treatment 

combinations. Within each treatment combination, we independently generated 10,000 random 

sets of data, yielding 75 million simulated data sets. For each data set, we ignored measurement 

error, fit Model (2) and tested Ho : fi2 ? 0 with the usual Mest. The proportion of simulated data 

sets for which the null hypothesis was rejected at a = 0.05 is a Monte Carlo estimate of the Type 
I error rate. 

Considerations of space do not permit us to reproduce the entire set of results here. 

Instead, we give an excerpt that captures their essential features, referring the reader to 

[Corr^j, WiA)f 
= 01,1 
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Table 1: Estimated Type I error rates when independent variables and measurement errors are all normal, 

and reliability of W\ and W2 both equal 0.90. 

Correlation between X\ and X2 

N 0.0 0.2 0.4 0.6 0.8 

25% of variance in Fis explained by Xi 

50 0.0476+ 0.0505+ 0.0636 

100 0.0504+ 0.0521+ 0.0834 

250 0.0467+ 0.0533+ 0.1402 

500 0.0468+ 0.0595+ 0.2300 

1,000 0.0505+ 0.0734 0.4094 

50% of variance in Y is explained by X\ 

50 0.0460+ 0.0520+ 0.0963 

100 0.0535+ 0.0569+ 0.1461 

250 0.0483+ 0.0625 0.3068 

500 0.0515+ 0.0780 0.5323 

1,000 0.0481+ 0.1185 0.8273 

75% of variance in Fis explained by X] 

50 0.0485+ 0.0579+ 0.1727 

100 0.0541+ 0.0679 0.3101 

250 0.0479+ 0.0856 0.6450 

500 0.0445+ 0.1323 0.9109 

1,000 0.0522+ 0.2179 0.9959 

+Not significantly different from 0.05, Bonferroni corrected for 7,500 tests. 

www. utstat. toronto . edu/ ~brunner/MeasurementError for the rest. On the Web, 

the full set of results is available in the form of a six-dimensional table with 7,500 cells, and also 
in the form of a plain text file with 7,500 lines, suitable as input data for further analysis. Complete 
source code for our special-purpose Fortran programs is also available for download, along with 
other supporting material. 

Table 1 shows the results when all the variables are normally distributed and the reliabilities 
of both independent variables equal 0.90; that is, only 10% of the variance of the independent 
variables arises from measurement error. In the social and behavioural sciences, a reliability of 

0.90 would be considered impressively high, and one might think there was little to worry about. 
In Table 1, we see that except when the latent independent variables Xi and X2 are uncorrelated, 

applying ordinary least squares regression to the corresponding observable variables W\ and W2 
results in a substantial inflation of the Type I error rate. As one would predict from Expression (3) 
with 0i,2 = 0, the problem becomes more severe as X\ and X2 become more strongly related, 
as Xi and Y become more strongly related, and as the sample size increases. We view the Type 
I error rates in Table 1 as shockingly high, even for fairly moderate sample sizes and modest 

relationships among variables. 
This same pattern of results holds for all four base distributions, and for all twenty-five 

combinations of reliabilities of the independent variables. In addition, the Type I error rates 

0.0715 0.0913 

0.0940 0.1294 

0.1624 0.2544 

0.2892 0.4649 

0.5057 0.7431 

0.1106 0.1633 

0.1857 0.2837 

0.3731 0.5864 

0.6488 0.8837 

0.9088 0.9907 

0.2089 0.3442 

0.3785 0.6031 

0.7523 0.9434 

0.9635 0.9992 

0.9998 1.00000 
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increase with decreasing reliability of W\, and decrease with decreasing reliability of W2 (the 
variable being tested). The distribution of the error terms and independent variables does not 
matter much, though average Type I error rates are slightly lower when the base distribution is 
the skewed and heavy-tailed Pareto; the marginal mean estimated Type I error rate was 0.37 for 
the Pareto, compared to 0.38 for the Normal, t and Uniform. 

3. FURTHER DIFFICULTIES 
3.1. Significance in the Wrong Direction 

Consider Model (1) again. Let the covariance between X\ and X2 be positive, the partial relation 

ship between X\ and Fbe positive, and the partial relationship between X2 and Fbe negative. That 

is, 0i,2 > 0, fi\ > 0, and /32 < 0. Again, suppose we ignore measurement error and fit Model (2) 
with ordinary least squares, and test Ho : fi2 = 0. We now describe a simulation showing how 
small negative values of /32 can be overwhelmed by the positive relationships between Xi and 

X2 and between Xi and Y, leading to rejection of the null hypothesis at a high rate, accompanied 
by a positive value of fi2. 

