
Chapter 5

Multivariate and Within-cases
Analysis

5.1 Multivariate Analysis of Variance

Multivariate means more than one dependent variable at once. Why do it?
Primarily because if you do parallel analyses on lots of outcome measures, the
probability of getting significant results just by chance will definitely exceed
the apparent α = 0.05 level. It is also possible in principle to detect results
from a multivariate analysis that are not significant at the univariate level.

The simplest way to do a multivariate analysis is to do a univariate analy-
sis on each dependent variable separately, and apply a Bonferroni correction.
The disadvantage is that testing this way is less powerful than doing it with
real multivariate tests.

Another advantage of a true multivariate analysis is that it can “notice”
things missed by several Bonferroni-corrected univariate analyses, because
under the surface, a classical multivariate analysis involves the construction
of the unique linear combination of the dependent variables that shows the
strongest relationship (in the sense explaining the remaining variation) with
the independent variables. The linear combination in question is called the
first canonical variate or canonical variable.

• The number of canonical variables equals the number of dependent
variables (or independent variables, whichever is fewer).

• The canonical variables are all uncorrelated with each other. The sec-
ond one is constructed so that it has as strong a relationship as possible
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to the independent variables – subject to the constraint that it have
zero correlation with the first one, and so on.

• This why it is not optimal to do a principal components analysis (or
factor analysis) on a set of dependent variables, and then treat the
components (or factor scores) as dependent variables. Ordinary multi-
variate analysis is already doing this, and doing it much better.

5.1.1 Assumptions

As in the case of univariate analysis, the statistical assumptions of multi-
variate analysis concern conditional distributions – conditional upon various
configurations of independent variable X values. Here we are talking about
the conditional joint distribution of several dependent variables observed for
each case, say Y1, . . . , Yk. These are often described as a “vector” of observa-
tions. It may help to think of the collection of dependent variable values for
a case as a point in k-dimensional space, and to imagine an arrow pointing
from the origin (0, ..., 0) to the point (Y1, . . . , Yk); the arrow is literally a
vector. As I say, this may help. Or it may not.

The classical assumptions of multivariate analysis depend on the idea of
a population covariance. The population covariance between Y2 and Y4 is
denoted σ2,4, and is defined by

σ2,4 = ρ2,4σ2σ4,

where

σ2 is the population standard deviation of Y2,

σ4 is the population standard deviation of Y4, and

ρ2,4 is the population correlation between Y2 and Y4 (That’s the Greek letter
rho).

The population covariance can be estimated by the sample covariance, de-
fined in a parallel way by s2,4 = r2,4s2s4, where s2 and s4 are the sample
standard deviations and r is the Pearson correlation coefficient. Whether we
are talking about population parameters or sample statistics, it is clear that
zero covariance means zero correlation and vice versa.
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We will use Σ (the capital Greek letter sigma) to stand for the population
variance-covariance matrix. This is a k by k rectangular array of numbers
with variances on the main diagonal, and covariances on the off-diagonals.
For 4 dependent variables it would look like this:

Σ =


σ2

1 σ1,2 σ1,3 σ1,4

σ1,2 σ2
2 σ2,3 σ2,4

σ1,3 σ2,3 σ2
3 σ3,4

σ1,4 σ2,4 σ3,4 σ2
4

 .

Notice the symmetry: Element (i, j) of a covariance matrix equals element
(j, i).

With this background, the assumptions of classical multivariate analysis
are parallel to those of the standard univariate analysis of variance. Condi-
tionally on the independent variable values,

• Sample vectors Y = (Y1, . . . , Yk) represent independent observations
for different cases.

• Each conditional distribution is multivariate normal.

• Each conditional distribution has the same population variance- covari-
ance matrix.

The multivariate normal distribution is a generalization of the one-dimensional
normal. Instead of probabilities being areas under a curve they are now vol-
umes under a surface. Here is a picture of the bivariate normal density (for
k = 2 dependent variables).
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Figure 5.1: Bivariate Normal Density
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5.1.2 Significance Testing

In univariate analysis, different standard methods for deriving tests (these are
hidden from you) all point to Fisher’s F test. In multivariate analysis there
are four major test statistics, Wilks’ Lambda, Pillai’s Trace, the Hotelling-
Lawley Trace, and Roy’s Greatest Root.

When there is only one dependent variable, these are all equivalent to F .
When there is more than one dependent variable they are all about equally
”good” (in any reasonable sense), and conclusions from them generally agree
– but not always. Sometimes one will designate a finding as significant and
another will not. In this case you have borderline results and there is no
conventional way out of the dilemma.

