Large sample tools¹ STA442/2101 Fall 2018

¹See last slide for copyright information.

Background Reading: Davison's Statistical models

- See Section 2.2 (Pages 28-37) on convergence.
- Section 3.3 (Pages 77-90) goes more deeply into simulation than we will. At least skim it.

1 Foundations

5 Convergence of random vectors

Sample Space $\Omega, \omega \in \Omega$

- Ω is a set, the underlying sample space.
- It could literally be the universe of websites from which we intend to sample.
- \mathcal{F} is a class of subsets of Ω .
- If could be the class of all subsets (if Ω is countable).
- There is a probability measure \mathcal{P} defined on the elements of \mathcal{F} .
- Maybe each website is equally likely to be chosen (with replacement).

Foundations

Random variables are functions from Ω into the set of real numbers

$Pr\{X\in B\}=Pr(\{\omega\in\Omega:X(\omega)\in B\})$

Random Sample $X_1(\omega), \ldots, X_n(\omega)$

- $T = T(X_1, \ldots, X_n)$
- $T = T_n(\omega)$
- Let $n \to \infty$ to see what happens for large samples

Modes of Convergence

- Almost Sure Convergence
- Convergence in Probability
- Convergence in Distribution

Almost Sure Convergence

We say that T_n converges almost surely to T, and write $T_n \xrightarrow{a.s.} T$ if

$$Pr\{\omega : \lim_{n \to \infty} T_n(\omega) = T(\omega)\} = 1.$$

- Acts like an ordinary limit, except possibly on a set of probability zero.
- All the usual rules apply.
- Called convergence with probability one or sometimes strong convergence.
- In this course, convergence will usually be to a constant.

$$Pr\{\omega : \lim_{n \to \infty} T_n(\omega) = c\} = 1.$$

Strong Law of Large Numbers

Let X_1, \ldots, X_n be independent with common expected value μ .

$\overline{X}_n \stackrel{a.s.}{\to} E(X_i) = \mu$

The only condition required for this to hold is the existence of the expected value. Probability is long run relative frequency

Convergence of random vectors

LLN

- Statistical experiment: Probability of "success" is θ .
- Carry out the experiment many times independently.
- Code the results $X_i = 1$ if success, $X_i = 0$ for failure, i = 1, 2, ...

Sample proportion of successes converges to the probability of success

Recall $X_i = 0$ or 1.

$$E(X_i) = \sum_{\substack{x=0\\x=0}}^{1} x \Pr\{X_i = x\}$$
$$= 0 \cdot (1-\theta) + 1 \cdot \theta$$
$$= \theta$$

Relative frequency is

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}=\overline{X}_{n}\stackrel{a.s.}{\to}\theta$$

- Estimate almost any probability that's hard to figure out
- Statistical power
- Weather model
- Performance of statistical methods
- Need confidence intervals for estimated probabilities.

Estimating power by simulation

Example: Bernoulli random sampling.

Recall the two test statistics for testing $H_0: \theta = \theta_0$:

•
$$Z_1 = \frac{\sqrt{n}(\overline{Y} - \theta_0)}{\sqrt{\theta_0(1 - \theta_0)}}$$

• $Z_2 = \frac{\sqrt{n}(\overline{Y} - \theta_0)}{\sqrt{\overline{Y}(1 - \overline{Y})}}$

When $\theta \neq \theta_0$, calculating $P\{|Z_2| > z_{\alpha/2}\}$ can be challenging.

Strategy for estimating power by simulation

- Generate a large number of random data sets under the alternative hypothesis.
- For each data set, test H_0 .
- Estimated power is the proportion of times H_0 is rejected.
- How accurate is the estimate?

•
$$\widehat{p} \pm z_{\alpha/2} \sqrt{\frac{\widehat{p}(1-\widehat{p})}{m}}$$

Testing $H_0: \theta = 0.50$ when true $\theta = 0.60$ and n = 100Power of \overline{Z}_1 was about 0.52

$$Z_2 = \frac{\sqrt{n}(\overline{Y} - \theta_0)}{\sqrt{\overline{Y}(1 - \overline{Y})}}$$

> # Power by simulation

LLN

> set.seed(9999)

- > Ybar = rbinom(m,size=n,prob=theta)/n # A vector of length m
- > Z2 = sqrt(n)*(Ybar-theta0)/sqrt(Ybar*(1-Ybar)) # Another vector of le
- > power = length(Z2[abs(Z2>1.96)])/m; power

