
STA 2101/442 Assignment 41

These questions are practice for the midterm and final exam, and are not to be handed in.

1. It is well known that people who graduate from university have higher lifetime earnings
on average than those who do not. Mention at least one confounding variable that could
have produced this result.

2. Let y = Xβ + ε, where X is an n× p matrix of known constants, β is a p× 1 vector
of unknown constants, and ε is multivariate normal with mean zero and covariance
matrix σ2In. The constant σ2 > 0 is unknown.

(a) Show X>e = 0.

(b) Why does X>e = 0 tell you that if a regression model has an intercept, the
residuals must add up to zero?

(c) Consider a regression model with an intercept, so that the sum of residuals is equal
to zero. Prove the following decomposition of sums of squares, also given on the
formula sheet: SST = SSE + SSR. Hint: Starting with scalar calculations, add
and subtract ŷi. Switch to matrix notation partway through the calculation.

3. High School History classes from across Ontario are randomly assigned to either a
discovery-oriented or a memory-oriented curriculum in Canadian history. At the end
of the year, the students are given a standardized test and the median score of each
class is recorded. Please consider a regression model with these variables:

X1 Equals 1 if the class uses the discovery-oriented curriculum, and equals 0 if the
class uses the memory-oriented curriculum.

X2 Average parents’ education for the classroom.

X3 Average family income for the classroom.

X4 Number of university History courses taken by the teacher.

X5 Teacher’s final cumulative university grade point average.

Y Class median score on the standardized history test.

The full regression model (as opposed to the reduced models for various null hypothe-
ses) implies

E[Y |X] = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5.

For each question below, please give

1This assignment was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It
is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of
it as you like and share the result freely. The LATEX source code is available from the course website:
http://www.utstat.toronto.edu/∼brunner/oldclass/appliedf18
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• The null hypothesis in terms of β values.

• E[Y |X] for the reduced model you would use to answer the question. Don’t
re-number the variables.

(a) If you allow for parents’ education and income and for teacher’s university back-
ground, does curriculum type affect test scores? (And why is it okay to use the
word ”affect?”)

(b) Controlling for parents’ education and income and for curriculum type, is teacher’s
university background (two variables) related to their students’ test performance?

(c) Correcting for teacher’s university background and for curriculum type, are par-
ents’ education and family income (considered simultaneously) related to students’
test performance?

(d) Taking curriculum type, teacher’s university background and parents’ education
into consideration, is parents’ income related to students’ test performance?

(e) Here is one final question. Assuming that X1, . . . , X5 are random variables (and
I hope you agree that they are),

i. Would you expect X1 ro be related to the other explanatory variables?

ii. Would you expect the other explanatory variables to be related to each other?

4. In the United States, admission to university is based partly on high school marks and
recommendations, and partly on applicants’ performance on a standardized multiple
choice test called the Scholastic Aptitude Test (SAT). The SAT has two sub-tests, Ver-
bal and Math. A university administrator selected a random sample of 200 applicants,
and recorded the Verbal SAT, the Math SAT and first-year university Grade Point
Average (GPA) for each student. The data are available here. We seek to predict GPA
from the two test scores. Throughout, please use the usual α = 0.05 significance level.

(a) First, fit a model using just the Math score as a predictor. “Fit” means estimate
the model parameters. Does there appear to be a relationship between Math score
and grade point average?

i. Answer Yes or No.

ii. Fill in the blank. Students who did better on the Math test tended to have
first-year grade point average.

iii. Do you reject H0 : β1 = 0?

iv. Are the results statistically significant? Answer Yes or No.

v. What is the p-value? The answer can be found in two places on your printout.

vi. What proportion of the variation in first-year grade point average is explained
by score on the SAT Math test? The answer is a number from your printout.
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vii. Give a predicted first-year grade point average for a student who got 700 on
the Math SAT. The answer is a number you could get with a calculator from
your printout.

(b) Now fit a model with both the Math and Verbal sub-tests.

i. Give the test statistic, the degrees of freedom and the p-value for each of the
following null hypotheses. The answers are numbers from your printout.