This kind of "Type III error" (Kaiser, 1960) is particularly unpleasant from a scientist's 

perspective, because the reality is that for each value of the first independent variable, the second 

independent variable is negatively related to the dependent variable. But application of the standard 
statistical tool leads to the conclusion that the relationship is positive?the direct opposite of the 
truth. Almost certainly, such a finding will muddy the literature and interfere with the development 
of any worthwhile scientific theory. 

As in the first set of simulations, we set all expected values in Model (1) to zero except for the 

intercept fio = 1. We also let #1,2 
= 0, fi\ = l,and0ij = 02,2 = 1. We then employed a standard 

normal base distribution, together with a sample size and set of parameter values guaranteed to 
cause problems with Type I error: n = 500, 0i,2 = 0.90, a2 = 1/3 (so that Xi explains 0.75 of 

the variance in Y), 6\,\ = 1 (so that the reliability of W\ is 0.50), and #2,2 
= 1/19 (so that the 

reliability of W2 is 0.95). 
We then varied fi2 from minus one to zero, generating 10,000 data sets for each value of fi2. 

We fit Model (2) to each data set and tested Ho : f32 = 0 at a = 0.05 with the usual Mest. Each 

test was classified as significant with fi2 > 0, significant with fi2 < 0, or nonsignificant. 

Figure 1 shows the results. For substantial negative values of fi2, the null hypothesis Ho : fi2 = 

0 is rejected at a high rate with fi2 < 0, leading to the correct conclusion even though the model 

is wrong. As the value of p>2 increases, the proportion of significant tests decreases to near zero 

around /32 = ?0.76. Then for values of fi2 closer to zero (but still negative), the null hypothesis 
is increasingly rejected again, but this time with fi2 > 0, leading to the conclusion of a positive 

relationship, when in fact it is negative. This example shows how ignoring measurement error in 

the independent variables can lead to firm conclusions that are directly opposite to reality. 

3.2. The Generality of the Problem 

We have illustrated inflation of the Type I error rate for the normal linear model with sim 

ple additive measurement error, but the problem is much more general. We suggest that re 

gardless of the type of measurement error and regardless of the statistical method used, ig 

noring measurement error in the independent variables can seriously inflate the Type I error 

rate. We will now support this assertion by references to the literature, supplemented by a 

collection of quick, small-scale Monte Carlo studies. All the simulations in this section were 

carried out using R Version 2.1.1 (R Development Core Team, 2006). Code is available at 

www.utstat.toronto.edu/~brunner/MeasurementError. 
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o 

o d 

With p2 > 0 

With p2 < 0 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 

Figure 1: Probability of rejecting H0 : ft = 0. 

3.2.1. Logistic regression with additive measurement error 

In this simulation?also see Fewell, Smith & Sterne (2007)?we constructed data sets with a pair 
of latent independent variables Xi and X2, and corresponding manifest variables W\ and W2, 

using a normal base distribution and the troublesome * and 0 values of Section 3.1. We then 
constructed a binary dependent variable Y, with the log odds of Y = 1 equal to ft + Pi X\ + ft ^2, 
where ft = ft = 1 and ft = 0. Ignoring measurement error, we fit a standard logistic regression 
model with the log odds of Y = 1 equal to ft + Pi W\ + ft W2, and used a likelihood ratio test 
of Ho : ft = 0. This is parallel to what we did with ordinary least squares regression. 

In 1,000 simulations with n = 250, we incorrectly rejected the null hypothesis 957 times. This 
shows that the problem described in this article applies to logistic regression as well as to the 
normal linear model. 

3.2.2. Normal linear regression with censored independent variables 

Austin & Brunner (2003) describe inflation of the Type I error rate for the case where an inde 

pendent variable has a "cutoff?a value that is recorded for the independent variable if it equals 
or exceeds the cutoff value. The inflation of Type I error rate occurs when the one attempts to test 
another variable that is correlated with the true version of the censored variable, while "control 

ling" for the censored version with ordinary regression. If one views the censoring as an obscure 

type of measurement error, this fits neatly into the framework of the present article. 