[1] 0.5394

Margin of error for estimated power

Confidence interval for an estimated probability was

$$\widehat{p} \pm z_{\alpha/2} \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}$$

```
# How about a 99 percent margin of error
> a = 0.005; z = qnorm(1-a)
> merror = z * sqrt(power*(1-power)/m); merror
[1] 0.0128391
> Lower = power - merror; Lower
[1] 0.5265609
> Upper = power + merror; Upper
```

[1] 0.5522391

Recall the Change of Variables formula: Let Y = g(X)

Convergence of random vectors

$$E(Y) = \int_{-\infty}^{\infty} y \, f_Y(y) \, dy = \int_{-\infty}^{\infty} g(x) \, f_X(x) \, dx$$

Or, for discrete random variables

LLN

$$E(Y) = \sum_y y \, p_{\scriptscriptstyle Y}(y) = \sum_x g(x) \, p_{\scriptscriptstyle X}(x)$$

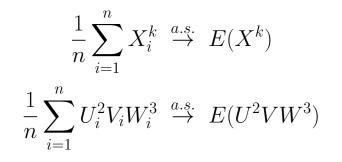
This is actually a big theorem, not a definition.

Foundations LLN Consistency CLT Convergence of random vect Applying the change of variables formula To approximate E[g(X)]

Simulate X_1, \ldots, X_n from the distribution of X. Calculate

$$\frac{1}{n} \sum_{i=1}^{n} g(X_i) = \frac{1}{n} \sum_{i=1}^{n} Y_i \stackrel{a.s.}{\to} E(Y)$$
$$= E(g(X))$$

So for example



That is, sample moments converge almost surely to population moments.

Approximate an integral: $\int_{-\infty}^{\infty} h(x) dx$ Where h(x) is a nasty function.

LLN

Let f(x) be a density with f(x) > 0 wherever $h(x) \neq 0$.

$$\int_{-\infty}^{\infty} h(x) dx = \int_{-\infty}^{\infty} \frac{h(x)}{f(x)} f(x) dx$$
$$= E\left[\frac{h(X)}{f(X)}\right]$$
$$= E[g(X)],$$

Convergence of random vectors

 So

- Sample X_1, \ldots, X_n from the distribution with density f(x)
- Calculate $Y_i = g(X_i) = \frac{h(X_i)}{f(X_i)}$ for $i = 1, \dots, n$
- Calculate $\overline{Y}_n \stackrel{a.s.}{\rightarrow} E[Y] = E[g(X)]$
- Confidence interval for $\mu = E[Y]$ is routine.

Convergence in Probability

We say that T_n converges in probability to T, and write $T_n \xrightarrow{P} T$ if for all $\epsilon > 0$,

$$\lim_{n \to \infty} P\{\omega : |T_n(\omega) - T(\omega)| < \epsilon\} = 1$$

For us, convergence will usually be to a constant:

$$\lim_{n \to \infty} P\{|T_n - c| < \epsilon\} = 1$$

Convergence in probability (say to c) means no matter how small the interval around c, for large enough n (that is, for all $n > N_1$) the probability of getting that close to c is as close to one as you like.

We will seldom use the definition in this class.

Weak Law of Large Numbers

$$\overline{X}_n \xrightarrow{p} \mu$$

- Almost Sure Convergence implies Convergence in Probability
- Strong Law of Large Numbers implies Weak Law of Large Numbers

The statistic T_n is said to be *consistent* for θ if $T_n \xrightarrow{P} \theta$ for all θ in the parameter space.

$$\lim_{n \to \infty} P\{|T_n - \theta| < \epsilon\} = 1$$

The statistic T_n is said to be *strongly consistent* for θ if $T_n \stackrel{a.s.}{\rightarrow} \theta$.

Strong consistency implies ordinary consistency.

Consistency is great but it's not enough.

- It means that as the sample size becomes indefinitely large, you probably get as close as you like to the truth.
- It's the least we can ask. Estimators that are not consistent are completely unacceptable for most purposes.

$$T_n \stackrel{a.s.}{\to} \theta \Rightarrow U_n = T_n + \frac{100,000,000}{n} \stackrel{a.s.}{\to} \theta$$

Consistency of the Sample Variance

$$\widehat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$
$$= \frac{1}{n} \sum_{i=1}^n X_i^2 - \overline{X}^2$$

By SLLN, $\overline{X}_n \stackrel{a.s.}{\to} \mu$ and $\frac{1}{n} \sum_{i=1}^n X_i^2 \stackrel{a.s.}{\to} E(X^2) = \sigma^2 + \mu^2$.

