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Interactions 
•  Interaction between explanatory variables 

means “It depends.” 
•  Relationship between one explanatory 

variable and the response variable 
depends on the value of the other 
explanatory variable.  

•  Can have 
– Quantitative by quantitative 
– Quantitative by categorical 
– Categorical by categorical 



Quantitative by Quantitative 
 

Y = �0 + �1x1 + �2x2 + �3x1x2 + ⇥

E(Y |x) = �0 + �1x1 + �2x2 + �3x1x2

For fixed x2 

E(Y |x) = (�0 + �2x2) + (�1 + �3x2)x1

Both slope and intercept depend on value of x2 

And for fixed x1, slope and intercept relating x2 to E(Y) depend  
on the value of x1 



Quantitative by Categorical 
•  One regression line for each category. 
•  Interaction means slopes are not equal 
•  Form a product of quantitative variable by 

each dummy variable for the categorical 
variable 

•  For example, three treatments and one 
covariate: x1 is the covariate and x2, x3 are 
dummy variables 

Y = �0 + �1x1 + �2x2 + �3x3

+�4x1x2 + �5x1x3 + ⇥



General principle 

•  Interaction between A and B means 
– Relationship of A to Y depends on value of 

B 
– Relationship of B to Y depends on value of 

A 
•  The two statements are formally 

equivalent 



E(Y |x) = �0 + �1x1 + �2x2 + �3x3 + �4x1x2 + �5x1x3

Group x2 x3 E(Y |x)
1 1 0 (�0 + �2) + (�1 + �4)x1

2 0 1 (�0 + �3) + (�1 + �5)x1

3 0 0 �0 + �1 x1

Make a table 



Group x2 x3 E(Y |x)
1 1 0 (�0 + �2) + (�1 + �4)x1

2 0 1 (�0 + �3) + (�1 + �5)x1

3 0 0 �0 + �1 x1

What null hypothesis would you test for 

•  Equal slopes 
•  Comparing slopes for group one vs three 
•  Comparing slopes for group one vs two 
•  Equal regressions 
•  Interaction between group and x1 



What to do if H0: β4=β5=0 is 
rejected 

•  How do you test Group “controlling” for x1? 
•  A reasonable choice is to set x1 to its 

sample mean, and compare treatments at 
that point. 



Categorical by Categorical 

•  Naturally part of factorial ANOVA in 
experimental studies 

•  Also applies to purely observational 
data 



Factorial ANOVA 

More than one categorical 
explanatory variable 
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Factorial ANOVA 
 •  Categorical explanatory variables are called 

factors 
•  More than one at a time 
•  Primarily for true experiments, but also used 

with observational data 

•  If there are observations at all combinations 
of explanatory variable values, it’s called a 
complete factorial design (as opposed to a 
fractional factorial).  
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The potato study 

•  Cases are potatoes 
•  Inoculate with bacteria, store for a fixed time 

period. 
•  Response variable is percent surface area 

with visible rot. 
•  Two explanatory variables, randomly 

assigned 
–  Bacteria Type (1, 2, 3) 
–  Temperature (1=Cool, 2=Warm) 

12 



Two-factor design 

Bacteria Type 
Temp 1 2 3 

1=Cool 

2=Warm 

Six treatment conditions 
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Factorial experiments 
•  Allow more than one factor to be 

investigated in the same study: 
Efficiency! 

•  Allow the scientist to see whether the 
effect of an explanatory variable 
depends on the value of another 
explanatory variable: Interactions 

•  Thank you again, Mr. Fisher. 
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   Normal with equal variance 
and conditional (cell) means       

Bacteria Type 
Temp 1 2 3 

1=Cool 

2=Warm 
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Tests 

•  Main effects: Differences among 
marginal means 

•  Interactions: Differences between 
differences (What is the effect of Factor 
A? It depends on the level of Factor B.) 
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To understand the interaction, 
plot the means 

Temperature by Bacteria Interaction
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Either Way 

Temperature by Bacteria Interaction

0

5

10

15

20

25

1 2 3

Bacteria Type

R
o

t Cool

Warm

Temperature by Bacteria Interaction

0

5

10

15

20

25

Cool Warm

Temperature
R

o
t

Bact 1

Bact 2

Bact 3

18 



Non-parallel profiles = Interaction 

It Depends
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Main effects for both 
variables, no interaction 

Main Effects Only
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Main effect for Bacteria only 
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Main Effect for Temperature 
Only 

Temperature Only
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Both Main Effects, and the 
Interaction 

Mean Rot as a Function of Temperature 

and Bacteria Type
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Should you interpret the main 
effects? 

It Depends
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A	common	error	

•  Categorical	explanatory	variable	with	p	
categories	

•  p	dummy	variables	(rather	than	p-1)	
•  And	an	intercept	

•  There	are	p	population	means	represented	by	
p+1	regression	coefficients	-	not	unique	



But	suppose	you	leave	off	the	
intercept	

•  Now	there	are	p	regression	coefficients	and	p	
population	means	

•  The	correspondence	is	unique,	and	the	model	
can	be	handy	--	less	algebra	

•  Called	cell	means	coding	



Cell	means	coding:	p	indicators	and	
no	intercept	



Add	a	covariate:	x4	



Contrasts 

c = a1µ1 + a2µ2 + · · · + apµp

�c = a1Y 1 + a2Y 2 + · · · + apY p



In a one-factor design 

•  Mostly, what you want are tests of contrasts, 
•  Or collections of contrasts. 
•  You could do it with any dummy variable 

coding scheme.  
•  Cell means coding is often most convenient. 
•  With β=µ, test H0: Lβ=h 

•  Can get a confidence interval for any single 
contrast using the t distribution. 



