Random Vectors¹ STA442/2101 Fall 2018

 $^{^1 \}mathrm{See}$ last slide for copyright information.

Background Reading: Renscher and Schaalje's *Linear* models in statistics

- Chapter 3 on Random Vectors and Matrices
- Chapter 4 on the Multivariate Normal Distribution

Random Vectors and Matrices

A random matrix is just a matrix of random variables. Their joint probability distribution is the distribution of the random matrix. Random matrices with just one column (say, $p \times 1$) may be called *random vectors*.

Expected Value

The expected value of a matrix is defined as the matrix of expected values. Denoting the $p \times c$ random matrix **X** by $[X_{i,j}]$,

$$E(\mathbf{X}) = [E(X_{i,j})].$$

Immediately we have natural properties like

$$E(\mathbf{X} + \mathbf{Y}) = E([X_{i,j}] + [Y_{i,j}])$$

= $[E(X_{i,j} + Y_{i,j})]$
= $[E(X_{i,j}) + E(Y_{i,j})]$
= $[E(X_{i,j})] + [E(Y_{i,j})]$
= $E(\mathbf{X}) + E(\mathbf{Y}).$

Moving a constant through the expected value sign

Let $\mathbf{A} = [a_{i,j}]$ be an $r \times p$ matrix of constants, while \mathbf{X} is still a $p \times c$ random matrix. Then

$$E(\mathbf{AX}) = E\left(\left[\sum_{k=1}^{p} a_{i,k} X_{k,j}\right]\right)$$
$$= \left[E\left(\sum_{k=1}^{p} a_{i,k} X_{k,j}\right)\right]$$
$$= \left[\sum_{k=1}^{p} a_{i,k} E(X_{k,j})\right]$$
$$= \mathbf{A}E(\mathbf{X}).$$

Similar calculations yield $E(\mathbf{AXB}) = \mathbf{A}E(\mathbf{X})\mathbf{B}$.

Variance-Covariance Matrices

Let **X** be a $p \times 1$ random vector with $E(\mathbf{X}) = \boldsymbol{\mu}$. The variance-covariance matrix of **X** (sometimes just called the covariance matrix), denoted by $cov(\mathbf{X})$, is defined as

$$cov(\mathbf{X}) = E\left\{ (\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^{\top} \right\}.$$

$$cov(\mathbf{X}) = E\left\{ (\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^{\top} \right\}$$

$$\begin{aligned} \cos(\mathbf{X}) &= E\left\{ \begin{pmatrix} X_1 - \mu_1 \\ X_2 - \mu_2 \\ X_3 - \mu_3 \end{pmatrix} \begin{pmatrix} X_1 - \mu_1 & X_2 - \mu_2 & X_3 - \mu_3 \end{pmatrix} \right\} \\ &= E\left\{ \begin{pmatrix} (X_1 - \mu_1)^2 & (X_1 - \mu_1)(X_2 - \mu_2) & (X_1 - \mu_1)(X_3 - \mu_3) \\ (X_2 - \mu_2)(X_1 - \mu_1) & (X_2 - \mu_2)^2 & (X_2 - \mu_2)(X_3 - \mu_3) \\ (X_3 - \mu_3)(X_1 - \mu_1) & (X_3 - \mu_3)(X_2 - \mu_2) & (X_3 - \mu_3)^2 \end{pmatrix} \right\} \\ &= \begin{pmatrix} E\{(X_1 - \mu_1)^2\} & E\{(X_1 - \mu_1)(X_2 - \mu_2)\} & E\{(X_1 - \mu_1)(X_3 - \mu_3)^2 \\ E\{(X_2 - \mu_2)(X_1 - \mu_1)\} & E\{(X_2 - \mu_2)^2\} & E\{(X_2 - \mu_2)(X_3 - \mu_3)^2\} \\ E\{(X_3 - \mu_3)(X_1 - \mu_1)\} & E\{(X_3 - \mu_3)(X_2 - \mu_2)\} & E\{(X_3 - \mu_3)^2\} \\ &= \begin{pmatrix} Var(X_1) & Cov(X_1, X_2) & Cov(X_1, X_3) \\ Cov(X_1, X_2) & Var(X_2) & Cov(X_2, X_3) \\ Cov(X_1, X_3) & Cov(X_2, X_3) & Var(X_3) \end{pmatrix}. \end{aligned}$$

So, the covariance matrix $cov(\mathbf{X})$ is a $p \times p$ symmetric matrix with variances on the main diagonal and covariances on the off-diagonals.