Because the function $g(x, y) = x - y^2$ is continuous,

$$\widehat{\sigma}_n^2 = g\left(\frac{1}{n}\sum_{i=1}^n X_i^2, \overline{X}_n\right) \xrightarrow{a.s.} g(\sigma^2 + \mu^2, \mu) = \sigma^2 + \mu^2 - \mu^2 = \sigma^2$$

Convergence in Distribution Sometimes called *Weak Convergence*, or *Convergence in Law*

Denote the cumulative distribution functions of T_1, T_2, \ldots by $F_1(t), F_2(t), \ldots$ respectively, and denote the cumulative distribution function of T by F(t).

We say that T_n converges in distribution to T, and write $T_n \xrightarrow{d} T$ if for every point t at which F is continuous,

$$\lim_{n \to \infty} F_n(t) = F(t)$$

Again, we will seldom use this definition directly.

Univariate Central Limit Theorem

Let X_1, \ldots, X_n be a random sample from a distribution with expected value μ and variance σ^2 . Then

$$Z_n = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \xrightarrow{d} Z \sim N(0, 1)$$

Connections among the Modes of Convergence

•
$$T_n \xrightarrow{a.s.} T \Rightarrow T_n \xrightarrow{p} T \Rightarrow T_n \xrightarrow{d} T.$$

• If a is a constant, $T_n \xrightarrow{d} a \Rightarrow T_n \xrightarrow{p} a$.

Sometimes we say the distribution of the sample mean is approximately normal, or asymptotically normal.

Convergence of random vectors

CLT

- This is justified by the Central Limit Theorem.
- But it does *not* mean that \overline{X}_n converges in distribution to a normal random variable.
- The Law of Large Numbers says that \overline{X}_n converges almost surely (and in probability) to a constant, μ .
- So \overline{X}_n converges to μ in distribution as well.

Why would we say that for large n, the sample mean is approximately $N(\mu, \frac{\sigma^2}{n})$?

Convergence of random vectors

CLT

Have
$$Z_n = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \xrightarrow{d} Z \sim N(0, 1).$$

$$Pr\{\overline{X}_n \le x\} = Pr\left\{\frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \le \frac{\sqrt{n}(x - \mu)}{\sigma}\right\}$$
$$= Pr\left\{Z_n \le \frac{\sqrt{n}(x - \mu)}{\sigma}\right\} \approx \Phi\left(\frac{\sqrt{n}(x - \mu)}{\sigma}\right)$$

Suppose Y is exactly $N(\mu, \frac{\sigma^2}{n})$:

$$Pr\{Y \le x\} = Pr\left\{\frac{\sqrt{n}(Y-\mu)}{\sigma} \le \frac{\sqrt{n}(x-\mu)}{\sigma}\right\}$$
$$= Pr\left\{Z_n \le \frac{\sqrt{n}(x-\mu)}{\sigma}\right\} = \Phi\left(\frac{\sqrt{n}(x-\mu)}{\sigma}\right)$$

Convergence of random vectors I

O Definitions (All quantities in boldface are vectors in \mathbb{R}^m unless otherwise stated)

*
$$\mathbf{T}_n \stackrel{a.s.}{\to} \mathbf{T}$$
 means $P\{\omega : \lim_{n \to \infty} \mathbf{T}_n(\omega) = \mathbf{T}(\omega)\} = 1.$
* $\mathbf{T}_n \stackrel{P}{\to} \mathbf{T}$ means $\forall \epsilon > 0, \lim_{n \to \infty} P\{||\mathbf{T}_n - \mathbf{T}|| < \epsilon\} = 1.$
* $\mathbf{T}_n \stackrel{d}{\to} \mathbf{T}$ means for every continuity point \mathbf{t} of $F_{\mathbf{T}}$,
 $\lim_{n \to \infty} F_{\mathbf{T}_n}(\mathbf{t}) = F_{\mathbf{T}}(\mathbf{t}).$

$$2 \mathbf{T}_n \stackrel{a.s.}{\to} \mathbf{T} \Rightarrow \mathbf{T}_n \stackrel{P}{\to} \mathbf{T} \Rightarrow \mathbf{T}_n \stackrel{d}{\to} \mathbf{T}.$$

3 If **a** is a vector of constants, $\mathbf{T}_n \stackrel{d}{\rightarrow} \mathbf{a} \Rightarrow \mathbf{T}_n \stackrel{P}{\rightarrow} \mathbf{a}$.

