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Independent Observations

I Most statistical models assume independent observations.
I Sometimes the assumption of independence is

unreasonable.
I For example, times series and within cases designs.
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Within Cases

I A case contributes a value of the response variable for
every value of a categorical explanatory variable.

I As opposed to explanatory variables that are Between
Cases: Explanatory variables partition the sample.

I It is natural to expect data from the same case to be
correlated, not independent.

I For example, the same subject appears in several treatment
conditions

I Hearing study: How does pitch affect our ability to hear
faint sounds? Subjects are presented with tones at a variety
of different pitch and volume levels (in a random order).
They press a key when they think they hear something.
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You may hear terms like

I Longitudinal: The same variables are measured
repeatedly over time. Usually lots of variables, including
categorical ones, and large samples. If there’s an
experimental treatment, its usually once at the beginning,
like a surgery. Basically its tracking what happens over
time.

I Repeated measures: Usually, same subjects experience
two or more experimental treatments. Usually quantitative
explanatory variables and small samples.
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Student’s Sleep Study (Biometrika, 1908)
First Published Example of a t-test

I Patients take two sleeping medicines several days apart.
I Half get A first, half get B first.
I Reported hours of sleep are recorded.
I It’s natural to subtract, and test whether the mean

difference equals zero.
I That’s what Gossett did.
I But some might do an independent t-test with n1 = n2.
I It’s wrong, but is it harmful?
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The True Model
And the Correct Test

Independently for i = 1, . . . , n, observe Xi, Yi.
I Xi ∼ N(µ1, σ

2
1), Yi ∼ N(µ2, σ

2
2).

I Cov(Xi, Yi) = σ12.
I Calculate Differences Di = Xi − Yi

I Matched t-test on D1, . . . , Dn

I H0 : µ = 0, where µ = E(Di) = µ1 − µ2

Test statistic is

t1 =
√

n(D − 0)
S

with df = n− 1.
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Independent t-test
Correct if σ2

1 = σ2
2 and σ12 = 0

t2 =
X − Y

Sp

√
1
n1

+ 1
n2

,

with df = n1 + n2 − 2, where

S2
p =

∑n1
i=1(Xi −X)2 +

∑n2
i=1(Yi − Y )2

n1 + n2 − 2

8 / 21



Comparing the Tests

t1 =
√

n(D − 0)
S

, df = n− 1

t2 =
X − Y

Sp

√
1
n1

+ 1
n2

, df = 2(n− 1)

I The two-sample test pretends it has twice the degrees of
freedom.

I Could cause worry about inflated Type I error rate
I But both critical values go to zα/2 as n→∞.
I For example, for n = 100, t0.975(99) = 1.98 while

t0.975(198) = 1.97.
I So if there is a problem with df , it will be for small samples.
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Comparing the Test Statistics

t1 =
(D − 0)
S/
√

n
, df = n− 1

t2 =
X − Y

Sp

√
1
n1

+ 1
n2

, df = 2(n− 1)

I D = 1
n

∑n
i=1(Xi − Yi) = X − Y

I So the numerators are the same.
I Compare denominators
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One-Sample (Matched) t-Test

S2/n =
1

n(n− 1)

n∑
i=1

(Di −D)2

=
1

n(n− 1)

n∑
i=1

(
Xi − Yi − (X − Y )

)2

=
1

n(n− 1)

n∑
i=1

(
(Xi −X)− (Yi − Y )

)2

=
1
n

[∑n
i=1(Xi −X)2

n− 1
− 2

∑n
i=1(Xi −X)(Yi − Y )

n− 1

+
∑n

i=1(Yi − Y )2

n− 1

]
=

1
n

[
S2

x − 2Sxy + S2
y

]
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Two-Sample (Independent) t-Test
With n1 = n2 = n

S2
p

(
1
n1

+
1
n2

)
=

(n1 − 1)S2
x + (n2 − 1)S2

y

n1 + n2 − 2

(
1
n1

+
1
n2

)
=

(n− 1)(S2
x + S2

y)
n + n− 2

(
2
n

)
=

(n− 1)(S2
x + S2

y)
2(n− 1)

(
2
n

)
=

S2
x + S2

y

n

12 / 21



Comparing (Squared) Denominators
Of the t Statistics

S2
p

(
1
n1

+
1
n2

)
=

1
n

[
S2

x + S2
y

]
S2/n =

1
n

[
S2

x − 2Sxy + S2
y

]
I If covariance is zero, they are the same
I If covariance is negative

I Denominator of two-sample t is too small
I Value of t too large
I Null hypothesis rejected too often
I Not likely to be a problem in practice