The four multivariate test statistics all have F approximations that are
used by SAS and other stat packages to compute p-values. Tables are avail-
able in textbooks on multivariate analysis. For the first three tests (Wilks’
Lambda, Pillai’s Trace and the Hotelling-Lawley Trace), the F approxima-
tions are very good. For Roy’s greatest root the F approximation is lousy.
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This is a problem with the cheap method for getting p-values, not with the
test itself. One can always use tables.

When a multivariate test is significant, many people then follow up with
ordinary univariate tests to see ”which dependent variable the results came
from.” This is a reasonable exploratory strategy. More conservative is to
follow up with Bonferroni-corrected univariate tests. When you do this,
however, there is no guarantee that any of the Bonferroni-corrected tests will
be significant.

It is also possible, and in some ways very appealing, to follow up a signif-
icant multivariate test with Scheffé tests. For example, Scheffé follow-ups to
a significant one-way multivariate ANOVA would include adjusted versions
of all the corresponding univariate one-way ANOVAs, all multivariate pair-
wise comparisons, all univariate pairwise comparisons, and countless other
possibilities — all simultaneously protected at the 0.05 level.

You can also try interpret a significant multivariate effect by looking at
the canonical variates, but there is no guarantee they will make sense.

5.1.3 The Hospital Example

In the following example, cases are hospitals in 4 different regions of the
U.S.. The hospitals either have a medical school affiliation or not. The
dependent variables are average length of time a patient stays at the hospital,
and infection risk – the estimated probability that a patent will acquire an
infection unrelated to what he or she came in with. We will analyze these
data as a two-way multivariate analysis of variance.

/******************** senicmv96a.sas *************************/

title ’Senic data: SAS glm & reg multivariate intro’;

%include ’senicdef.sas’; /* senicdef.sas reads data, etc.

Includes reg1-reg3, ms1 & mr1-mr3 */

proc glm;

class region medschl;

model infrisk stay = region|medschl;

manova h = _all_;
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The proc glm output starts with full univariate output for each depen-
dent variable. Then (for each effect tested) there is some multivariate output
you ignore,

General Linear Models Procedure

Multivariate Analysis of Variance

Characteristic Roots and Vectors of: E Inverse * H, where

H = Type III SS&CP Matrix for REGION E = Error SS&CP Matrix

Characteristic Percent Characteristic Vector V’EV=1

Root

INFRISK STAY

0.14830859 95.46 -0.00263408 0.06067199

0.00705986 4.54 0.08806967 -0.03251114

followed by the interesting part.

Manova Test Criteria and F Approximations for

the Hypothesis of no Overall REGION Effect

H = Type III SS&CP Matrix for REGION E = Error SS&CP Matrix

S=2 M=0 N=51

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.86474110 2.6127 6 208 0.0183

Pillai’s Trace 0.13616432 2.5570 6 210 0.0207

Hotelling-Lawley Trace 0.15536845 2.6672 6 206 0.0163

Roy’s Greatest Root 0.14830859 5.1908 3 105 0.0022

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.

NOTE: F Statistic for Wilks’ Lambda is exact.

. . .

Manova Test Criteria and Exact F Statistics for
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the Hypothesis of no Overall MEDSCHL Effect

H = Type III SS&CP Matrix for MEDSCHL E = Error SS&CP Matrix

S=1 M=0 N=51

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.92228611 4.3816 2 104 0.0149

Pillai’s Trace 0.07771389 4.3816 2 104 0.0149

Hotelling-Lawley Trace 0.08426224 4.3816 2 104 0.0149

Roy’s Greatest Root 0.08426224 4.3816 2 104 0.0149

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.

. . .

Manova Test Criteria and F Approximations for

the Hypothesis of no Overall REGION*MEDSCHL Effect

H = Type III SS&CP Matrix for REGION*MEDSCHL E = Error SS&CP Matrix

S=2 M=0 N=51

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.95784589 0.7546 6 208 0.6064

Pillai’s Trace 0.04228179 0.7559 6 210 0.6054

Hotelling-Lawley Trace 0.04387599 0.7532 6 206 0.6075

Roy’s Greatest Root 0.04059215 1.4207 3 105 0.2409

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.

NOTE: F Statistic for Wilks’ Lambda is exact.

Remember the output started with the univariate analyses. We’ll look at
them here (out of order) – just Type III SS, because that’s parallel to the
multivariate tests. We are tracking down the significant multivariate effects
for Region and Medical School Affiliation. Using Bonferroni correction means
only believe it if p < 0.025.
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Dependent Variable: INFRISK prob of acquiring infection in hospital

Source DF Type III SS Mean Square F Value Pr > F

REGION 3 6.61078342 2.20359447 1.35 0.2623

MEDSCHL 1 6.64999500 6.64999500 4.07 0.0461

REGION*MEDSCHL 3 5.32149160 1.77383053 1.09 0.3581

Dependent Variable: STAY av length of hospital stay, in days

Source DF Type III SS Mean Square F Value Pr > F

REGION 3 41.61422755 13.87140918 5.19 0.0022

MEDSCHL 1 22.49593643 22.49593643 8.41 0.0045

REGION*MEDSCHL 3 0.92295998 0.30765333 0.12 0.9511

We conclude that the multivariate effect comes from a univariate rela-
tionship between the independent variables and stay. Question: If this is
what we were going to do in the end, why do a multivariate analysis at all?
Why not just two univariate analyses with a Bonferroni correction?