- Strong Law of Large Numbers (SLLN): Let $\mathbf{X}_1, \ldots, \mathbf{X}_n$ be independent and identically distributed random vectors with finite first moment, and let \mathbf{X} be a general random vector from the same distribution. Then $\overline{\mathbf{X}}_n \xrightarrow{a.s.} E(\mathbf{X})$.
- Central Limit Theorem: Let $\mathbf{X}_1, \ldots, \mathbf{X}_n$ be i.i.d. random vectors with expected value vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$. Then $\sqrt{n}(\overline{\mathbf{X}}_n \boldsymbol{\mu})$ converges in distribution to a multivariate normal with mean **0** and covariance matrix $\boldsymbol{\Sigma}$.

Convergence of random vectors II

- **6** Slutsky Theorems for Convergence in Distribution:
 - If $\mathbf{T}_n \in \mathbb{R}^m$, $\mathbf{T}_n \stackrel{d}{\to} \mathbf{T}$ and if $f : \mathbb{R}^m \to \mathbb{R}^q$ (where $q \leq m$) is continuous except possibly on a set C with $P(\mathbf{T} \in C) = 0$, then $f(\mathbf{T}_n) \stackrel{d}{\to} f(\mathbf{T})$.
 - **2** If $\mathbf{T}_n \xrightarrow{d} \mathbf{T}$ and $(\mathbf{T}_n \mathbf{Y}_n) \xrightarrow{P} 0$, then $\mathbf{Y}_n \xrightarrow{d} \mathbf{T}$.
 - **3** If $\mathbf{T}_n \in \mathbb{R}^d$, $\mathbf{Y}_n \in \mathbb{R}^k$, $\mathbf{T}_n \xrightarrow{d} \mathbf{T}$ and $\mathbf{Y}_n \xrightarrow{P} \mathbf{c}$, then

$$\left(\begin{array}{c} \mathbf{T}_n \\ \mathbf{Y}_n \end{array}\right) \stackrel{d}{\to} \left(\begin{array}{c} \mathbf{T} \\ \mathbf{c} \end{array}\right)$$

Convergence of random vectors III

- Slutsky Theorems for Convergence in Probability:
 - If $\mathbf{T}_n \in \mathbb{R}^m$, $\mathbf{T}_n \xrightarrow{P} \mathbf{T}$ and if $f : \mathbb{R}^m \to \mathbb{R}^q$ (where $q \le m$) is continuous except possibly on a set C with $P(\mathbf{T} \in C) = 0$, then $f(\mathbf{T}_n) \xrightarrow{P} f(\mathbf{T})$.
 - **2** If $\mathbf{T}_n \xrightarrow{P} \mathbf{T}$ and $(\mathbf{T}_n \mathbf{Y}_n) \xrightarrow{P} 0$, then $\mathbf{Y}_n \xrightarrow{P} \mathbf{T}$.
 - **③** If $\mathbf{T}_n \in \mathbb{R}^d$, $\mathbf{Y}_n \in \mathbb{R}^k$, $\mathbf{T}_n \xrightarrow{P} \mathbf{T}$ and $\mathbf{Y}_n \xrightarrow{P} \mathbf{Y}$, then

$$\left(\begin{array}{c} \mathbf{T}_n \\ \mathbf{Y}_n \end{array}\right) \stackrel{P}{\to} \left(\begin{array}{c} \mathbf{T} \\ \mathbf{Y} \end{array}\right)$$