I If covariance is positive (realistic)
I Denominator of two-sample t is too large
I Value of t too small
I Null hypothesis less likely to be rejected
I If H0 is false, expect loss of power
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Estimate Power by Simulation

I (Xi, Yi) bivariate normal
I Equal Variances: σ2

1 = σ2
2 = σ2 = 1

I |µ1 − µ2| = σ
2 , so let µ1 = 1, µ2 = 1.5

I Corr(Xi, Yi) = +0.50
I n = 25
I What is the power of the correct test and the incorrect

test?
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Simulate From a Multivariate Normal

rmvn <- function(nn,mu,sigma)
# Returns an nn by kk matrix, rows are independent
# MVN(mu,sigma)

{
kk <- length(mu)
dsig <- dim(sigma)
if(dsig[1] != dsig[2]) stop("Sigma must be square.")
if(dsig[1] != kk)

stop("Sizes of sigma and mu are inconsistent.")
ev <- eigen(sigma,symmetric=T)
sqrl <- diag(sqrt(ev$values))
PP <- ev$vectors
ZZ <- rnorm(nn*kk) ; dim(ZZ) <- c(kk,nn)
rmvn <- t(PP%*%sqrl%*%ZZ+mu)
rmvn
}# End of function rmvn
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Simulation Code

set.seed(9999)
n = 25; r = 0.5; nsim=1000
crit1 = qt(0.975,n-1); crit2 = qt(0.975,2*(n-1))
Mu = c(1,1.5); Sigma = rbind(c(1,r),

c(r,1))
nsig1 = nsig2 = 0
for(sim in 1:nsim)

{
dat = rmvn(n,Mu,Sigma); X = dat[,1]; Y = dat[,2]
sig1 = t.test(x=X,y=Y,paired=T)$p.value<0.05
if(sig1) nsig1=nsig1+1
sig2 = t.test(x=X,y=Y,var.equal=T)$p.value<0.05
if(sig2) nsig2=nsig2+1
}

cat(" \n")
cat(" Based on ",nsim," simulations, Estimated Power \n")
cat(" Matched t-test: ",round(nsig1/nsim,3),"\n")
cat(" Two-sample t-test: ",round(nsig2/nsim,3),"\n")
cat(" \n")
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Output

Based on 1000 simulations, Estimated Power
Matched t-test: 0.675
Two-sample t-test: 0.385

Mu = c(1,1) # H0 is true -- estimate significance level

Based on 1000 simulations, Estimated Power
Matched t-test: 0.063
T-sample t-test: 0.006

Based on 10000 simulations, Estimated Power
Matched t-test: 0.053
Two-sample t-test: 0.007
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Conclusions

I When covariance is positive, matched t-test has better
power

I Each case serves as its own control.
I A huge number of unknown influences are removed by

subtraction.
I This makes the analysis more precise.
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Hotelling’s t2

Multivariate Matched t-test

I X1, . . . ,Xn
i.i.d.∼ Nk(µ,Σ)

I Xn = 1
n

∑n
i=1 Xi and S = 1

n−1

∑n
i=1

(
Xi −Xn

) (
Xi −Xn

)′
I t2 = n

(
Xn − µ

)′ S−1
(
Xn − µ

)
∼ T 2(k, n− 1)

I That is, n−k
k(n−1) t

2 ∼ F (k, n− k)

I When k = 1, reduces to the familiar t2 = F (1, n− 1)
I Test H0 : µ = µ0
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Test Collections of Contrasts
H0 : Cµ = h, where C is r × k

I t2 = n
(
Xn − µ

)′ S−1
(
Xn − µ

)
∼ T 2(k, n− 1),

so if H0 is true
I t2 = n

(
CXn − h

)′ (CSC′)−1 (
CXn − h

)
∼ T 2(r, n− 1)

I Could also calculate contrast variables, like differences.
I Expected value of the contrast is the contrast of expected

values.
I Just test (simultaneously) whether the means of the

contrast variables are zero, using the first formula.

I For 2 or more within-cases factors, use contrasts to test for
main effects, interactions
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Compare Wald-like tests

Recall
I If Yn =

√
n(Tn − θ) d→ Y ∼ Nk(0,Σ), then

Wn = n(CTn − h)′
(
CΣ̂nC′

)−1
(CTn − h) d→W ∼ χ2(r)

t2 = n
(
CXn − h

)′ (CSC′)−1 (
CXn − h

)
∼ T 2(r, n− 1)

I And
F = n−r

r(n−1) t
2 ∼ F (r, n− r)⇒ t2 = n−1

n−r rF
d→ Y ∼ χ2(r)

I So the Hotelling t-squared test is robust with respect to
normality.
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