Matrix of covariances between two random vectors

Let **X** be a $p \times 1$ random vector with $E(\mathbf{X}) = \boldsymbol{\mu}_x$ and let **Y** be a $q \times 1$ random vector with $E(\mathbf{Y}) = \boldsymbol{\mu}_y$. The $p \times q$ matrix of covariances between the elements of **X** and the elements of **Y** is

$$cov(\mathbf{X}, \mathbf{Y}) = E\left\{ (\mathbf{X} - \boldsymbol{\mu}_x)(\mathbf{Y} - \boldsymbol{\mu}_y)^\top \right\}.$$

Adding a constant has no effect On variances and covariances

These results are clear from the definitions:

•
$$cov(\mathbf{X}) = E\left\{ (\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^{\top} \right\}$$

• $cov(\mathbf{X}, \mathbf{Y}) = E\left\{ (\mathbf{X} - \boldsymbol{\mu}_x)(\mathbf{Y} - \boldsymbol{\mu}_y)^{\top} \right\}$

Sometimes it is useful to let $\mathbf{a} = -\boldsymbol{\mu}_x$ and $\mathbf{b} = -\boldsymbol{\mu}_y$.

Analogous to $Var(a X) = a^2 Var(X)$

Let \mathbf{X} be a $p \times 1$ random vector with $E(\mathbf{X}) = \boldsymbol{\mu}$ and $cov(\mathbf{X}) = \boldsymbol{\Sigma}$, while $\mathbf{A} = [a_{i,j}]$ is an $r \times p$ matrix of constants. Then

$$cov(\mathbf{A}\mathbf{X}) = E\left\{ (\mathbf{A}\mathbf{X} - \mathbf{A}\boldsymbol{\mu})(\mathbf{A}\mathbf{X} - \mathbf{A}\boldsymbol{\mu})^{\top} \right\}$$
$$= E\left\{ \mathbf{A}(\mathbf{X} - \boldsymbol{\mu})(\mathbf{A}(\mathbf{X} - \boldsymbol{\mu}))^{\top} \right\}$$
$$= E\left\{ \mathbf{A}(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^{\top}\mathbf{A}^{\top} \right\}$$
$$= \mathbf{A}E\{(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^{\top}\}\mathbf{A}^{\top}$$
$$= \mathbf{A}cov(\mathbf{X})\mathbf{A}^{\top}$$
$$= \mathbf{A}\Sigma\mathbf{A}^{\top}$$

The Multivariate Normal Distribution

The $p \times 1$ random vector **X** is said to have a *multivariate* normal distribution, and we write $\mathbf{X} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, if **X** has (joint) density

$$f(\mathbf{x}) = \frac{1}{|\mathbf{\Sigma}|^{\frac{1}{2}} (2\pi)^{\frac{p}{2}}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\top} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right),$$

where $\boldsymbol{\mu}$ is $p \times 1$ and $\boldsymbol{\Sigma}$ is $p \times p$ symmetric and positive definite.

Σ positive definite In the multivariate normal definition

- Positive definite means that for any non-zero $p \times 1$ vector **a**, we have $\mathbf{a}^{\top} \boldsymbol{\Sigma} \mathbf{a} > 0$.
- Since the one-dimensional random variable $Y = \sum_{i=1}^{p} a_i X_i$ may be written as $Y = \mathbf{a}^\top \mathbf{X}$ and $Var(Y) = cov(\mathbf{a}^\top \mathbf{X}) = \mathbf{a}^\top \Sigma \mathbf{a}$, it is natural to require that Σ be positive definite.
- All it means is that every non-zero linear combination of **X** values has a positive variance.
- And recall Σ positive definite is equivalent to Σ^{-1} positive definite.