Convergence of random vectors IV

Solution Method (Theorem of Cramér, Ferguson p. 45): Let $g : \mathbb{R}^d \to \mathbb{R}^k$ be such that the elements of $\dot{g}(\mathbf{x}) = \left[\frac{\partial g_i}{\partial x_j}\right]_{k \times d}$ are continuous in a neighborhood of $\boldsymbol{\theta} \in \mathbb{R}^d$. If \mathbf{T}_n is a sequence of *d*-dimensional random vectors such that $\sqrt{n}(\mathbf{T}_n - \boldsymbol{\theta}) \stackrel{d}{\to} \mathbf{T}$, then $\sqrt{n}(g(\mathbf{T}_n) - g(\boldsymbol{\theta})) \stackrel{d}{\to} \dot{g}(\boldsymbol{\theta})\mathbf{T}$. In particular, if $\sqrt{n}(\mathbf{T}_n - \boldsymbol{\theta}) \stackrel{d}{\to} \mathbf{T} \sim N(\mathbf{0}, \boldsymbol{\Sigma})$, then $\sqrt{n}(g(\mathbf{T}_n) - g(\boldsymbol{\theta})) \stackrel{d}{\to} \mathbf{Y} \sim N(\mathbf{0}, \dot{g}(\boldsymbol{\theta})\boldsymbol{\Sigma}\dot{g}(\boldsymbol{\theta})')$.

An application of the Slutsky Theorems

• Let
$$X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} ?(\mu, \sigma^2)$$

• By CLT,
$$Y_n = \sqrt{n}(\overline{X}_n - \mu) \stackrel{d}{\rightarrow} Y \sim N(0, \sigma^2)$$

• Let $\hat{\sigma}_n$ be any consistent estimator of σ .

• Then by 6.3,
$$\mathbf{T}_n = \begin{pmatrix} Y_n \\ \widehat{\sigma}_n \end{pmatrix} \xrightarrow{d} \begin{pmatrix} Y \\ \sigma \end{pmatrix} = \mathbf{T}$$

• The function f(x, y) = x/y is continuous except if y = 0 so by 6.1,

$$f(\mathbf{T}_n) = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\widehat{\sigma}_n} \stackrel{d}{\to} f(\mathbf{T}) = \frac{Y}{\sigma} \sim N(0, 1)$$

Univariate delta method

In the multivariate Delta Method 8, the matrix $\dot{g}(\boldsymbol{\theta})$ is a Jacobian. The univariate version of the delta method says that if $\sqrt{n} (T_n - \theta) \xrightarrow{d} T$ and g''(x) is continuous in a neighbourhood of θ , then

$$\sqrt{n} \left(g(T_n) - g(\theta) \right) \xrightarrow{d} g'(\theta) T.$$

When using the Central Limit Theorem, especially if there is a $\theta \neq \mu$ in the model, it's safer to write

$$\sqrt{n}\left(g(\overline{X}_n) - g(\mu)\right) \xrightarrow{d} g'(\mu) T.$$

and then substitute for μ in terms of θ .

Example: Geometric distribution

Let X_1, \ldots, X_n be a random sample from a distribution, with probability mass function $p(x|\theta) = \theta(1-\theta)^{x-1}$ for $x = 1, 2, \ldots$, where $0 < \theta < 1$.

So,
$$E(X_i) = \frac{1}{\theta}$$
 and $Var(X_i) = \frac{1-\theta}{\theta^2}$.

The maximum likelihood estimator of θ is $\hat{\theta} = \frac{1}{\overline{X}_n}$. Using the Central Limit Theorem and the delta method, find the approximate large-sample distribution of $\hat{\theta}$.

Solution: Geometric distribution $\mu = \frac{1}{\theta}$ and $\sigma^2 = \frac{1-\theta}{\theta^2}$

CLT says
$$\sqrt{n} \left(\overline{X}_n - \mu\right) \stackrel{d}{\to} T \sim N(0, \frac{1-\theta}{\theta^2})$$

Delta method says $\sqrt{n} \left(g(\overline{X}_n) - g(\mu)\right) \stackrel{d}{\to} g'(\mu) T$.
 $g(x) = \frac{1}{x} = x^{-1}$
 $g'(x) = -x^{-2}$
So,

$$\begin{split} \sqrt{n} \left(g(\overline{X}_n) - g(\mu) \right) &= \sqrt{n} \left(\frac{1}{\overline{X}_n} - \frac{1}{\mu} \right) \\ &= \sqrt{n} \left(\widehat{\theta} - \theta \right) \\ &\stackrel{d}{\to} g'(\mu) T = -\frac{1}{\mu^2} T \\ &= -\theta^2 T \sim N \left(0, \theta^4 \cdot \frac{1 - \theta}{\theta^2} \right) \end{split}$$

