STA313 F 2004 Handout 6

Simple Regression as a Structural Equation model



/* simplereg.sas */
options linesize=79 noovp formdlim='_';
title 'Simple regression as a structural equation model with proc calis';

data simple;
     infile 'simplereg.dat';
     input x y;

proc reg simple;
     title2 'For comparison, simple regression with proc reg';
     model y = x /noint;

proc calis cov;       /* Analyze the covariance matrix (Default is corr) */
     title2 'Full (unrestricted) Model';
     var x y;         /* Manafest vars are in the data set */
     lineqs           /* Simultaneous equations, separated by commas */
          y = b x + e;
     std              /* Variances (not standard deviations) */
          x = sigxx , /* Optional starting values in parentheses */
          e = sigee ;
     cov              /* Covariances */
          x e = 0;
     bounds 0.0 < sigxx,
            0.0 < sigee;

proc calis cov;
     title2 'Reduced (restricted) Model';
     var x y;
     lineqs
          y =  e; /* Setting b = 0 */
     std
          x = sigxx ,
          e = sigee ;
     cov
          x e = 0;
     bounds 0.0 < sigxx,
            0.0 < sigee;

/* Moral: You never have to fit a saturated full model */



Here is simplereg.lst

______________________________________________________________________________

       Simple regression as a structural equation model with proc calis
       1
                For comparison, simple regression with proc reg
                                                 14:08 Friday, October 15,
       2004

                            Descriptive Statistics

     Variables                 Sum                Mean      Uncorrected SS

     INTERCEP                  250                   1                 250
     X                -56.27871787        -0.225114871        1014.0011343
     Y                 90.83210452        0.3633284181        2313.4725451


               Variables            Variance       Std Deviation

               INTERCEP                    0                   0
               X                4.0214134856        2.0053462259
               Y                9.1585167079        3.0263041334

_______________________________________________________________________________

       Simple regression as a structural equation model with proc calis
       2
                For comparison, simple regression with proc reg
                                                 14:08 Friday, October 15,
       2004

Model: MODEL1
NOTE: No intercept in model. R-square is redefined.
Dependent Variable: Y

                             Analysis of Variance

                                Sum of         Mean
       Source          DF      Squares       Square      F Value       Prob>F

       Model            1      2.25923      2.25923        0.243       0.6222
       Error          249   2311.21332      9.28198
       U Total        250   2313.47255

           Root MSE       3.04663     R-square       0.0010
           Dep Mean       0.36333     Adj R-sq      -0.0030
           C.V.         838.53457

                              Parameter Estimates

                      Parameter      Standard    T for H0:
     Variable  DF      Estimate         Error   Parameter=0    Prob > |T|

     X          1     -0.047202    0.09567558        -0.493        0.6222


_______________________________________________________________________________

       Simple regression as a structural equation model with proc calis
       3
                           Full (unrestricted) Model
                                                 14:08 Friday, October 15,
       2004

           Covariance Structure Analysis: Pattern and Initial Values

               LINEQS Model Statement
          -------------------------------
               Matrix         Rows & Cols          Matrix Type
  TERM   1-----------------------------------------------------------
            1    _SEL_          2       3    SELECTION
            2    _BETA_         3       3    EQSBETA        IMINUSINV
            3    _GAMMA_        3       2    EQSGAMMA
            4    _PHI_          2       2    SYMMETRIC



     Number of endogenous variables = 1

Manifest:     Y


     Number of exogenous variables = 2

Manifest:     X
Error:        E


_______________________________________________________________________________

       Simple regression as a structural equation model with proc calis
       4
                           Full (unrestricted) Model
                                                 14:08 Friday, October 15,
       2004

           Covariance Structure Analysis: Pattern and Initial Values

                          Manifest Variable Equations
                               Initial Estimates

                       Y       =     .    *X + 1.0000 E
                                           B



                       Variances of Exogenous Variables
                     -------------------------------------
                     Variable    Parameter      Estimate
                     -------------------------------------
                     X           SIGXX                   .
                     E           SIGEE                   .




