Poisson Regression

The Training Data

Office workers at a large insurance company are randomly assigned to one of 3 computer use training programmes, and their number of calls to IT support during the following month is recorded. Additional information on each worker includes years of experience and score on a computer literacy test (out of 100). It is reasonable to model calls to IT support as a Poisson process, and the question is whether training programme affects the rate of the process.

Could test $\mathrm{H}_{0}: \lambda_{1}=\lambda_{2}=\lambda_{3}$ with a likelihood ratio test, but ...

```
> train = read.table("training.data.txt")
> train[1:4,]
    Program Experience Score Support
1 A 3.92 60 6
2 A 5.83 64 3
3 A 0.92 51 8
4 A 8.50 58 2
> attach(train)
> table(Support)
Support
    0}1
    6 27 42 61 70 39 23 17 9 2 2 1 1
> aggregate(Support,by=list(Program),FUN=mean)
    Group.1 x
1 A 4.07
2 B 3.47
C 4.05
> aggregate(Support,by=list(Program),FUN=length)
    Group.1 x
A A 100
2 B 100
C C 100
>
```

```
> model1 = glm(Support ~ Program, family=poisson)
```

> summary(model1)

Call:
glm(formula = Support \sim Program, family = poisson)
Deviance Residuals:

Min	$1 Q$	Median	3Q	Max
-2.8531	-0.6319	-0.0348	0.4552	3.1765

Coefficients:

Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
(Intercept) $1.4036430 .049567 \quad 28.318 \quad<2 e-16$
ProgramB -0.159488 0.073066 -2.183 0.0291 *
$\begin{array}{lllll}\text { ProgramC } & -0.004926 & 0.070185 & -0.070 & 0.9440\end{array}$
--
Signif. codes: 0 ‘***' 0.001 ‘**’ 0.01 ‘*’ $0.05^{\prime} .{ }^{\prime} 0.1$ ' 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 330.39 on 299 degrees of freedom
Residual deviance: 324.26 on 297 degrees of freedom
AIC: 1250.2

Number of Fisher Scoring iterations: 4
> anova(model1,test="Chisq") \# Overall likelihood ratio test Analysis of Deviance Table

Model: poisson, link: log
Response: Support
Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev $\operatorname{Pr}(>$ Chi)
$\begin{array}{lll}\text { NULL } & 299 & 330.39\end{array}$
Program $26.122 \quad 297 \quad 324.26 \quad 0.04684$ *


```
> # Include covariates
> model2 = glm(Support ~ Score+Experience+Program, family=poisson)
> summary(model2)
```

Call:
glm(formula = Support \sim Score + Experience + Program, family = poisson)
Deviance Residuals:

Min	$1 Q$	Median	3Q	Max
-2.9625	-0.6957	-0.1018	0.5362	2.9386

Coefficients:

Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
(Intercept) $1.9927440 .15922312 .515<2 e-16$
Score $-0.009205 \quad 0.003019-3.049 \quad 0.00230$ **
$\begin{array}{lllll}\text { ProgramB } & -0.170519 & 0.073163 & -2.331 & 0.01977 \text { * } \\ \text { ProgramC } & -0.007833 & 0.070218 & -0.112 & 0.91118\end{array}$

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ' ’ 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 330.39 on 299 degrees of freedom
Residual deviance: 305.90 on 295 degrees of freedom
AIC: 1235.8

Number of Fisher Scoring iterations: 4
> anova(model2,test="Chisq") \# Sequential
Analysis of Deviance Table
Model: poisson, link: log
Response: Support
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev $\operatorname{Pr}(>C h i)$
NULL
Score $1 \quad 9.9766$
Experience 17.6333
Program $26.8767 \quad 295305.900 .032118$ *
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 '.' 0.1 ' ' 1

```
> # Wald test for program
>
> Wtest
function(L,Tn,Vn,h=0) # H0: L theta = h
# Note Vn is the estimated asymptotic covariance matrix of Tn,
# so it's Sigma-hat divided by n. For Wald tests based on numerical
# MLEs, Tn = theta-hat, and Vn is the inverse of the Hessian.
    {
        Wtest = numeric(3)
        names(Wtest) = c("W","df","p-value")
        r= dim(L)[1]
        W = t(L%*%Tn-h) %*% solve(L%*%Vn%*%t(L)) %*%
            (L%*%Tn-h)
        W = as.numeric(W)
        pval = 1-pchisq(W,r)
        Wtest[1] = W; Wtest[2] = r; Wtest[3] = pval
        Wtest
        }
>
> Lprog = rbind(c(0,0,0,1,0),
+ c(0,0,0,0,1))
> Wtest(L=Lprog,Tn=model2$coefficients,Vn=vcov(model2))
    W df p-value
6.73350088 2.00000000 0.03450157
> # Compare G^2 = 6.8767, df=2, p=0.032118
```

This handout was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The OpenOffice.org document is available from the course website:
http://www.utstat.toronto.edu/~brunner/oldclass/appliedf18