3.2.3. Normal linear regression and logistic regression with categorized independent 

The most common variant of this data analytic crime arises when independent variables are split 
at the median and converted to binary variables. The loss of information about the independent 
variables is a type of measurement error, albeit one that is deliberately introduced by the data 

analyst. Maxwell & Delaney (1993) show how Type I error rate can be inflated in this situation. 
While their argument depends upon a multivariate normal distribution for the data, in fact the 
inflation of Type I error rate does not depend upon the distribution (apart from the existence of 

moments). Median splitting the independent variables has also been shown to inflate the Type I 
error rate in logistic regression (Austin & Brunner, 2004). 

variables 
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Table 2: Joint probabilities for the classification error model. 

Vol. 37, No. 1 

X2 0 1 

0 0.40 0.10 

1 0.10 0.40 

Xx 0 1 

0 0.30 0.20 

1 0.20 0.30 

W2 

X2 0 1 

0 0.45 0.05 

1 0.05 0.45 

3.2.4. Normal linear regression, ranking the independent variable 

We have unpublished work showing that in terms of Type I error rate, median splits are worse than 

dividing the independent variable into three categories, three categories are worse than four, and 
so on. The limiting case is when an independent variable is ranked, and one performs a regression 
controlling for the ranked version, rather than for the independent variable itself. Even here there 
can be substantial inflation of the Type I error rate. 

We constructed data sets according to Model (1) again using the $ values of Section 3.1, 
a reliability of 0.95 for W2, a normal base distribution, fio = f3\ = 1 and fi2 = 0. However, the 
observable independent variable W\ contained the ranks of X\, rather than X\ plus a piece of 
random noise. As usual, we fit the incorrect regression model (2) and tested Hq : fi2 = 0 with the 
usual Mest. In 1,000 simulated data sets, the null hypothesis was rejected 544 times at the 0.05 
level. 

3.2.5. Log-linear models with classification error 

For categorical independent variables, the most natural kind of measurement error is classification 
error (Gustafson, 2004), in which the recorded value of a variable is different from the true one. 

In this case, the structure of measurement error corresponds to a matrix of transition probabilities 
from the latent variable to the observable variable. 

Now we construct an example to show that ignoring measurement error can lead to unac 

ceptable inflation of the Type I error rate in this situation. Again there are two correlated latent 
variables X\ and X2, only this time they are binary. The corresponding observable variables W\ 
and W2 are also binary. There is a binary dependent variable Y that is dependent upon X\ and 

conditionally independent of X2. 
The components of the measurement error model are two-way tables of the joint probabilities 

of X\ and X2, X\ with W\, and X2 with W2. The values we used are given in Table 2. 

The data were constructed by first sampling an (X\, X2) pair from a multinomial distribution, 
and then simulating W\ conditionally on Xi and W2 conditionally on X2. Finally, Y was generated 

conditionally on X\ using P(Y = 0\X{ =0) = P(Y = l\X\ = 1) = 0.80. Repeating this process 
n = 250 times yielded a simulated data set of (W\, W2, Y) triples. We then tested for conditional 

independence of W2 and Y given W\, as a surrogate for the conditional independence of X2 and Y 

given X\. Specifically, we used R's loglin function to fit a hierarchical loglinear model with an 

association between W\ and W2, and between W\ and Y. Comparing this to a saturated model, we 

calculated a large-sample likelihood ratio test of conditional independence with two degrees of 

freedom. In 1,000 independent repetitions of this experiment, the null hypothesis was incorrectly 

rejected 983 times at the 0.05 level. 

3.2.6. Factorial ANOVA with classification error 

In an unbalanced factorial design with a quantitative dependent variable, a common approach? 

say using the Type III sums of squares of SAS proc glm (SAS Institute Inc., 1999)?is to 
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test each main effect controlling for all the others as well as the interactions. We now report a 

quick simulation showing that in a two-factor design, if factor level membership is subject to 
classification error in one of the independent variables, then the Type I error rate may be inflated 
in testing for a main effect of the other independent variable. 

We started with two correlated binary latent independent variables Xi and X2, and their 

corresponding observable versions W\ and W2, constructed according to the same classification 
error model used for loglinear models; see Table 2. We then generated the dependent variable as 
Y = 1 + Xi + e, where e is Normal with mean zero and variance 1 /4. Because Xi is Bernoulli 
with probability one-half, its variance is also 1 /4, and it accounts for half the variance in Y. 