Analogies (Multivariate normal reduces to the univariate normal when p = 1)

• Univariate Normal

•
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}\right\}$$

•
$$E(X) = \mu, Var(X) = \sigma^2$$

• $\frac{(X-\mu)^2}{\sigma^2} \sim \chi^2(1)$

• Multivariate Normal

•
$$f(\mathbf{x}) = \frac{1}{|\mathbf{\Sigma}|^{\frac{1}{2}}(2\pi)^{\frac{p}{2}}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$

•
$$E(\mathbf{X}) = \boldsymbol{\mu}, \ cov(\mathbf{X}) = \boldsymbol{\Sigma}$$

•
$$(\mathbf{X}-\boldsymbol{\mu})^{\top} \mathbf{\Sigma}^{-1}(\mathbf{X}-\boldsymbol{\mu}) \sim \chi^{2}(p)$$

More properties of the multivariate normal

- If **c** is a vector of constants, $\mathbf{X} + \mathbf{c} \sim N(\mathbf{c} + \boldsymbol{\mu}, \boldsymbol{\Sigma})$
- If **A** is a matrix of constants, $\mathbf{A}\mathbf{X} \sim N(\mathbf{A}\boldsymbol{\mu}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^{\top})$
- Linear combinations of multivariate normals are multivariate normal.
- All the marginals (dimension less than p) of **X** are (multivariate) normal, but it is possible in theory to have a collection of univariate normals whose joint distribution is not multivariate normal.
- For the multivariate normal, zero covariance implies independence. The multivariate normal is the only continuous distribution with this property.

An easy example If you do it the easy way

Let $\mathbf{X} = (X_1, X_2, X_3)^{\top}$ be multivariate normal with

$$\boldsymbol{\mu} = \begin{pmatrix} 1 \\ 0 \\ 6 \end{pmatrix}$$
 and $\boldsymbol{\Sigma} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

Let $Y_1 = X_1 + X_2$ and $Y_2 = X_2 + X_3$. Find the joint distribution of Y_1 and Y_2 .

In matrix terms

$$Y_1 = X_1 + X_2$$
 and $Y_2 = X_2 + X_3$ means $\mathbf{Y} = \mathbf{A}\mathbf{X}$

$$\left(\begin{array}{c} Y_1\\ Y_2\end{array}\right) = \left(\begin{array}{ccc} 1 & 1 & 0\\ 0 & 1 & 1\end{array}\right) \left(\begin{array}{c} X_1\\ X_2\\ X_3\end{array}\right)$$

 $\mathbf{Y} = \mathbf{A}\mathbf{X} \sim N(\mathbf{A}\boldsymbol{\mu}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^{\top})$

You could do it by hand, but

```
> mu = cbind(c(1,0,6))
> Sigma = rbind( c(2,1,0),
                c(1.4.0).
+
                c(0,0,2))
+
> A = rbind(c(1,1,0)),
            c(0,1,1)); A
+
> A %*% mu
                       # E(Y)
     [,1]
[1,] 1
[2,] 6
> A %*% Sigma %*% t(A) # cov(Y)
     [,1] [,2]
[1,]
     8
            5
[2,] 5
            6
```

Regression

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}, \text{ with } \boldsymbol{\epsilon} \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I}_n).$$

So $\mathbf{y} \sim N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_n).$
 $\hat{\boldsymbol{\beta}} = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y} = \mathbf{A}\mathbf{y}.$
So $\hat{\boldsymbol{\beta}}$ is multivariate normal.

Just calculate the mean and covariance matrix.

$$E(\widehat{\boldsymbol{\beta}}) = E\left((\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}\right)$$
$$= (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}E(\mathbf{y})$$
$$= (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\beta}$$
$$= \boldsymbol{\beta}$$

Definitions and Basic Results

Multivariate Normal

Delta Method

Covariance matrix of $\widehat{\boldsymbol{\beta}}$ Using $cov(\mathbf{Aw}) = \mathbf{A}cov(\mathbf{w})\mathbf{A}^{\top}$

$$cov(\widehat{\boldsymbol{\beta}}) = cov\left((\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}\right)$$

= $(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}cov(\mathbf{y})\left((\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\right)^{\top}$
= $(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\sigma^{2}\mathbf{I}_{n}\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1\top}$
= $\sigma^{2}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}$
= $\sigma^{2}(\mathbf{X}^{\top}\mathbf{X})^{-1}$

So
$$\widehat{\boldsymbol{\beta}} \sim N_p \left(\boldsymbol{\beta}, \sigma^2 (\mathbf{X}^\top \mathbf{X})^{-1} \right)$$

A couple of things to prove

•
$$(\mathbf{X} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{X} - \boldsymbol{\mu}) \sim \chi^2(p)$$

• \overline{X} and S^2 independent under normal random sampling.

