Analysis of Fractional Factorial Designs ${ }^{1}$ STA442/2101 Fall 2018

[^0]
Fractional Factorial Designs

- So far, we have considered only complete factorials.
- In a complete factorial, there are observations at all treatment combinations.
- In a fractional factorial, some cells in the design are deliberately empty.
- Why? Usually expense.

Models for fractional factorial designs

- You can still fit a regression model if you are willing to make some assumptions.
- Usually, assume one or more interactions are absent.
- Its another example of the tradeoff between assumptions and amount of data.
- The more data you have, the less you have to assume.

The simplest example: Two by two

Omit the red cell

$$
\left. \mu_{11} \quad \mu_{12} \right\rvert\,
$$

No interaction means the effect of A is the same for both levels of B. $\mu_{11}-\mu_{21}=\mu_{12}-\mu_{22} \Leftrightarrow \mu_{22}=\mu_{12}-\mu_{11}+\mu_{21}$ And the difference between marginal means for A is

$$
\begin{aligned}
& \frac{1}{2}\left(\mu_{11}+\mu_{12}\right)-\frac{1}{2}\left(\mu_{21}+\mu_{22}\right) \\
= & \frac{1}{2}\left(\mu_{11}+\mu_{12}-\mu_{21}-\left(\mu_{12}-\mu_{11}+\mu_{21}\right)\right) \\
= & \frac{1}{2}\left(\mu_{11}+\mu_{12}-\mu_{21}-\mu_{12}+\mu_{11}-\mu_{21}\right) \\
= & \frac{1}{2}\left(2 \mu_{11}-2 \mu_{21}\right) \\
= & \mu_{11}-\mu_{21}
\end{aligned}
$$

Extensions

- In a $2 \times 2 \times \cdots \times 2$ factorial, You can sacrifice any cell you want in exchange for the highest-way interaction.
- Chapter 6A in Cochran and Cox's Design of experiments has a lot of rules that apply to balanced designs.
- Here's another approach.

For larger designs

- All the standard tests are tests of whether contrasts or collections of contrasts equal zero.
- You can sacrifice any contrast in exchange for a cell by
- Choosing one of the μ parameters involved in the contrast.
- Solving for it.
- Letting that cell be empty.
- You can do this for more than one contrast (and cell).
- How do you know what contrasts to test for the remaining effects?
- Substitute the solution(s) for the μ parameter(s).
- Calculate the contrast you would usually test.
- And simplify.
- Just as in the 2×2 example.
- The hardest part is knowing what contrasts correspond to an effect of interest for larger designs.
- There is a systematic way to find out.

Effect coding

- Pick an interaction or set of interactions to sacrifice.
- The number of potential empty cells equals the number of β s set to zero.
- Each β is zero if and only if a linear combination of the μ values is zero.
- It's a matter of going back and forth between cell means coding and effect coding.
- To get an explicit formula for the β parameters of effect coding in terms of the μ parameters of cell means coding.

Example: Crop yield study

Three Fertilizers by Sprinkler versus Drip Irrigation

$$
E[Y \mid \mathbf{X}]=\beta_{0}+\beta_{1} f_{1}+\beta_{2} f_{2}+\beta_{3} w+\beta_{4} f_{1} w+\beta_{5} f_{2} w
$$

Fertilizer	Water	f_{1}	f_{2}	w	$f_{1} w$	$f_{2} w$	$E[Y \mid \mathbf{X}]$
1	Sprinkler	1	0	1	1	0	$\mu_{11}=\beta_{0}+\beta_{1}+\beta_{3}+\beta_{4}$
1	Drip	1	0	-1	-1	0	$\mu_{12}=\beta_{0}+\beta_{1}-\beta_{3}-\beta_{4}$
2	Sprinkler	0	1	1	0	1	$\mu_{21}=\beta_{0}+\beta_{2}+\beta_{3}+\beta_{5}$
2	Drip	0	1	-1	0	-1	$\mu_{22}=\beta_{0}+\beta_{2}-\beta_{3}-\beta_{5}$
3	Sprinkler	-1	-1	1	-1	-1	$\mu_{31}=\beta_{0}-\beta_{1}-\beta_{2}+\beta_{3}-\beta_{4}-\beta_{5}$
3	Drip	-1	-1	-1	1	1	$\mu_{32}=\beta_{0}-\beta_{1}-\beta_{2}-\beta_{3}+\beta_{4}+\beta_{5}$

- The $\mu_{i j}$ are linear combinations of the β_{j}.
- And the coefficients are sitting right there in the table.

Matrix form

$$
\left.\begin{array}{c}
\left(\begin{array}{rrrrrr}
1 & 1 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & -1 & -1 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & -1 & 0 & -1 \\
1 & -1 & -1 & 1 & -1 & -1 \\
1 & -1 & -1 & -1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
\beta_{0} \\
\beta_{1} \\
\beta_{2} \\
\beta_{3} \\
\beta_{4} \\
\beta_{5} \\
\beta_{6}
\end{array}\right)=\left(\begin{array}{l}
\mu_{11} \\
\mu_{12} \\
\mu_{21} \\
\mu_{22} \\
\mu_{31} \\
\mu_{32}
\end{array}\right) \\
\mathbf{A} \boldsymbol{\beta}
\end{array}\right)=\boldsymbol{\mu} .
$$

This is really nice because it shows the equivalence of the two dummy variable coding schemes.

Can even do most of the job with R $\boldsymbol{\beta}=\mathbf{A}^{-1} \boldsymbol{\mu}$

```
> A = rbind( c(1, 1, 0, 1, 1, 0),
+ c(1, 1, 0,-1,-1, 0),
+ c(1, 0, 1, 1, 0, 1),
+ c(1, 0, 1,-1, 0,-1),
+ c(1,-1,-1, 1,-1,-1),
+ c(1,-1,-1,-1, 1, 1) )
```

> solve(A) \# Inverse
$\left[\begin{array}{cccccc}{[, 1]} & {[, 2]} & {[, 3]} & {[, 5]} & {[, 6]}\end{array}\right.$
$\left[\begin{array}{lllllll}{[1,]} & 0.1666667 & 0.1666667 & 0.1666667 & 0.1666667 & 0.1666667 & 0.1666667\end{array}\right.$
[2,] $0.3333333-0.3333333-0.1666667-0.1666667-0.1666667-0.1666667$
$[3]-0.1666667-,0.16666670 .3333333 \quad 0.3333333-0.1666667-0.1666667$
$[4] \quad 0.1666667-,0.1666667 \quad 0.1666667-0.1666667 \quad 0.1666667-0.1666667$
$[5] \quad 0.3333333-0.3333333-,0.1666667 \quad 0.1666667-0.1666667 \quad 0.1666667$
$[6]-,0.1666667 \quad 0.1666667 \quad 0.3333333-0.3333333-0.16666670 .1666667$
> 0.1666667 * 6
[1] 1

- This identifies the linear combination of μ s that correspond to each β.
- Still have to solve for the cell mean you're omitting, and substitute.
- But at least now we know what linear combinations to calculate.

Which cells can we omit?
 And still be able to test the remaining effects

- Try omitting one or more cells.
- Solve for that μ in terms of the other $\mu \mathrm{s}$.
- Substitute the solution for the missing cell mean(s).
- Set the contrast(s) you want the test to zero (get these from \mathbf{A}^{-1})
- Simplify.
- If you get $0=0$, you've omitted the wrong cells.
- Otherwise, you know what special hypotheses to test.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The ${ }^{A} T_{E} \mathrm{X}$ source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/appliedf18

[^0]: ${ }^{1}$ See last slide for copyright information.