Conditionally upon the latent (true) independent variable Xi, Yis independent of X2 and there is 
no interaction. 

Repeating this process n = 200 times yielded a simulated data set of(W\, W2, Y) triples. As 

usual, we conducted the analysis using the observable variables W\ and W2 in place of Xi and 

X2 respectively, ignoring the measurement error. We fit a regression model with effect coding 
and a product term for the interaction, and tested for a main effect of W2 at the 0.05 level with 
the usual F test. Again, this is equivalent to the test based on Type III sums of squares in SAS 
proc glm. Conducting this test on 1,000 simulated data sets, we incorrectly rejected the null 

hypothesis 995 times. 

3.2.7. Discarding data to get equal sample sizes in factorial ANOVA 

In Section 2, we saw that inflation of the Type I error rate arises not just from measurement error 
in the independent variables, but from the combination of correlated independent variables and 

measurement error in the one for which one is attempting to "control." Now sometimes, researchers 

(not statisticians, we hope) randomly discard data from observational studies to obtain balanced 
factorial designs, and it might be tempting to try this as a means of eliminating the correlation 
between independent variables. Unfortunately it is association between the latent independent 
variables that is the source of the problem. 

To verify this, we simulated random sets of data exactly as in the last example, except that 
when one of the four combinations of W\, W2 values reached 50 observations, we discarded all 

subsequent observations in that cell, continuing until we had 50 data values in each of the four 
cells. Then we tested for a main effect of W2 (as a surrogate for X2) exactly as before. The result 
was that we wrongly rejected the null hypothesis 919 times in 1,000 simulated data sets. 

3.2.8. Proportional hazards regression with additive measurement error 

The last mini-simulation shows that the problem of inflated Type I error rate extends to survival 
analysis. Proceeding as in earlier examples, we constructed data sets with a pair of latent inde 
pendent variables Xi and X2, and also corresponding manifest variables using a normal base 
distribution and the 4> and 0 values of Section 3.1. We then sampled the dependent variable 
Y from an exponential distribution with mean exp(ft + ft Xi + ftX2), with ft = ft = 1 and 

ft = 0. So again, Y is conditionally independent of X2. We then right-censored all the data 
for which Y > 5 (Type I censoring), so that around a quarter of the data in each data set were 
censored. 

Ignoring the measurement error, we fit a proportional hazards model (Cox, 1972) with R's 
coxph function, using W\ and W2 as the independent variables, testing the relationship of W2 
to Y controlling for W\. In 1,000 simulated data sets with n = 100, we incorrectly rejected the 
null hypothesis 994 times, showing that proportional hazards regression, too, is subject to se 
vere inflation of the Type I error rate when measurement error in the independent variables is 
ignored. 

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique 

This content downloaded from 142.150.190.39 on Mon, 21 Oct 2013 21:32:33 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


44 BRUNNER AND AUSTIN Vol. 37, No. 1 

4. DISCUSSION 
We are not suggesting that ignoring measurement error always inflates the Type I error rate to 
the degree indicated by our Monte Carlo results. Usually there are more than two independent 
variables; in this case, ordinary least-squares estimates of regression parameters are still asymp 

totically biased, but the pattern is complex, with many parameters having the potential to diminish 
or magnify the effects of others. Still, one cannot escape the conclusion that measurement error 
in the independent variables may inflate the Type I error rate to an unacceptable degree. Given 

this, it seems unduly optimistic to continue applying standard regression and related methods in 
the presence of obvious measurement error. 

For linear models with measurement error, we prefer to use classical structural equation 
modelling of the kind described by Joreskog (1978) and Bollen (1989), rather than, for example, the 

arguably more sophisticated methods of Fuller (1987). This is partly because structural equation 
models are easier to present to students and clients, and partly because of the availability of high 
quality commercial software such as LISREL (Joreskog & Sorbom, 1996), AMOS (Arbuckle, 
2006), and SAS proc calis (SAS Institute Inc., 1999). There is also a structural equation modelling 
package for R (Fox, 2006). Estimation and testing methods have been developed for categorical 
variables, both latent and observed (Muth6n, 2002; Skrondal & Rabe-Hesketh, 2004; Lee & Xia, 
2006; Muthdn & Muthdn, 2006). Our hope is that tools like these will soon become part of the 
statistical mainstream. 