5.2 Within-cases (Repeated Measures) Anal-

ysis of Variance

In certain kinds of experimental research, it is common to obtain repeated
measurements of a variable from the same individual at several different
points in time. Usually it is unrealistic to assume that these repeated observa-
tions are uncorrelated, and it is very desirable to build their inter-correlations
into the statistical model.

Sometimes, an individual (in some combination of experimental condi-
tions) is measured under essentially the same conditions at several different
points in time. In that case we will say that time is a within-subjects fac-
tor, because each subject contributes data at more than one value of the
independent variable “time.” If a subject experiences only one value of an
independent variable, it is called a between subjects factor.
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Sometimes, an individual experiences more than one experimental treat-
ment — for example judging the same stimuli under different background
noise levels. In this case, the order of presentation of different noise levels
would be counterbalanced so that time and noise level are unrelated (not
confounded). Here noise level would be a within-subjects factor. The same
study can definitely have more than one within-subjects factor and more
than one between subjects factor.

The meaning of main effects and interactions, as well as their graphical
presentation, is the same for within and between subjects factors.

We will discuss three methods for analyzing repeated measures data. In
an order that is convenient but not historically chronological they are

1. The multivariate approach

2. The classical univariate approach

3. The covariance structure approach

5.2.1 The multivariate approach to repeated measures

First, note that any of the 3 methods can be multivariate, in the sense that
several dependent variables can be measured at more than one time point.
We will start with the simple case in which a single dependent variable is
measured for each subject on several different occasions.

The basis of the multivariate approach to repeated measures is that the
different measurements conducted on each individual should be considered as
multiple dependent variables.

If there are k dependent variables, regular multivariate analysis allows
for the analysis of up to k linear combinations of those dependent variables,
instead of the original dependent variables. The multivariate approach to
repeated measures sets up those linear combinations to be meaningful in
terms of representing the within-cases structure of the data.

For example, suppose that men and women in 3 different age groups are
tested on their ability to detect a signal under 5 different levels of background
noise. There are 10 women and 10 men in each age group for a total n = 60.
Order of presentation of noise levels is randomized for each subject, and the
subjects themselves are tested in random order. This is a three-factor design.
Age and sex are between subjects factors, and noise level is a within-subjects
factor.
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Let Y1, Y2, Y3, Y4 and Y5 be the “Detection Scores” under the 5 different
noise levels. Their population means are µ1, µ2, µ3, µ4 and µ5, respectively.

We now construct 5 linear combinations of the Y variables, and give their

expected values (population means).

W1 = (Y1 + Y2 + Y3 + Y4 + Y5)/5 E(W1) = (µ1 + µ2 + µ3 + µ4 + µ5)/5
W2 = Y1 − Y2 E(W2) = µ1 − µ2

W3 = Y2 − Y3 E(W3) = µ2 − µ3

W4 = Y3 − Y4 E(W4) = µ3 − µ4

W5 = Y4 − Y5 E(W5) = µ4 − µ5

Tests for main effects and interactions are obtained by treating these linear
combinations (the W s) as dependent variables.

Between-subjects effects The main effects for age and sex, and the age
by sex interaction, are just analyses conducted as usual on a single linear
combination of the dependent variables, that is, on W1. This is what we
want; we are just averaging across within-subject values.

Within-subject effects Suppose that (averaging across treatment groups)
E(W2) = E(W3) = E(W4) = E(W5) = 0. This means µ1 = µ2, µ2 = µ3,
µ3 = µ4 and µ4 = µ5. That is, there is no difference among noise level means,
i.e., no main effect for the within-subjects factor.

Interactions of between and within-subjects factors are between-subjects
effects tested simultaneously on the dependent variables representing differ-
ences among within-subject values – W2 through W5 in this case. For exam-
ple, a significant sex difference in W2 through W5 means that the pattern of
differences in mean discrimination among noise levels is different for males
and females. Conceptually, this is exactly a noise level by sex interaction.

Similarly, a sex by age interaction on W2 through W5 means that the
pattern of differences in mean discrimination among noise levels depends on
special combinations of age and sex – a three-way (age by sex by noise)
interaction.