Foundations

Delta Method

Asymptotic distribution of $\hat{\theta} = \frac{1}{\overline{X}_n}$

Approximate large-sample distribution

Have
$$Y_n = \sqrt{n} \left(\widehat{\theta} - \theta \right) \stackrel{.}{\sim} N(0, \theta^2(1-\theta)).$$

So
$$\frac{Y_n}{\sqrt{n}} = \left(\widehat{\theta} - \theta\right) \stackrel{.}{\sim} N\left(0, \frac{\theta^2(1-\theta)}{n}\right)$$

And $\frac{Y_n}{\sqrt{n}} + \theta = \widehat{\theta} \stackrel{.}{\sim} N\left(\theta, \frac{\theta^2(1-\theta)}{n}\right)$

We'll say that $\hat{\theta} = \frac{1}{\overline{X}_n}$ is approximately (or asymptotically) $N\left(\theta, \frac{\theta^2(1-\theta)}{n}\right).$

Another example of $\sqrt{n} \left(g(\overline{X}_n) - g(\mu) \right) \xrightarrow{d} g'(\mu) T$ Don't lose your head

Let
$$X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} ?(\mu, \sigma^2)$$

CLT says $\sqrt{n}(\overline{X}_n - \mu) \stackrel{d}{\to} T \sim N(0, \sigma^2)$
Let $g(x) = x^2$
Delta method says $\sqrt{n} \left(g(\overline{X}_n) - g(\mu)\right) \stackrel{d}{\to} g'(\mu) T$.
So $\sqrt{n} \left(\overline{X}_n^2 - \mu^2\right) \stackrel{d}{\to} 2\mu T \sim N(0, 4\mu^2 \sigma^2)$
Really? What if $\mu = 0$?

If
$$\mu = 0$$
 then $\sqrt{n} \left(\overline{X}_n^2 - \mu^2 \right) = \sqrt{n} \, \overline{X}_n^2 \stackrel{d}{\to} 2\mu T = 0$
 $\Rightarrow \sqrt{n} \, \overline{X}_n^2 \stackrel{p}{\to} 0.$

Already know from continuous mapping that $\overline{X}_n^2 \xrightarrow{p} \mu^2 = 0$. Delta method reveals *faster convergence*.

Have
$$\sqrt{n} \overline{X}_n^2 \xrightarrow{p} 0$$
. If we add another \sqrt{n} and if (say) $\sigma^2 = 1$ as well as $\mu = 0$,

$$n\overline{X}_n^2 = \left(\sqrt{n}(\overline{X}_n - \mu)\right)^2 \stackrel{d}{\to} Z^2 \sim \chi^2(1)$$

If $\sigma^2 \neq 1$, the target is $\text{Gamma}(\alpha = \frac{1}{2}, \beta = 2\sigma)$

The delta method comes from Taylor's Theorem

Taylor's Theorem: Let the *n*th derivative $f^{(n)}$ be continuous in [a, b] and differentiable in (a, b), with x and x_0 in (a, b). Then there exists a point ξ between x and x_0 such that

Convergence of random vectors

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)(x - x_0)^2}{2!} + \dots + \frac{f^{(n)}(x_0)(x - x_0)^n}{n!} + \frac{f^{(n+1)}(\xi)(x - x_0)^{n+1}}{(n+1)!}$$

where $R_n = \frac{f^{(n+1)}(\xi)(x-x_0)^{n+1}}{(n+1)!}$ is called the *remainder term*. If $R_n \to 0$ as $n \to \infty$, the resulting infinite series is called the *Taylor Series* for f(x).

Foundations

Taylor's Theorem with two terms plus remainder Very common in applications

Let g(x) be a function for which g''(x) is continuous in an open interval containing $x = \theta$. Then

$$g(x) = g(\theta) + g'(\theta)(x - \theta) + \frac{g''(\theta^*)(x - \theta)^2}{2!}$$

where θ^* is between x and θ .