_______________________________________________________________________________

       Simple regression as a structural equation model with proc calis
       5
                           Full (unrestricted) Model
                                                 14:08 Friday, October 15,
       2004

         Covariance Structure Analysis: Maximum Likelihood Estimation

                    250 Observations       Model Terms          1
                      2 Variables          Model Matrices       4
                      3 Informations       Parameters           3

                 VARIABLE              Mean           Std Dev

                 X             -.2251148715       2.005346226
                 Y             0.3633284181       3.026304133

               Set covariances of exogenous manifest variables:
                                      X

            Some initial estimates computed by two-stage LS method.


                          Vector of Initial Estimates

             B             1   -0.02738  Matrix Entry: _GAMMA_[1:1]
             SIGXX         2    4.02141  Matrix Entry: _PHI_[1:1]
             SIGEE         3    9.15550  Matrix Entry: _PHI_[2:2]


_______________________________________________________________________________

       Simple regression as a structural equation model with proc calis
       6
                           Full (unrestricted) Model
                                                 14:08 Friday, October 15,
       2004

         Covariance Structure Analysis: Maximum Likelihood Estimation

                       Levenberg-Marquardt Optimization
                         Scaling Update of More (1978)
                        Number of Parameter Estimates 3
                     Number of Functions (Observations) 3
                           Number of Lower Bounds 2
                           Number of Upper Bounds 0

Optimization Start: Active Constraints= 0  Criterion= 0.000
Maximum Gradient Element= 0.000 Radius= 1.000

        Iter rest nfun act   optcrit  difcrit maxgrad  lambda     rho

Optimization Results: Iterations= 0 Function Calls= 2 Jacobian Calls= 1
Active Constraints= 0  Criterion= 0 Maximum Gradient Element= 3.20357E-17
Lambda= 0 Rho= 0 Radius= 1

NOTE:  ABSGCONV convergence criterion satisfied.

_______________________________________________________________________________

       Simple regression as a structural equation model with proc calis
       7
                           Full (unrestricted) Model
                                                 14:08 Friday, October 15,
       2004

         Covariance Structure Analysis: Maximum Likelihood Estimation

         Fit criterion . . . . . . . . . . . . . . . . . .     0.0000
         Goodness of Fit Index (GFI) . . . . . . . . . . .     1.0000
         GFI Adjusted for Degrees of Freedom (AGFI). . . .      .
         Root Mean Square Residual (RMR) . . . . . . . . .     0.0000
         Parsimonious GFI (Mulaik, 1989) . . . . . . . . .     0.0000
         Chi-square = 0.0000        df = 0       Prob>chi**2 = 0.0001
         Null Model Chi-square:     df = 1                     0.0820
         RMSEA Estimate  . . . . . . . . . . .  0.0000  90%C.I.[., .]
         Probability of Close Fit  . . . . . . . . . . . .      .
         ECVI Estimate . . . . . . . . . . . .  0.0244  90%C.I.[., .]
         Bentler's Comparative Fit Index . . . . . . . . .      .
         Normal Theory Reweighted LS Chi-square  . . . . .     0.0000
         Akaike's Information Criterion. . . . . . . . . .     0.0000
         Bozdogan's (1987) CAIC. . . . . . . . . . . . . .     0.0000
         Schwarz's Bayesian Criterion. . . . . . . . . . .     0.0000
         McDonald's (1989) Centrality. . . . . . . . . . .     1.0000
         Bentler & Bonett's (1980) Non-normed Index. . . .      .
         Bentler & Bonett's (1980) NFI . . . . . . . . . .     1.0000
         James, Mulaik, & Brett (1982) Parsimonious NFI. .     0.0000
         Z-Test of Wilson & Hilferty (1931). . . . . . . .      .
         Bollen (1986) Normed Index Rho1 . . . . . . . . .      .
         Bollen (1988) Non-normed Index Delta2 . . . . . .     1.0000
         Hoelter's (1983) Critical N . . . . . . . . . . .          .