A. H0 : β1 = β2 = 0

B. H0 : β1 = 0

C. H0 : β2 = 0

D. H0 : β0 = 0

ii. Controlling for Math score, is Verbal score related to first-year grade point
average?

A. Give the value of the test statistic. The answer is a number from your
printout.

B. Give the p-value. The answer is a number from your printout.

C. Do you reject the null hypothesis?

D. Are the results statistically significant? Answer Yes or No.

E. In plain, non-statistical language, what do you conclude? The answer is
something about test scores and grade point average.

iii. Allowing for Verbal score, is Math score related to first-year grade point
average?

A. Give the value of the test statistic. The answer is a number from your
printout.

B. Give the p-value. The answer is a number from your printout.

C. Do you reject the null hypothesis?

D. Are the results statistically significant? Answer Yes or No.

E. In plain, non-statistical language, what do you conclude? The answer is
something about test scores and grade point average.

iv. Give a predicted first-year grade point average for a student who got 650 on
the Verbal and 700 on the Math SAT.

v. Let’s do one more test. We want to know whether expected GPA increases
faster as a function of the Verbal SAT, or the Math SAT. That is, we want
to compare the regression coefficients, testing H0 : β1 = β2.

A. Express the null hypothesis in matrix form as Lβ = h.

B. Carry out an F test2.

2If you do not remember how to do this with R from your regression course, several packages provide
functions to do it — for example, the linear.hypothesis function in the car (Companion to Applied
Regression) package. Or you could just search online. When I did this, I found a useful example from a
regression course I taught several years ago. Feel free to use my ftest function if you wish.
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C. State your conclusion in plain, non-technical language. It’s something
about first-year grade point average.

5. Ordinary linear regression is often applied to data sets where the independent variables
are best modeled as random variables: write yi = X>i β+εi. In what way does the usual
conditional linear regression model with normal errors imply that random explanatory
variables have zero covariance with the error term? Hint: Assume Xi as well as εi
continuous. What is the conditional distribution of εi given Xi?

6. For a model with just one (random) explanatory variable, show that E(εi|Xi = xi) = 0
for all xi implies Cov(Xi, εi) = 0, so that a standard regression model without the nor-
mality assumption still implies zero covariance, though not necessarily independence,
between the error term and explanatory variables.

7. In the following regression model, the explanatory variables X1 and X2 are random
variables. The true model is

Yi = β0 + β1Xi,1 + β2Xi,2 + εi,

independently for i = 1, . . . , n, where εi ∼ N(0, σ2).

The mean and covariance matrix of the explanatory variables are given by

E

(
Xi,1

Xi,2

)
=

(
µ1

µ2

)
and V ar

(
Xi,1

Xi,2

)
=

(
φ11 φ12

φ12 φ22

)
The explanatory variables Xi,1 and Xi,2 are independent of εi.

Unfortunately Xi,2, which has an impact on Yi and is correlated with Xi,1, is not part
of the data set. Since Xi,2 is not observed, it is absorbed by the intercept and error
term, as follows.

Yi = β0 + β1Xi,1 + β2Xi,2 + εi

= (β0 + β2µ2) + β1Xi,1 + (β2Xi,2 − β2µ2 + εi)

= β′0 + β1Xi,1 + ε′i.

The primes just denote a new β0 and a new εi. It was necessary to add and subtract
β2µ2 in order to obtain E(ε′i) = 0. And of course there could be more than one omitted
variable. They would all get swallowed by the intercept and error term, the garbage
bins of regression analysis.

(a) What is Cov(Xi,1, ε
′
i)?

(b) Calculate the variance-covariance matrix of (Xi,1, Yi) under the true model. Is it
possible to have non-zero covariance between Xi,1 and Yi when β1 = 0?
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(c) Suppose we want to estimate β1. The usual least squares estimator is

β̂1 =

∑n
i=1(Xi,1 −X1)(Yi − Y )∑n

i=1(Xi,1 −X1)2
.

You may just use this formula; you don’t have to derive it. Is β̂1 a consistent
estimator of β1 if the true model holds? Answer Yes or no and show your work.
You may use the consistency of the sample variance and covariance without proof.