Recall the square root matrix

Covariance matrix $\pmb{\Sigma}$ is real and symmetric matrix, so we have the spectral decomposition

$$\begin{split} \boldsymbol{\Sigma} &= \mathbf{P} \boldsymbol{\Lambda} \mathbf{P}^{\top} \\ &= \mathbf{P} \boldsymbol{\Lambda}^{1/2} \boldsymbol{\Lambda}^{1/2} \mathbf{P}^{\top} \\ &= \mathbf{P} \boldsymbol{\Lambda}^{1/2} \mathbf{I} \boldsymbol{\Lambda}^{1/2} \mathbf{P}^{\top} \\ &= \mathbf{P} \boldsymbol{\Lambda}^{1/2} \mathbf{P}^{\top} \ \mathbf{P} \boldsymbol{\Lambda}^{1/2} \mathbf{P}^{\top} \\ &= \mathbf{\Sigma}^{1/2} \ \mathbf{\Sigma}^{1/2} \end{split}$$

So $\Sigma^{1/2} = \mathbf{P} \mathbf{\Lambda}^{1/2} \mathbf{P}^{\top}$

Square root of an inverse Positive definite \Rightarrow Positive eigenvalues \Rightarrow Inverse exists

$$\mathbf{P} \mathbf{\Lambda}^{-1/2} \mathbf{P}^\top \cdot \mathbf{P} \mathbf{\Lambda}^{-1/2} \mathbf{P}^\top = \mathbf{P} \mathbf{\Lambda}^{-1} \mathbf{P}^\top = \mathbf{\Sigma}^{-1},$$

 \mathbf{SO}

$$\left(\mathbf{\Sigma}^{-1}\right)^{1/2} = \mathbf{P} \mathbf{\Lambda}^{-1/2} \mathbf{P}^{\top}.$$

It's easy to show

- $(\boldsymbol{\Sigma}^{-1})^{1/2}$ is the inverse of $\boldsymbol{\Sigma}^{1/2}$
- Justifying the notation $\Sigma^{-1/2}$

Now we can show
$$(\mathbf{X} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{X} - \boldsymbol{\mu}) \sim \chi^2(p)$$

Where $\mathbf{X} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

$$\begin{aligned} \mathbf{Y} &= \mathbf{X} - \boldsymbol{\mu} \quad \sim \quad N\left(\mathbf{0}, \ \boldsymbol{\Sigma}\right) \\ \mathbf{Z} &= \boldsymbol{\Sigma}^{-\frac{1}{2}} \mathbf{Y} \quad \sim \quad N\left(\mathbf{0}, \boldsymbol{\Sigma}^{-\frac{1}{2}} \boldsymbol{\Sigma} \boldsymbol{\Sigma}^{-\frac{1}{2}}\right) \\ &= \quad N\left(\mathbf{0}, \boldsymbol{\Sigma}^{-\frac{1}{2}} \boldsymbol{\Sigma}^{\frac{1}{2}} \ \boldsymbol{\Sigma}^{\frac{1}{2}} \boldsymbol{\Sigma}^{-\frac{1}{2}}\right) \\ &= \quad N\left(\mathbf{0}, \mathbf{I}\right) \end{aligned}$$

So \mathbf{Z} is a vector of p independent standard normals, and

$$\mathbf{Y}^{\top} \mathbf{\Sigma}^{-1} \mathbf{Y} = \mathbf{Z}^{\top} \mathbf{Z} = \sum_{j=1}^{p} Z_{i}^{2} \sim \chi^{2}(p)$$

\overline{X} and S^2 independent

Let
$$X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} N(\mu, \sigma^2)$$
.

$$\mathbf{X} = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix} \sim N(\mu \mathbf{1}, \sigma^2 \mathbf{I}) \qquad \mathbf{Y} = \begin{pmatrix} X_1 - \overline{X} \\ \vdots \\ X_{n-1} - \overline{X} \\ \overline{X} \end{pmatrix} = \mathbf{A}\mathbf{X}$$