_______________________________________________________________________________

       Simple regression as a structural equation model with proc calis
       8
                           Full (unrestricted) Model
                                                 14:08 Friday, October 15,
       2004

         Covariance Structure Analysis: Maximum Likelihood Estimation

                          Manifest Variable Equations

                       Y       =  - 0.0274*X + 1.0000 E
                       Std Err      0.0956 B
                       t Value     -0.2863



                       Variances of Exogenous Variables
     ---------------------------------------------------------------------
                                                Standard
     Variable    Parameter      Estimate          Error          t Value
     ---------------------------------------------------------------------
     X           SIGXX            4.021413        0.360408          11.158
     E           SIGEE            9.155502        0.820536          11.158




_______________________________________________________________________________

       Simple regression as a structural equation model with proc calis
       9
                           Full (unrestricted) Model
                                                 14:08 Friday, October 15,
       2004

         Covariance Structure Analysis: Maximum Likelihood Estimation

                   Equations with Standardized Coefficients

                       Y       =  - 0.0181*X + 0.9998 E
                                           B



                         Squared Multiple Correlations
          ----------------------------------------------------------
                            Error           Total
           Variable       Variance        Variance        R-squared
          ----------------------------------------------------------
             1    Y         9.155502        9.158517        0.000329




_______________________________________________________________________________

       Simple regression as a structural equation model with proc calis
       10
                          Reduced (restricted) Model
                                                 14:08 Friday, October 15,
       2004

           Covariance Structure Analysis: Pattern and Initial Values

               LINEQS Model Statement
          -------------------------------
               Matrix         Rows & Cols          Matrix Type
  TERM   1-----------------------------------------------------------
            1    _SEL_          2       3    SELECTION
            2    _BETA_         3       3    EQSBETA        IMINUSINV
            3    _GAMMA_        3       2    EQSGAMMA
            4    _PHI_          2       2    SYMMETRIC



     Number of endogenous variables = 1

Manifest:     Y


     Number of exogenous variables = 2

Manifest:     X
Error:        E


_______________________________________________________________________________

       Simple regression as a structural equation model with proc calis
       11
                          Reduced (restricted) Model
                                                 14:08 Friday, October 15,
       2004

           Covariance Structure Analysis: Pattern and Initial Values

                          Manifest Variable Equations
                               Initial Estimates

                             Y       =    1.0000 E



                       Variances of Exogenous Variables
                     -------------------------------------
                     Variable    Parameter      Estimate
                     -------------------------------------
                     X           SIGXX                   .
                     E           SIGEE                   .




_______________________________________________________________________________

       Simple regression as a structural equation model with proc calis
       12
                          Reduced (restricted) Model
                                                 14:08 Friday, October 15,
       2004

         Covariance Structure Analysis: Maximum Likelihood Estimation

                    250 Observations       Model Terms          1
                      2 Variables          Model Matrices       4
                      3 Informations       Parameters           2

                 VARIABLE              Mean           Std Dev

                 X             -.2251148715       2.005346226
                 Y             0.3633284181       3.026304133

               Set covariances of exogenous manifest variables:
                                      X



                          Vector of Initial Estimates

             SIGXX         1    4.02141  Matrix Entry: _PHI_[1:1]
             SIGEE         2    9.15852  Matrix Entry: _PHI_[2:2]



             Predetermined Elements of the Predicted Moment Matrix

                                       X                 Y

                     X                 .                 0
                     Y                 0                 .
WARNING: The predicted moment matrix has 1 constant elements whose values
         differ from those of the observed moment matrix.
         The sum of squared differences is 0.012122346 .
NOTE: Only 1 elements of the moment matrix are used in the model
                     specification.