5.2.2 The Noise Example

Here is noise.dat. Order of vars is ident, interest, sex, age, noise level, time
noise level presented, discrim score. Notice that there are five lines of data
for each case.
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1 2.5 1 2 1 4 50.7

1 2.5 1 2 2 1 27.4

1 2.5 1 2 3 3 39.1

1 2.5 1 2 4 2 37.5

1 2.5 1 2 5 5 35.4

2 1.9 1 2 1 3 40.3

2 1.9 1 2 2 1 30.1

2 1.9 1 2 3 5 38.9

2 1.9 1 2 4 2 31.9

2 1.9 1 2 5 4 31.6

3 1.8 1 3 1 2 39.0

3 1.8 1 3 2 5 39.1

3 1.8 1 3 3 4 35.3

3 1.8 1 3 4 3 34.8

3 1.8 1 3 5 1 15.4

4 2.2 0 1 1 2 41.5

4 2.2 0 1 2 4 42.5

/**************** noise96a.sas ***********************/

options linesize=79 pagesize=250;

title ’Repeated measures on Noise data: Multivariate approach’;

proc format; value sexfmt 0 = ’Male’ 1 = ’Female’ ;

data loud;

infile ’noise.dat’; /* Multivariate data read */

input ident interest sex age noise1 time1 discrim1

ident2 inter2 sex2 age2 noise2 time2 discrim2

ident3 inter3 sex3 age3 noise3 time3 discrim3

ident4 inter4 sex4 age4 noise4 time4 discrim4

ident5 inter5 sex5 age5 noise5 time5 discrim5 ;

format sex sex2-sex5 sexfmt.;

/* noise1 = 1, ... noise5 = 5. time1 = time noise 1 presented etc.

ident, interest, sex & age are identical on each line */

label interest = ’Interest in topic (politics)’;

proc glm;

class age sex;
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model discrim1-discrim5 = age|sex;

repeated noise profile/ short summary;

First we get univariate analyses of discrim1-discrim5 – not the trans-
formed vars yet. Then,

General Linear Models Procedure

Repeated Measures Analysis of Variance

Repeated Measures Level Information

Dependent Variable DISCRIM1 DISCRIM2 DISCRIM3 DISCRIM4 DISCRIM5

Level of NOISE 1 2 3 4 5

Manova Test Criteria and Exact F Statistics for

the Hypothesis of no NOISE Effect

H = Type III SS&CP Matrix for NOISE E = Error SS&CP Matrix

S=1 M=1 N=24.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.45363698 15.3562 4 51 0.0001

Pillai’s Trace 0.54636302 15.3562 4 51 0.0001

Hotelling-Lawley Trace 1.20440581 15.3562 4 51 0.0001

Roy’s Greatest Root 1.20440581 15.3562 4 51 0.0001

Manova Test Criteria and F Approximations for

the Hypothesis of no NOISE*AGE Effect

H = Type III SS&CP Matrix for NOISE*AGE E = Error SS&CP Matrix

S=2 M=0.5 N=24.5
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Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.84653930 1.1076 8 102 0.3645

Pillai’s Trace 0.15589959 1.0990 8 104 0.3700

Hotelling-Lawley Trace 0.17839904 1.1150 8 100 0.3597

Roy’s Greatest Root 0.16044230 2.0857 4 52 0.0960

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.

NOTE: F Statistic for Wilks’ Lambda is exact.

Manova Test Criteria and Exact F Statistics for

the Hypothesis of no NOISE*SEX Effect

H = Type III SS&CP Matrix for NOISE*SEX E = Error SS&CP Matrix

S=1 M=1 N=24.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.93816131 0.8404 4 51 0.5060

Pillai’s Trace 0.06183869 0.8404 4 51 0.5060

Hotelling-Lawley Trace 0.06591477 0.8404 4 51 0.5060

Roy’s Greatest Root 0.06591477 0.8404 4 51 0.5060

Manova Test Criteria and F Approximations for

the Hypothesis of no NOISE*AGE*SEX Effect

H = Type III SS&CP Matrix for NOISE*AGE*SEX E = Error SS&CP Matrix

S=2 M=0.5 N=24.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.84817732 1.0942 8 102 0.3735

Pillai’s Trace 0.15679252 1.1058 8 104 0.3654

Hotelling-Lawley Trace 0.17313932 1.0821 8 100 0.3819

Roy’s Greatest Root 0.12700316 1.6510 4 52 0.1755

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
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NOTE: F Statistic for Wilks’ Lambda is exact.