$\mathbf{Y} = \mathbf{A}\mathbf{X}$ In more detail

$$\begin{pmatrix} 1 - \frac{1}{n} & -\frac{1}{n} & \cdots & -\frac{1}{n} & -\frac{1}{n} \\ -\frac{1}{n} & 1 - \frac{1}{n} & \cdots & -\frac{1}{n} & -\frac{1}{n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ -\frac{1}{n} & -\frac{1}{n} & \cdots & 1 - \frac{1}{n} & -\frac{1}{n} \\ \frac{1}{n} & \frac{1}{n} & \cdots & \frac{1}{n} & \frac{1}{n} \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_{n-1} \\ X_n \end{pmatrix} = \begin{pmatrix} X_1 - \overline{X} \\ X_2 - \overline{X} \\ \vdots \\ X_{n-1} - \overline{X} \\ \overline{X} \end{pmatrix}$$

The argument

$$\mathbf{Y} = \mathbf{A}\mathbf{X} = \begin{pmatrix} X_1 - \overline{X} \\ \vdots \\ X_{n-1} - \overline{X} \\ \overline{X} \end{pmatrix} = \begin{pmatrix} \\ \mathbf{Y}_2 \\ \hline \\ \hline \\ \overline{X} \end{pmatrix}$$

- Y is multivariate normal.
- $Cov\left(\overline{X}, (X_j \overline{X})\right) = 0$ (Exercise)
- So \overline{X} and \mathbf{Y}_2 are independent.
- So \overline{X} and $S^2 = g(\mathbf{Y}_2)$ are independent.

Leads to the t distribution

If

- $Z \sim N(0,1)$ and
- $Y \sim \chi^2(\nu)$ and
- Z and Y are independent, then

$$T = \frac{Z}{\sqrt{Y/\nu}} \sim t(\nu)$$

Random sample from a normal distribution

Let
$$X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} N(\mu, \sigma^2)$$
. Then
• $\frac{\sqrt{n}(\overline{X}-\mu)}{\sigma} = \frac{(\overline{X}-\mu)}{\sigma/\sqrt{n}} \sim N(0,1)$ and
• $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$ and
• These quantities are independent.

• These quantities are independent, so

$$T = \frac{\sqrt{n}(\overline{X} - \mu)/\sigma}{\sqrt{\frac{(n-1)S^2}{\sigma^2}/(n-1)}}$$
$$= \frac{\sqrt{n}(\overline{X} - \mu)}{S} \sim t(n-1)$$

)

Multivariate normal likelihood For reference

$$L(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \prod_{i=1}^{n} \frac{1}{|\boldsymbol{\Sigma}|^{\frac{1}{2}} (2\pi)^{\frac{p}{2}}} \exp\left\{-\frac{1}{2} (\mathbf{x}_{i} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{i} - \boldsymbol{\mu})\right\}$$
$$= |\boldsymbol{\Sigma}|^{-n/2} (2\pi)^{-np/2} \exp\left[-\frac{n}{2} \left\{tr(\widehat{\boldsymbol{\Sigma}}\boldsymbol{\Sigma}^{-1}) + (\overline{\mathbf{x}} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\overline{\mathbf{x}} - \boldsymbol{\mu})\right\},$$

where $\widehat{\mathbf{\Sigma}} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i - \overline{\mathbf{x}}) (\mathbf{x}_i - \overline{\mathbf{x}})^{\top}$ is the sample variance-covariance matrix.

The Multivarite Delta Method

The univariate delta method says that if $\sqrt{n} (T_n - \theta) \xrightarrow{d} T$, then $\sqrt{n} (g(T_n) - g(\theta)) \xrightarrow{d} g'(\theta) T$.

In the multivariate delta method, \mathbf{T}_n and \mathbf{T} are d-dimensional random vectors.