 Foundations
 LLN
 Consistency
 CLT
 Convergence of random vectors
 Delta Method

 Delta
 method
 Using $g(x) = g(\theta) + g'(\theta)(x - \theta) + \frac{1}{2}g''(\theta^*)(x - \theta)^2$ Image: CLT
 Convergence of random vectors
 Delta Method

Let
$$\sqrt{n}(T_n - \theta) \xrightarrow{d} T$$
 so that $T_n \xrightarrow{p} \theta$.

$$\begin{split} \sqrt{n} \left(g(T_n) - g(\theta) \right) &= \sqrt{n} \left(g(\theta) + g'(\theta)(T_n - \theta) + \frac{1}{2} g''(\theta_n^*)(T_n - \theta)^2 - g(\theta) \right) \\ &= \sqrt{n} \left(g'(\theta)(T_n - \theta) + \frac{1}{2} g''(\theta_n^*)(T_n - \theta)^2 \right) \\ &= g'(\theta) \sqrt{n} (T_n - \theta) \\ &+ \frac{1}{2} g''(\theta_n^*) \cdot \sqrt{n} (T_n - \theta) \cdot (T_n - \theta) \\ &\stackrel{d}{\to} g'(\theta) T + 0 \end{split}$$

A variance-stabilizing transformation An application of the delta method

- Because the Poisson process is such a good model, count data often have approximate Poisson distributions.
- Let $X_1, \ldots, X_n \stackrel{i.i.d}{\sim} \operatorname{Poisson}(\lambda)$

•
$$E(X_i) = Var(X_i) = \lambda$$

•
$$Z_n = \frac{\sqrt{n}(\overline{X}_n - \lambda)}{\sqrt{\overline{X}_n}} \xrightarrow{d} Z \sim N(0, 1)$$

• Could say $\overline{X}_n \stackrel{\cdot}{\sim} N(\lambda, \lambda/n)$ and $\sum_{i=1}^n X_i \stackrel{\cdot}{\sim} N(n\lambda, \lambda)$.

- Because the sum of independent Poissons is Poisson, this means Poisson-distributed variables with large λ are approximately normal.
- For analysis with normal linear models, approximate normality is good. Variance that depends on $E(Y_i)$ is not good.
- Can we fix it?

Variance-stabilizing transformation continued

• CLT says
$$\sqrt{n}(\overline{X}_n - \lambda) \xrightarrow{d} T \sim N(0, \lambda).$$

• Delta method says

$$\sqrt{n} \left(g(\overline{X}_n) - g(\lambda) \right) \xrightarrow{d} g'(\lambda) T = Y \sim N \left(0, g'(\lambda)^2 \lambda \right)$$

• If
$$g'(\lambda) = \frac{1}{\sqrt{\lambda}}$$
, then $Y \sim N(0, 1)$.

An elementary differential equation: $g'(x) = \frac{1}{\sqrt{x}}$ Solve by separation of variables

$$\frac{dg}{dx} = x^{-1/2}$$

$$\Rightarrow dg = x^{-1/2} dx$$

$$\Rightarrow \int dg = \int x^{-1/2} dx$$

$$\Rightarrow g(x) = \frac{x^{1/2}}{1/2} + c = 2x^{1/2} + c$$

We have found

$$\sqrt{n} \left(g(\overline{X}_n) - g(\lambda) \right) = \sqrt{n} \left(2\overline{X}_n^{1/2} - 2\lambda^{1/2} \right)$$

$$\stackrel{d}{\to} Z \sim N(0, 1)$$

So,

- We could say that $\sqrt{\overline{X}_n}$ is asymptotically normal, with (asymptotic) mean $\sqrt{\lambda}$ and (asymptotic) variance $\frac{1}{4n}$.
- This calculation could justify a square root transformation for count data.
- Note that the transformation is increasing, so if Y_i is number of visitors to a website, $\sqrt{Y_i}$ could still be called "popularity."

The arcsin-square root transformation For proportions

Sometimes, variable values consist of proportions, one for each case.

- For example, cases could be high schools.
- The variable of interest is the proportion of students who enroll in university the year after graduation.
- This is an example of *aggregated data*.

Foundations LLN Consistency CLT Convergence of random vectors Delta Method
The advice you sometimes get
Still

When a proportion is the response variable in a regression, use the *arcsin square root* transformation.

That is, if the proportions are P_1, \ldots, P_n , let

$$Y_i = \sin^{-1}(\sqrt{P_i})$$

and use the Y_i values in your regression.

It's a variance-stabilizing transformation (details omitted).

That was fun, but it was all univariate.

Because

- The multivariate CLT establishes convergence to a multivariate normal, and
- Vectors of MLEs are approximately multivariate normal for large samples, and
- The multivariate delta method can yield the asymptotic distribution of useful functions of the MLE vector,

We need to look at random vectors and the multivariate normal distribution.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The IAT_EX source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/appliedf18