General Linear Models Procedure

Repeated Measures Analysis of Variance

Tests of Hypotheses for Between Subjects Effects

Source DF Type III SS Mean Square F Value Pr > F

AGE 2 1751.814067 875.907033 5.35 0.0076

SEX 1 77.419200 77.419200 0.47 0.4946

AGE*SEX 2 121.790600 60.895300 0.37 0.6911

Error 54 8839.288800 163.690533

Then we are given “Univariate Tests of Hypotheses for Within Subject
Effects” We will discuss these later. After that in the lst file,

Repeated measures on Noise data: Multivariate approach

General Linear Models Procedure

Repeated Measures Analysis of Variance

Analysis of Variance of Contrast Variables

NOISE.N represents the nth successive difference in NOISE

Contrast Variable: NOISE.1

Source DF Type III SS Mean Square F Value Pr > F

MEAN 1 537.00416667 537.00416667 5.40 0.0239

AGE 2 10.92133333 5.46066667 0.05 0.9466

SEX 1 45.93750000 45.93750000 0.46 0.4996

AGE*SEX 2 83.67600000 41.83800000 0.42 0.6587

Error 54 5370.09100000 99.44612963
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Contrast Variable: NOISE.2

Source DF Type III SS Mean Square F Value Pr > F

MEAN 1 140.14816667 140.14816667 1.36 0.2489

AGE 2 106.89233333 53.44616667 0.52 0.5985

SEX 1 33.90016667 33.90016667 0.33 0.5688

AGE*SEX 2 159.32233333 79.66116667 0.77 0.4670

Error 54 5569.94700000 103.14716667

Contrast Variable: NOISE.3

Source DF Type III SS Mean Square F Value Pr > F

MEAN 1 50.41666667 50.41666667 0.72 0.4012

AGE 2 56.40633333 28.20316667 0.40 0.6720

SEX 1 195.84266667 195.84266667 2.78 0.1012

AGE*SEX 2 152.63633333 76.31816667 1.08 0.3456

Error 54 3802.61800000 70.41885185

Contrast Variable: NOISE.4

Source DF Type III SS Mean Square F Value Pr > F

MEAN 1 518.61600000 518.61600000 7.77 0.0073

AGE 2 449.45100000 224.72550000 3.37 0.0418

SEX 1 69.55266667 69.55266667 1.04 0.3118

AGE*SEX 2 190.97433333 95.48716667 1.43 0.2479

Error 54 3602.36600000 66.71048148
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5.2.3 The classical univariate approach to repeated mea-
sures

The univariate approach to repeated measures is chronologically the oldest.
It can be derived in a clever way from the multivariate tests involving within
subjects factors. It’s what you get at the end of the default glm output
– before the analysis of transformed variables, which you have to request
specially.

General Linear Models Procedure

Repeated Measures Analysis of Variance

Univariate Tests of Hypotheses for Within Subject Effects

Source: NOISE

Adj Pr > F

DF Type III SS Mean Square F Value Pr > F G - G H - F

4 2289.31400000 572.32850000 14.12 0.0001 0.0001 0.0001

Source: NOISE*AGE

Adj Pr > F

DF Type III SS Mean Square F Value Pr > F G - G H - F

8 334.42960000 41.80370000 1.03 0.4134 0.4121 0.4134

(The adj. G - G business will be explained later)

Source: NOISE*SEX

Adj Pr > F

DF Type III SS Mean Square F Value Pr > F G - G H - F

4 142.42280000 35.60570000 0.88 0.4777 0.4722 0.4777

Source: NOISE*AGE*SEX

Adj Pr > F

DF Type III SS Mean Square F Value Pr > F G - G H - F

8 345.66440000 43.20805000 1.07 0.3882 0.3877 0.3882

Source: Error(NOISE)

DF Type III SS Mean Square

216 8755.83320000 40.53626481
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Greenhouse-Geisser Epsilon = 0.9356

Huynh-Feldt Epsilon = 1.1070

The classical univariate model for repeated measures is a mixed or some-
times a random effects model in which subject is a factor that, because its
values are randomly sampled from a large population of potential subjects
(just pretend), is a random factor. This factor is nested within any between-
subjects factors; for example, Subject One in the “Male” group is a different
person from Subject One in the “Female” group. The factor subject does not
interact with any other factors. Interactions between subjects and various
factors may sometimes be formally computed, but if they are computed they
are always error terms; they are never tested.

In the noise level example, we could do

/**************** noise96b.sas ***********************/

options linesize=79 pagesize=250;

title ’Repeated measures on Noise data: Univariate approach’;

proc format; value sexfmt 0 = ’Male’ 1 = ’Female’ ;

data loud;

infile ’noise.dat’; /* Univariate data read */

input ident interest sex age noise time discrim ;

format sex sexfmt.;

label interest = ’Interest in topic (politics)’

time = ’Order of presenting noise level’;

proc glm;

class age sex noise ident;

model discrim = ident(age*sex) age|sex|noise;

random ident(age*sex) / test;

• Notice the univariate data read! We are assuming n = number of
observations, not number of cases.