(d) Are there any points in the parameter space for which β̂1
p→ β1 when the true

model holds?

8. Independently for i = 1, . . . , n, let Yi = βXi + εi, where Xi ∼ N(µ, σ2
x) and εi ∼

N(0, σ2
ε ). Because of omitted variables that influence bothXi and Yi, we have Cov(Xi, εi) =

c 6= 0.

(a) The least squares estimator of β is
∑n

i=1XiYi∑n
i=1X

2
i

. Is this estimator consistent? Answer

Yes or No and prove your answer.

(b) Give the parameter space for this model. There are some constraints on c.

(c) First consider points in the parameter space where µ 6= 0. Give an estimator of
β that converges almost surely to the right answer for that part of the parameter
space. If you are not sure how to proceed, try calculating the expected value and
covariance matrix of (Xi, Yi).

(d) What happens in the rest of the parameter space — that is, where µ = 0? Is a
consistent estimator possible there? So we see that parameters may be identifiable
in some parts of the parameter space but not all.

9. We know that omitted explanatory variables are a big problem, because they induce
non-zero covariance between the explanatory variables and the error terms εi. The
residuals have a lot in common with the εi terms in a regression model, though they are
not the same thing. A reasonable idea is to check for correlation between explanatory
variables and the εi values by looking at the correlation between the residuals and
explanatory variables.

Accordingly, for a multiple regression model with an intercept so that
∑n

i=1 ei = 0,
calculate the sample correlation r between explanatory variable j and the residuals
e1, . . . , en. Use the formula for r from the formula sheet. Simplify. What can the
sample correlations between residuals and x variables tell you about the correlation
between ε and the x variables?
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10. Let X1, . . . , Xn be random sample from a binomial distribution with parameters 4 and θ,
where θ is unknown. The prior distribution on θ is beta with parameters α and β.

(a) Find the posterior density of θ, including the constant that makes it integrate to one.

(b) For n = 20 observations and α = β = 1 (the uniform distribution), we obtain X = 2.3.
What is the posterior mean? Hint: The expected value of a beta random variable is
α

α+β .

11. Let X1, . . . , Xn be random sample from a Poisson distribution with parameter λ > 0. The
prior on λ will be gamma; use the parameterization on the formula sheet. Please derive the
posterior density of λ, including the constant that makes it integrate to one.

12. Let X1, . . . , Xn be random sample from a normal distribution with mean µ and precision τ
(the precision is one over the variance – see formula sheet).

(a) Suppose that the parameter µ is known, while τ is unknown. The prior on τ is gamma,
with the parameterization given on the formula sheet. Give the posterior distribution
of τ .

(b) Suppose that τ is known, while this time µ is unknown. The prior on µ is standard
normal. Find the posterior distribution of µ.

13. Suppose the prior is a finite mixture of prior distributions. That is, the parameter θ has prior
density

π(θ) =

k∑
j=1

aj πj(θ)

The constants a1, . . . , aj are called mixing weights; they are non-negative and they add up
to one.

Show that the posterior distribution is a mixture of the posterior distributions corresponding
to π1(θ), . . . , πk(θ). What are the mixing weights of the posterior?

This result can be useful if your model has a conjugate prior family, because you can represent
virtually any prior opinion by a mixture of conjugate priors. For example, a bimodal prior
might be just a mixture of two normals. Thus, you can have essentially any prior you wish,
and also the convenience of an exact posterior distribution.

14. Let θ represent the probability that a particular type of cancer, apparently wiped out by
chemotherapy, will recur within 2 years. Suppose you really have no prior idea about the
value of θ. Therefore, you adopt a “non-informative” uniform prior distribution on the
interval from zero to one.

Of course, if you have no idea about the probability, you also have no idea about the log
odds. The log odds is given by ln θ

1−θ . Derive the density of the log odds if θ has a uniform
distribution, and use R to plot it. Do you seem to have an idea about what the log odds
should be? The moral of this story is that when you adopt a uniform prior, you are still
expressing an opinion.
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