The function $g: \mathbb{R}^d \to \mathbb{R}^k$ is a vector of functions:

$$g(x_1,\ldots,x_d) = \begin{pmatrix} g_1(x_1,\ldots,x_d) \\ \vdots \\ g_k(x_1,\ldots,x_d) \end{pmatrix}$$

 $g'(\theta)$ is replaced by a matrix of partial derivatives (a Jacobian):

$$\dot{g}(x_1,\ldots,x_d) = \begin{bmatrix} \frac{\partial g_i}{\partial x_j} \end{bmatrix}_{k \times d} \text{ like } \begin{pmatrix} \frac{\partial g_1}{\partial x_1} & \frac{\partial g_1}{\partial x_2} & \frac{\partial g_1}{\partial x_3} \\ \frac{\partial g_2}{\partial x_1} & \frac{\partial g_2}{\partial x_2} & \frac{\partial g_2}{\partial x_3} \end{pmatrix}.$$

The Delta Method Univariate and multivariate

The univariate delta method says that if $\sqrt{n} (T_n - \theta) \xrightarrow{d} T$, then $\sqrt{n} (g(T_n) - g(\theta)) \xrightarrow{d} g'(\theta) T$.

The multivariate delta method says that if $\sqrt{n}(\mathbf{T}_n - \boldsymbol{\theta}) \stackrel{d}{\to} \mathbf{T}$, then $\sqrt{n}(g(\mathbf{T}_n) - g(\boldsymbol{\theta})) \stackrel{d}{\to} \dot{\mathbf{g}}(\boldsymbol{\theta})\mathbf{T}$,

where
$$\dot{\mathbf{g}}(x_1, \dots, x_d) = \left[\frac{\partial g_i}{\partial x_j}\right]_{k \times d}$$

In particular, if $\mathbf{T} \sim N(\mathbf{0}, \boldsymbol{\Sigma})$, then

$$\sqrt{n}(g(\mathbf{T}_n) - g(\boldsymbol{\theta})) \stackrel{d}{\rightarrow} \mathbf{Y} \sim N(\mathbf{0}, \dot{\mathbf{g}}(\boldsymbol{\theta}) \boldsymbol{\Sigma} \dot{\mathbf{g}}(\boldsymbol{\theta})^{\top}).$$

Testing a non-linear hypothesis

Consider the regression model $y_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \epsilon_i$. There is a standard *F*-test for $H_0 : \mathbf{L}\boldsymbol{\beta} = \mathbf{h}$.

So testing whether $\beta_1 = 0$ and $\beta_2 = 0$ is easy.

But what about testing whether $\beta_1 = 0$ or $\beta_2 = 0$ (or both)?

If $H_0: \beta_1\beta_2 = 0$ is rejected, it means that *both* regression coefficients are non-zero.

Can't test non-linear null hypotheses like this with standard tools.

But if the sample size is large we can use the delta method.

The asymptotic distribution of $\hat{\beta}_1 \hat{\beta}_2$

The multivariate delta method says that if $\sqrt{n}(\mathbf{T}_n - \boldsymbol{\theta}) \stackrel{d}{\to} \mathbf{T}$, then $\sqrt{n}(g(\mathbf{T}_n) - g(\boldsymbol{\theta})) \stackrel{d}{\to} \dot{\mathbf{g}}(\boldsymbol{\theta})\mathbf{T}$, Know $\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y} \sim N_p \left(\boldsymbol{\beta}, \sigma^2(\mathbf{X}^{\top}\mathbf{X})^{-1}\right)$. So $\sqrt{n}(\hat{\boldsymbol{\beta}}_n - \boldsymbol{\beta}) \stackrel{d}{\to} \mathbf{T} \sim N(\mathbf{0}, \boldsymbol{\Sigma})$, where $\boldsymbol{\Sigma} = \lim_{n \to \infty} \sigma^2 \left(\frac{1}{n}\mathbf{X}^{\top}\mathbf{X}\right)^{-1}$. Let $g(\boldsymbol{\beta}) = \beta_1\beta_2$. Have $= \sqrt{n}(g(\hat{\boldsymbol{\beta}}_n) - g(\boldsymbol{\beta}))$

$$= \sqrt{n}(\hat{g}(\beta_n) - g(\beta))$$

$$= \sqrt{n}(\hat{\beta}_1\hat{\beta}_2 - \beta_1\beta_2)$$

$$\stackrel{d}{\rightarrow} \dot{g}(\beta)\mathbf{T}$$

$$= T \sim N(0, \dot{g}(\beta)\boldsymbol{\Sigma}\dot{g}(\beta)^{\top})$$

We will say $\hat{\beta}_1 \hat{\beta}_2$ is asymptotically $N\left(\beta_1 \beta_2, \frac{1}{n} \dot{g}(\boldsymbol{\beta}) \boldsymbol{\Sigma} \dot{g}(\boldsymbol{\beta})^{\top}\right)$.