Testing Contrasts in Factorial Designs  

•  Differences between marginal means 
are definitely contrasts 

•  Interactions are also sets of contrasts 
31 



Interactions are sets of Contrasts 

•    

•    
32 



Interactions are sets of Contrasts 

•    

•    

Main Effects Only
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Equivalent statements 

•  The effect of A depends upon B 
•  The effect of B depends on A 
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Three factors: A, B and C 

•  There are three (sets of) main effects: One 
each for A, B, C 

•  There are three two-factor interactions 
–  A by B (Averaging over C) 
–  A by C (Averaging over B) 
–  B by C (Averaging over A) 

•  There is one three-factor interaction: AxBxC 
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Meaning of the 3-factor 
interaction 

•  The form of the A x B interaction 
depends on the value of C 

•  The form of the A x C interaction 
depends on the value of B 

•  The form of the B x C interaction 
depends on the value of A 

•  These statements are equivalent. Use 
the one that is easiest to understand. 
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To graph a three-factor 
interaction 

•  Make a separate mean plot (showing a 
2-factor interaction) for each value of 
the third variable. 

•  In the potato study, a graph for each 
type of potato 
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Four-factor design 

•  Four sets of main effects 
•  Six two-factor interactions 
•  Four three-factor interactions 
•  One four-factor interaction: The nature 

of the three-factor interaction depends 
on the value of the 4th factor 

•  There is an F test for each one 
•  And so on … 
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As the number of factors 
increases 

•  The higher-way interactions get harder and 
harder to understand 

•  All the tests are still tests of sets of contrasts 
(differences between differences of 
differences …) 

•  But it gets harder and harder to write down 
the contrasts 

•  Effect coding becomes easier 
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Effect coding 

Bact B1 B2 

1  1  0 

2  0  1 

3 -1 -1 

Temperature T 
1=Cool  1 

  2=Warm -1 

40 

Like indicator dummy variables with intercept, but put -1 
for the last category. 



Interaction effects are 
products of dummy variables 

•  The A x B interaction: Multiply each dummy 
variable for A by each dummy variable for B 

•  Use these products as additional explanatory 
variables in the multiple regression 

•  The A x B x C interaction: Multiply each 
dummy variable for C by each product term 
from the A x B interaction 

•  Test the sets of product terms simultaneously 
41 



Make a table 

Bact Temp B1 B2 T B1T B2T 

1 1  1  0  1  1  0 

1 2  1  0 -1 -1  0 

2 1  0  1  1  0  1 

2 2  0  1 -1  0 -1 

3 1 -1 -1  1 -1 -1 

3 2 -1 -1 -1  1  1 
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   Cell and Marginal Means       

Bacteria Type 
Tmp 1 2 3 

1=C 

2=W 
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We see 

•  Intercept is the grand mean 
•  Regression coefficients for the dummy 

variables are deviations of the marginal 
means from the grand mean 

•  What about the interactions? 
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A bit of algebra shows 
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Factorial ANOVA with effect 
coding is pretty automatic 

•  You don’t have to make a table unless asked. 
•  It always works as you expect it will. 
•  Hypothesis tests are the same as testing sets 

of contrasts. 
•  Covariates present no problem. Main effects 

and interactions have their usual meanings, 
“controlling” for the covariates. 

•  Plot the “least squares means” (Y-hat at x-bar 
values for covariates). 
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Again 

•  Intercept is the grand mean 
•  Regression coefficients for the dummy 

variables are deviations of the marginal 
means from the grand mean 

•  Test of main effect(s) is test of the 
dummy variables for a factor.  

•  Interaction effects are products of 
dummy variables. 
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Balanced vs. Unbalanced 
Experimental Designs 

•  Balanced design: Cell sample sizes are 
proportional (maybe equal) 

•  Explanatory variables have zero relationship 
to one another 

•  Numerator SS in ANOVA are independent 
•  Everything is nice and simple 
•  Most experimental studies are designed this 

way. 
•  As soon as somebody drops a test tube, it’s 

no longer true 
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Analysis of unbalanced data 
•  When explanatory variables are related, there 

is potential ambiguity. 
•  A is related to Y, B is related to Y, and A is 

related to B.  
•  Who gets credit for the portion of variation in 

Y that could be explained by either A or B? 
•  With a regression approach, whether you use 

contrasts or dummy variables (equivalent), 
the answer is nobody. 

•  Think of full, reduced models. 
•  Equivalently, general linear test 
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Some software is designed for 
balanced data 

•  The special purpose formulas are much simpler. 
•  They were very useful in the past. 
•  Since most data are at least a little unbalanced, thy 

are a recipe for trouble. 
•  Most textbook data are balanced, so they cannot tell 

you what your software is really doing. 
•  R’s anova and aov functions are designed for 

balanced data, though anova applied to lm objects 
can give you what you want if you use it with care. 
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Copyright Information 
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Commons Attribution - ShareAlike 3.0 Unported License. Use 
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