• The results are identical to the univariate output produced as a by-
product of the multivariate approach to repeated measures – if you
know where to look.
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• The overall (initial) test, and tests associated with Type I and Type
III SS are all invalid.

• There are expected mean squares, which you should probably ignore.

• There are also repeated warnings that ”This test assumes one or

more other fixed effects are zero.” SAS is buying testability of
the hypotheses by assuming that you’re only interested in an effect if
all the higher-order interactions involving the effect are absent.

The univariate approach to repeated measures has some real virtues,
sometimes. Because n = the number of observations rather than the number
of cases, it is possible to have more parameters in a model than cases, or even
more measurements than cases. In this situation the multivariate approach
just blows up. It’s either the classical univariate approach or the covariance
structure approach, which will be discussed later.

The univariate approach may assume n is the number of observations,
but it does not assume those observations are independent. In fact, the
observations that come from the same subject are assumed to be correlated.
The following discussion assumes that the model has no interactions between
subjects and other factors; they’re not only not tested, they’re not even
computed. This is not the only way to do it, and in fact sometimes the
univariate tests produced by the repeated statement in proc glm are based
on models with such interactions. But the strict no-interaction model is quite
common, and easy to talk about.

The “random effect” for subjects is a little piece of random error, char-
acteristic of an individual. We think of it as random because the individual
was randomly sampled from a population. If, theoretically, the only rea-
son that the measurements from a case are correlated is that each one is
affected by this same little piece of under-performance or over-performance,
the univariate approach represents a very good model.

The ”random effect for a subject” idea implies a variance-covariance ma-
trix of the dependent variables (say Y1, . . . , 4) with a compound symmetry
structure.

Σ =


σ2 + σ1 σ1 σ1 σ1

σ1 σ2 + σ1 σ1 σ1

σ1 σ1 σ2 + σ1 σ1

σ1 σ1 σ1 σ2 + σ1

 .
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Actually, compound symmetry is sufficient but not necessary for the uni-
variate repeated F tests to be valid. All that’s necessary is sphericity, which
means the covariances of all differences among Y ’s within a case are the same.

The classical univariate approach does have some weak points.

• The model is good if the only reason for correlation among the re-
peated measures is that one little piece of individuality added to each
measurement by a subject. However, if there are other sources of co-
variation among the repeated measures (like learning, or fatigue, or
memory of past performance), there is too much chance rejection of
the null hypothesis. In this case the multivariate approach, with its
unknown variance-covariance matrix, is more conservative. It is also
more appropriate, if you have sufficient sample size.

• Even more conservative (overly so, if the assumptions of the multi-
variate approach are met) is the Greenhouse-Geisser correction, which
compensates for the problem by reducing the error degrees of freedom.

• If the design is unbalanced (non-proportional n’s), the “F -tests” of the
classical univariate approach do not have an F distribution (even if all
the statistical assumptions are satisfied), and it is unclear what they
mean, if anything.

• Like the multivariate approach, the univariate approach to repeated
measures analysis throws out a case if any of the observations are miss-
ing. (Did somebody say “mean substitution?” Oh no!)

• The univariate approach has real trouble with unequally spaced obser-
vations, and with very natural and high quality data sets where there
may be different numbers of observations are collected for each indi-
vidual.

5.2.4 The covariance structure approach to repeated
measures

In the covariance structure approach, the data are set up to be read in a
univariate manner, and one of the variables is a case identification, which
will be used to determine which observations of a variable come from the
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same case. Naturally, data lines from the same case should be adjacent in
the file.

Instead of assuming independence or inducing compound symmetry within
subjects by random effects assumptions, one directly specifies the structure
of the covariance matrix of the observations that come from the same subject.

The following present no problem at all:

• Time-varying covariates (categorical, too)

• Unbalanced designs

• Unequally spaced observations

• Missing or unequal numbers of observations within subjects 1

• More variables than subjects (but not more parameters than subjects)

It’s implemented with SAS proc mixed. Only SAS seems to have it,
though this should change as other software companies work to catch up.

• The “mixed” in proc mixed refers to mixed-model ANOVA. SAS proc

mixed is indeed very strong in this, but we’re just using it here for
within-cases ANOVA. A good number of other powerful features will
not be discussed here.

• Lots of different covariance structures are possible, including compound
symmetry and unknown.

• Everything’s still assumed multivariate normal.