Need $\dot{g}(\boldsymbol{\beta})$.

Definitions and Basic Results

Multivariate Normal

Delta Method

$$\dot{\mathbf{g}}(x_1,\ldots,x_d) = \left[\frac{\partial g_i}{\partial x_j}\right]_{k \times d}$$

$$g(\beta_0, \beta_1, \beta_2) = \beta_1 \beta_2$$
 so $d = 3$ and $k = 1$.

$$\dot{g}(\beta_0, \beta_1, \beta_2) = \left(\frac{\partial g}{\partial \beta_0}, \frac{\partial g}{\partial \beta_1}, \frac{\partial g}{\partial \beta_2}\right) \\ = \left(0, \beta_2, \beta_1\right)$$

So
$$\widehat{\beta}_1 \widehat{\beta}_2 \sim N\left(\beta_1 \beta_2, \frac{1}{n}(0, \beta_2, \beta_1) \Sigma \begin{pmatrix} 0\\ \beta_2\\ \beta_1 \end{pmatrix}\right).$$

Need the standard error

We have
$$\widehat{\beta}_1 \widehat{\beta}_2 \stackrel{.}{\sim} N\left(\beta_1 \beta_2, \frac{1}{n}(0, \beta_2, \beta_1) \boldsymbol{\Sigma} \begin{pmatrix} 0\\ \beta_2\\ \beta_1 \end{pmatrix}\right).$$

Denote the asymptotic variance by $\frac{1}{n}(0,\beta_2,\beta_1)\boldsymbol{\Sigma}\begin{pmatrix}0\\\beta_2\\\beta_1\end{pmatrix}=v.$

If we knew v we could compute $Z = \frac{\hat{\beta}_1 \hat{\beta}_2 - \beta_1 \beta_2}{\sqrt{v}}$ And use it in tests and confidence intervals. Need to estimate v.

Standard error Estimated standard deviation of $\widehat{\beta}_1 \widehat{\beta}_2$

$$v = rac{1}{n}(0, eta_2, eta_1) \mathbf{\Sigma} \left(egin{array}{c} 0 \ eta_2 \ eta_1 \end{array}
ight)$$

where
$$\Sigma = \lim_{n \to \infty} \sigma^2 \left(\frac{1}{n} \mathbf{X}^\top \mathbf{X}\right)^{-1}$$
.
Estimate β_1 and β_2 with $\widehat{\beta}_1$ and $\widehat{\beta}_2$
Estimate σ^2 with $MSE = \mathbf{e}^\top \mathbf{e}/(n-p)$.
Approximate $\frac{1}{n} \Sigma$ with

$$MSE\frac{1}{n}\left(\frac{1}{n}\mathbf{X}^{\top}\mathbf{X}\right)^{-1} = MSE\left(n\frac{1}{n}\mathbf{X}^{\top}\mathbf{X}\right)^{-1}$$
$$= MSE\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}$$

\hat{v} approximates v

$$v = \frac{1}{n} (0, \beta_2, \beta_1) \mathbf{\Sigma} \begin{pmatrix} 0 \\ \beta_2 \\ \beta_1 \end{pmatrix}$$
$$\widehat{v} = MSE(0, \widehat{\beta}_2, \widehat{\beta}_1) \left(\mathbf{X}^{\top} \mathbf{X} \right)^{-1} \begin{pmatrix} 0 \\ \widehat{\beta}_2 \\ \widehat{\beta}_1 \end{pmatrix}$$

Test statistic for $H_0: \beta_1\beta_2 = 0$

$$Z = \frac{\widehat{\beta}_1 \widehat{\beta}_2 - 0}{\sqrt{\widehat{v}}}$$

where

$$\widehat{v} = (0, \widehat{\beta}_2, \widehat{\beta}_1) MSE \left(\mathbf{X}^{\top} \mathbf{X} \right)^{-1} \begin{pmatrix} 0 \\ \widehat{\beta}_2 \\ \widehat{\beta}_1 \end{pmatrix}$$

Note $MSE(\mathbf{X}^{\top}\mathbf{X})^{-1}$ is produced by R's vcov function.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LAT_EX source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/appliedf18