However, it is not just a matter of applying new statistical methods to the same old data. 
In many cases, a different kind of data set is required. The reason is that for even the simplest 

measurement error models, multiple measurements of the variables are required for the model 
to be identified; see for example the discussions by Fuller (1987) and Bollen (1989). A simple 
solution for linear regression with measurement error is measure each independent variable twice, 

preferably on two different occasions and using different methods or measuring instruments? 

perhaps as in Campbell & Fiske's (1959) "multi-trait multi-method matrix." If it can be assumed 
that the measurement errors on the two occasions are uncorrelated, scientists and undergraduates 

without much mathematical background should have no trouble using commercially available 
software to carry out a valid measurement error regression. 

ACKNOWLEDGEMENT 
This work was supported by the Natural Sciences and Engineering Research Council of Canada. 

BIBLIOGRAPHY 
J. L. Arbuckle (2006). AMOS 7.0 User's Guide, SPSS Inc., Chicago. 

P. C. Austin & L. J. Brunner (2003). Type I error inflation in the presence of a ceiling effect. American 

Statistician, 57, 97-104. 

P. C. Austin & L. J. Brunner (2004). Inflation of the Type I error rate when a continuous confounding variable 

is categorized in logistic regression analysis. Statistics in Medicine, 23, 1159-1178. 

B. S. Barnow (1973). The effects of Head Start and socioeconomic status on cognitive development of 

disadvantaged children. Doctoral dissertation, University of Wisconsin, Madison. 

P. M. Bentler & J. A. Woodward (1978). A Head Start re-evaluation: Positive effects are not yet demonstrable. 

Evaluation Quarterly, 2, 493-510. 

K. A. Bollen (1989). Structural Equations with Latent Variables, Wiley, New York. 

G. E. P. Box & N. R. Draper (1987). Empirical Model-Building and Response Surfaces. Wiley, New York. 

D. T. Campbell & A. Erlbacher (1970). How regression artifacts in quasi-experimental evaluations can 

mistakenly make compensatory education programs look harmful. In The Disadvantaged Child: Com 

pensatory Education: A National Debate, Vol. 3, J. Hellmuth, editor, Brunner/Mazel, New York, pp. 

185-210. 

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs 

This content downloaded from 142.150.190.39 on Mon, 21 Oct 2013 21:32:33 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


2009 INFLATION OF TYPE I ERROR 45 

D. T. Campbell & D. W. Fiske (1959). Convergent and discriminant validation by the multi-trait multi-method 

matrix. Psychological Bulletin, 56, 81-105. 

R. J. Carroll, D. Ruppert, L. A. Stefanski & C. M. Crainiceanu (2006). Measurement Error in Nonlinear 

Models: A Modern Perspective (2nd ed.), Chapman & Hall/CRC, Boca Raton, FL. 

C. L. Cheng & J. W. Van Ness (1999). Statistical Regression with Measurement Error, Chapman & Hall, 
London. 

V. G. Cicirelli (1969). The Impact of Head Start: An Evaluation of the Effects of Head Start on Children's 

Cognitive and Affective Development, Ohio University and Westinghouse Learning Corporation, Athens, 
Ohio. 

W. G. Cochran (1968). Errors of measurement in statistics. Technometrics, 10, 637-666. 

D. R. Cox (1972). Regression models and life tables (with discussion). Journal of the Royal Statistical Society 
Series B, 34, 187-202. 

Z. Fewell, G. D. Smith & J. A. C. Sterne (2007). The Impact of Residual and Unmeasured Confounding in 

Epidemiologic Studies: A Simulation Study. American Journal of Epidemiology, 166, 646-655. 

R. A. F. Fisher (1938). Statistical Methods for Research Workers (7th ed.), Oliver and Boyd, London. 

J. Fox (2006). Structural equation modeling with the sem package in R. Structural Equation Modelling, 13, 
465-486. 

R Gustafson (2004). Measurement Error and Misclassification in Statistics and Epidemiology?Impacts and 

Bayesian Adjustments, Chapman & Hall/CRC, Boca Raton, USA. 

W. A. Fuller (1987). Measurement Error Models, Wiley, New York. 

K. G. Joreskog (1978). Structural analysis of covariance and correlation matrices. Psychometrika, 43, 443 

477. 