/**************** noise96c.sas ***********************/

options linesize=79 pagesize=250;

title ’Repeated measures on Noise data: Cov Struct Approach’;

proc format; value sexfmt 0 = ’Male’ 1 = ’Female’ ;

data loud;

infile ’noise.dat’; /* Univariate data read */

1Provided this is unrelated to the variable being repeatedly measured. Like if the
dependent variable is how sick a person is, and the data might be missing because the
person is too sick to be tested, there is a serious problem.
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input ident interest sex age noise time discrim ;

format sex sexfmt.;

label interest = ’Interest in topic (politics)’

time = ’Order of presenting noise level’;

proc mixed method = ml;

class age sex noise;

model discrim = age|sex|noise;

repeated / type = un subject = ident r;

lsmeans age noise;

proc mixed method = ml;

class age sex noise;

model discrim = age|sex|noise;

repeated / type = cs subject = ident r;

Now part of noise96c.lst.

The MIXED Procedure

Class Level Information

Class Levels Values

AGE 3 1 2 3

SEX 2 Female Male

NOISE 5 1 2 3 4 5

ML Estimation Iteration History

Iteration Evaluations Objective Criterion

0 1 1521.4783527

1 1 1453.7299937 0.00000000

Convergence criteria met.
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R Matrix for Subject 1

Row COL1 COL2 COL3 COL4 COL5

1 54.07988333 17.08300000 21.38658333 17.91785000 24.27668333

2 17.08300000 69.58763333 15.56748333 29.98861667 21.71448333

3 21.38658333 15.56748333 54.37978333 25.15906667 21.00126667

4 17.91785000 29.98861667 25.15906667 59.31531667 27.58265000

5 24.27668333 21.71448333 21.00126667 27.58265000 55.88941667

Covariance Parameter Estimates (MLE)

Cov Parm Estimate Std Error Z Pr > |Z|

DIAG UN(1,1) 54.07988333 9.87359067 5.48 0.0001

UN(2,1) 17.08300000 8.22102992 2.08 0.0377

UN(2,2) 69.58763333 12.70490550 5.48 0.0001

UN(3,1) 21.38658333 7.52577602 2.84 0.0045

UN(3,2) 15.56748333 8.19197469 1.90 0.0574

UN(3,3) 54.37978333 9.92834467 5.48 0.0001

UN(4,1) 17.91785000 7.66900119 2.34 0.0195

UN(4,2) 29.98861667 9.15325956 3.28 0.0011

UN(4,3) 25.15906667 8.01928166 3.14 0.0017

UN(4,4) 59.31531667 10.82944565 5.48 0.0001

UN(5,1) 24.27668333 7.75870531 3.13 0.0018

UN(5,2) 21.71448333 8.52518917 2.55 0.0109

UN(5,3) 21.00126667 7.61610965 2.76 0.0058

UN(5,4) 27.58265000 8.24206793 3.35 0.0008

UN(5,5) 55.88941667 10.20396474 5.48 0.0001

Residual 1.00000000 . . .
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Model Fitting Information for DISCRIM

Description Value

Observations 300.0000

Variance Estimate 1.0000

Standard Deviation Estimate 1.0000

Log Likelihood -1002.55

Akaike’s Information Criterion -1017.55

Schwarz’s Bayesian Criterion -1045.32

-2 Log Likelihood 2005.093

Null Model LRT Chi-Square 67.7484

Null Model LRT DF 14.0000

Null Model LRT P-Value 0.0000

Tests of Fixed Effects

Source NDF DDF Type III F Pr > F

AGE 2 54 5.95 0.0046

SEX 1 54 0.53 0.4716

AGE*SEX 2 54 0.41 0.6635

NOISE 4 216 18.07 0.0001

AGE*NOISE 8 216 1.34 0.2260

SEX*NOISE 4 216 0.99 0.4146

AGE*SEX*NOISE 8 216 1.30 0.2455

From the multivariate approach we had F = 5.35, p < .001 for age & approx F = 15.36 for noise.

Least Squares Means
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Level LSMEAN Std Error DDF T Pr > |T|

AGE 1 38.66100000 1.21376060 54 31.85 0.0001

AGE 2 35.24200000 1.21376060 54 29.04 0.0001

AGE 3 32.76700000 1.21376060 54 27.00 0.0001

NOISE 1 39.82166667 0.94938474 216 41.94 0.0001

NOISE 2 36.83000000 1.07693727 216 34.20 0.0001

NOISE 3 35.30166667 0.95201351 216 37.08 0.0001

NOISE 4 34.38500000 0.99427793 216 34.58 0.0001

NOISE 5 31.44500000 0.96513744 216 32.58 0.0001

Now for the second mixed run we get the same kind of beginning, and then for compound symmetry structure,

Tests of Fixed Effects

Source NDF DDF Type III F Pr > F

AGE 2 54 5.95 0.0046

SEX 1 54 0.53 0.4716

AGE*SEX 2 54 0.41 0.6635

NOISE 4 216 15.69 0.0001

AGE*NOISE 8 216 1.15 0.3338

SEX*NOISE 4 216 0.98 0.4215

AGE*SEX*NOISE 8 216 1.18 0.3096

Now proc glm will allow easy examination of residuals no matter which
approach you take to repeated measures, provided the data are read in a
univariate manner.