_______________________________________________________________________________

       Simple regression as a structural equation model with proc calis
       13
                          Reduced (restricted) Model
                                                 14:08 Friday, October 15,
       2004

         Covariance Structure Analysis: Maximum Likelihood Estimation

                       Levenberg-Marquardt Optimization
                         Scaling Update of More (1978)
                        Number of Parameter Estimates 2
                     Number of Functions (Observations) 3
                           Number of Lower Bounds 2
                           Number of Upper Bounds 0

Optimization Start: Active Constraints= 0  Criterion= 0.000
Maximum Gradient Element= 0.000 Radius= 1.000

        Iter rest nfun act   optcrit  difcrit maxgrad  lambda     rho

Optimization Results: Iterations= 0 Function Calls= 2 Jacobian Calls= 1
Active Constraints= 0  Criterion= 0.0003291958
Maximum Gradient Element= 2.76078E-17 Lambda= 0 Rho= 0 Radius= 1

NOTE:  ABSGCONV convergence criterion satisfied.

_______________________________________________________________________________

       Simple regression as a structural equation model with proc calis
       14
                          Reduced (restricted) Model
                                                 14:08 Friday, October 15,
       2004

         Covariance Structure Analysis: Maximum Likelihood Estimation

         Fit criterion . . . . . . . . . . . . . . . . . .     0.0003
         Goodness of Fit Index (GFI) . . . . . . . . . . .     0.9997
         GFI Adjusted for Degrees of Freedom (AGFI). . . .     0.9990
         Root Mean Square Residual (RMR) . . . . . . . . .     0.0636
         Parsimonious GFI (Mulaik, 1989) . . . . . . . . .     0.9997
         Chi-square = 0.0820        df = 1       Prob>chi**2 = 0.7746
         Null Model Chi-square:     df = 1                     0.0820
         RMSEA Estimate  . . . . . . . . . 0.0000  90%C.I.[., 0.1115]
         Probability of Close Fit  . . . . . . . . . . . .     0.8335
         ECVI Estimate . . . . . . . . . . 0.0166  90%C.I.[., 0.0329]
         Bentler's Comparative Fit Index . . . . . . . . .      .
         Normal Theory Reweighted LS Chi-square  . . . . .     0.0820
         Akaike's Information Criterion. . . . . . . . . .    -1.9180
         Bozdogan's (1987) CAIC. . . . . . . . . . . . . .    -6.4395
         Schwarz's Bayesian Criterion. . . . . . . . . . .    -5.4395
         McDonald's (1989) Centrality. . . . . . . . . . .     1.0018
         Bentler & Bonett's (1980) Non-normed Index. . . .    -0.0000
         Bentler & Bonett's (1980) NFI . . . . . . . . . .     0.0000
         James, Mulaik, & Brett (1982) Parsimonious NFI. .     0.0000
         Z-Test of Wilson & Hilferty (1931). . . . . . . .    -0.7284
         Bollen (1986) Normed Index Rho1 . . . . . . . . .     0.0000
         Bollen (1988) Non-normed Index Delta2 . . . . . .    -0.0000
         Hoelter's (1983) Critical N . . . . . . . . . . .      11671


_______________________________________________________________________________

       Simple regression as a structural equation model with proc calis
       15
                          Reduced (restricted) Model
                                                 14:08 Friday, October 15,
       2004

         Covariance Structure Analysis: Maximum Likelihood Estimation

                          Manifest Variable Equations

                             Y       =    1.0000 E



                       Variances of Exogenous Variables
     ---------------------------------------------------------------------
                                                Standard
     Variable    Parameter      Estimate          Error          t Value
     ---------------------------------------------------------------------
     X           SIGXX            4.021413        0.360408          11.158
     E           SIGEE            9.158517        0.820806          11.158




_______________________________________________________________________________

       Simple regression as a structural equation model with proc calis
       16
                          Reduced (restricted) Model
                                                 14:08 Friday, October 15,
       2004

         Covariance Structure Analysis: Maximum Likelihood Estimation

                   Equations with Standardized Coefficients

                             Y       =    1.0000 E



                         Squared Multiple Correlations
          ----------------------------------------------------------
                            Error           Total
           Variable       Variance        Variance        R-squared
          ----------------------------------------------------------
             1    Y         9.158517        9.158517               0