K. G. Joreskog & D. Sorbom (1996). LISREL 8: Structural Equation Modelling with the SIMPLIS Command 
Language, Scientific Software International, London. 

H. F. Kaiser (1960). Directional statistical decisions. Psychological Review, 67, 160-167. 

S. Y. Lee & Y. M. Xia (2006). Maximum likelihood methods in treating outliers and symmetrically heavy 
tailed distributions for nonlinear structural equation models with missing data. Psychometrika, 71, 565 
595. 

F. M. Lord & M. R. Novick (1968). Statistical Theories of Mental Test Scores, Addison-Wesley, Reading. 
A. Madansky (1959). The fitting of straight lines when both variables are subject to error. Journal of the 

American Statistical Association, 54, 173-205. 

J. Magidson (1977). Towards a causal model approach to adjusting for pre-existing differences in the non 

equivalent control group situation: A general alternative to ANCOVA. Evaluation Quarterly, 1,511-520. 

J. Magidson (1978). Reply to Bentler and Woodward: The .05 level is not all-powerful. Evaluation Quarterly, 
2, 399-420. 

S. E. Maxwell & H. D. Delaney (1993). Bivariate median splits and spurious statistical significance. Psy 
chological Bulletin, 113, 181-190. 

B. T. McCallum (1972). Relative asymptotic bias from errors of omission and measurement. Econometrica, 
40, 757-758. 

B. O. Muthen (2002). Beyond SEM: General latent variable modelling. Behaviormetrika, 29, 81-117. 

L. K. Muth6n & B. O. Muthen (2006). Mplus User's Guide (4th ed.), Muthen and Muth6n, Los Angeles. 
R Development Core Team (2006). R: A language and environment for statistical computing. R Foundation 

for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org. 
SAS Institute, Inc. (1999). SAS/STAT User's Guide, Version 8, SAS Institute, Inc., Cary, NC, pp. 3884. 

A. Skrondal & S. Rabe-Hesketh (2004). Generalized Latent Variable Modeling: Multilevel, Longitudinal, 
and Structural Equation Models, Chapman & Hall, London. 

S. A. Stouffer (1936). Evaluating the effect of inadequately measured variables in partial correlation analysis. 
Journal of the American Statistical Association, 31, 348-360. 

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique 

This content downloaded from 142.150.190.39 on Mon, 21 Oct 2013 21:32:33 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


46 BRUNNER AND AUSTIN Vol. 37, No. 1 

A. Wald (1940). The fitting of straight lines if both variables are subject to error. Annals of Mathematical 

Statistics, 11,284-300. 

T. J. Wansbeek & E. Meijer (2000). Measurement Error and Latent Variables in Econometrics, Elsevier, 

New York. 

M. R. Wickens (1972). A note on the use of proxy variables. Econometrica, 40, 759-761. 

Received 1 July 2007 

Accepted 29 August 2008 

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs 

This content downloaded from 142.150.190.39 on Mon, 21 Oct 2013 21:32:33 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 33
	p. 34
	p. 35
	p. 36
	p. 37
	p. 38
	p. 39
	p. 40
	p. 41
	p. 42
	p. 43
	p. 44
	p. 45
	p. 46

	Issue Table of Contents
	The Canadian Journal of Statistics / La Revue Canadienne de Statistique, Vol. 37, No. 1 (March/mars 2009), pp. 1-142
	Front Matter
	Editor's report / Rapport du Rédacteur en chef [pp. 1-4]
	Log-rank permutation tests for trend: saddlepoint
p
-values and survival rate confidence intervals
[pp. 5-16]
	Discrete-time survival trees / Arbres de survie à temps discret [pp. 17-32]
	Inflation of Type I error rate in multiple regression when independent variables are measured with error [pp. 33-46]
	An exact multinomial test for equivalence [pp. 47-59]
	Semiparametric inference for survival models with step process covariates [pp. 60-79]
	On a new goodness-of-fit process for families of copulas / Sur un nouveau test d'adéquation pour des familles de copules [pp. 80-101]
	Nonparametric estimation of the shape function in a Gamma process for degradation data [pp. 102-118]
	New aspects of Bregman divergence in regression and classification with parametric and nonparametric estimation [pp. 119-139]
	Back Matter