/**************** noise96d.sas ***********************/

options linesize=79 pagesize=60;

title ’Repeated measures on Noise data: Residuals etc.’;

proc format; value sexfmt 0 = ’Male’ 1 = ’Female’ ;

data loud;

infile ’noise.dat’; /* Univariate data read */

input ident interest sex age noise time discrim ;

format sex sexfmt.;
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label interest = ’Interest in topic (politics)’

time = ’Order of presenting noise level’;

proc glm;

class age sex noise;

model discrim = age|sex|noise;

output out=resdata predicted=predis residual=resdis;

/* Look at some residuals */

proc sort; by time;

proc univariate plot;

var resdis; by time;

proc plot;

plot resdis * (ident interest);

/* Include time */

proc mixed method = ml;

class age sex noise time;

model discrim = time age|sex|noise;

repeated / type = un subject = ident r;

lsmeans time age noise;

Then I generated residuals from this new model using glm, and plotted again.
Nothing.

Variable=RESDIS

|

25 +

|

|

|

20 + 0

| |

| |

| |

15 + |
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| | |

| | |

| | | |

10 + | | |

| | | | +-----+

| | | | | |

| | | +-----+ *-----*

5 + | | | | | |

| | +-----+ | | | + |

| | | | | | | |

| | | | *-----* | |

0 + | | | | + | | |

| +-----+ *--+--* | | +-----+

| | | | | | | |

| | | | | +-----+ |

-5 + | + | +-----+ | |

| *-----* | | |

| | | | | |

| | | | | |

-10 + +-----+ | | |

| | | | |

| | | | |

| | | | |

-15 + | | | |

| | | |

| | 0 |

| |

-20 + | 0

| |

| |

| |

-25 +

------------+-----------+-----------+-----------+-----------

TIME 1 2 3 4

Unfortunately time = 5 wound up on a separate page. When time is included
in the model, the results get stronger but conclusions don’t change.
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Tests of Fixed Effects

Source NDF DDF Type III F Pr > F

TIME 4 266 17.67 0.0001

AGE 2 266 18.45 0.0001

SEX 1 266 1.63 0.2027

AGE*SEX 2 266 1.28 0.2789

NOISE 4 266 10.95 0.0001

AGE*NOISE 8 266 0.51 0.8488

SEX*NOISE 4 266 0.44 0.7784

AGE*SEX*NOISE 8 266 0.74 0.6573

Least Squares Means

Level LSMEAN Std Error DDF T Pr > |T|

TIME 1 29.54468242 0.91811749 266 32.18 0.0001

TIME 2 34.61557451 0.91794760 266 37.71 0.0001

TIME 3 36.18863723 0.92819179 266 38.99 0.0001

TIME 4 39.72344496 0.91838886 266 43.25 0.0001

TIME 5 37.71099421 0.93376736 266 40.39 0.0001

AGE 1 38.66100000 0.68895774 266 56.12 0.0001

AGE 2 35.24200000 0.68895774 266 51.15 0.0001

AGE 3 32.76700000 0.68895774 266 47.56 0.0001

NOISE 1 39.69226830 0.89132757 266 44.53 0.0001

NOISE 2 36.80608879 0.89274775 266 41.23 0.0001

NOISE 3 35.35302821 0.89130480 266 39.66 0.0001

NOISE 4 34.12899017 0.89502919 266 38.13 0.0001

NOISE 5 31.80295787 0.89180628 266 35.66 0.0001
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Some nice covariance structures are available in proc mixed.

Variance Components: type = vc Σ =


σ2

1 0 0 0
0 σ2

2 0 0
0 0 σ2

3 0
0 0 0 σ2

4



Compound Symmetry: type = cs Σ =


σ2 + σ1 σ1 σ1 σ1

σ1 σ2 + σ1 σ1 σ1

σ1 σ1 σ2 + σ1 σ1

σ1 σ1 σ1 σ2 + σ1



Unknown: type = un Σ =


σ2

1 σ1,2 σ1,3 σ1,4

σ1,2 σ2
2 σ2,3 σ2,4

σ1,3 σ2,3 σ2
3 σ3,4

σ1,4 σ2,4 σ3,4 σ2
4



Banded: type = un(1) Σ =


σ2

1 σ5 0 0
σ5 σ2

2 σ6 0
0 σ6 σ2

3 σ7

0 0 σ7 σ2
4



First order autoregressive: type = ar(1) Σ = σ2


1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ
ρ3 ρ2 ρ 1


There are more, including Toeplitz, Banded Toeplitz, Factor analytic,

ARMA, and Spatial (covariance is a function of Euclidean distance between
observations).
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