
Chapter 3

Factorial ANOVA and related topics

3.1 A One-way Example

The following is a textbook example taken from Neter et al.’s (1996) Applied linear statis-
tical models [5]. The Kenton Food Company is interested in testing the effect of different
package designs on sales. Five grocery stores were randomly assigned to each of four
package designs. The package designs used either three or five colours, and either had
cartoons or did not. Because of a fire in one of the stores, there were only four stores in
the 5-colour cartoon condition.

The dependent variable is sales, defined as number of cases sold. Actually, there are
two independent variables: number of colours and presence versus absence of cartoons.
But we will initially consider package design as a single categorical independent variable
with four values.

Sample Question 3.1.1 If there is a statistically significant relationship between pack-
age design and sales, would we be justified in concluding that differences in package design
caused differences in sales?

Answer to Sample Question 3.1.1 Yes, if the study is carried out properly. It’s an
experimental study.

Sample Question 3.1.2 Is there a problem with external validity here?

Answer to Sample Question 3.1.2 It’s impossible to tell for sure, but there easily
could be. The behaviour of the sales force would have to be controlled somehow. A double
blind would be ideal.

The SAS program kenton1b.sas does a lot of things, starting with a one-way ANOVA
using proc glm. The strategy will be to first present the entire program, and then go
through it piece by piece and explain what is going on – with a few major digressions to
explain the statistics.
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/********************** kenton1b.sas **************************/

options linesize=79 pagesize=100 noovp formdlim=’ ’;

title ’Kenton Oneway Example From Neter et al.’;

proc format;

value pakfmt 1 = ’3Colour Cartoon’ 2 = ’3Col No Cartoon’

3 = ’5Colour Cartoon’ 4 = ’5Col No Cartoon’;

data food;

infile ’kenton.data’;

input package sales;

label package = ’Package Design’

sales = ’Number of Cases Sold’;

format package pakfmt.;

/* Define ncolours and cartoon */

if package = 1 or package = 2 then ncolours = 3;

else if package = 3 or package = 4 then ncolours = 5;

if package = 1 or package = 3 then cartoon = ’No ’;

else if package = 2 or package = 4 then cartoon = ’Yes’;

/* Basic one-way ANOVA -- well, not very basic */

proc glm;

class package;

model sales = package;

means package;

means package / bon tukey scheffe;

/* Test some custom contrasts */

contrast ’3Colourvs5Colour’ package 1 1 -1 -1;

contrast ’Cartoon’ package 1 -1 1 -1;

contrast ’CartoonDepends’ package 1 -1 -1 1;

/* Test a collection of contrasts */

contrast ’Overall F’ package 1 -1 0 0,

package 0 1 -1 0,

package 0 0 1 -1;

/* Get estimated value of a contrast along with a test (F=t-squared) */

estimate ’3Colourvs5Colour’ package 1 1 -1 -1 / divisor = 2;

/* All pairwise comparisons */

contrast ’1 vs 2’ package 1 -1 0 0;

contrast ’1 vs 3’ package 1 0 -1 0;

contrast ’1 vs 4’ package 1 0 0 -1;

contrast ’2 vs 3’ package 0 1 -1 0;

contrast ’2 vs 4’ package 0 1 0 -1;

contrast ’3 vs 4’ package 0 0 1 -1;
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proc iml;

title2 ’Table of critical values for all possible Scheffe tests’;

numdf = 3; /* Numerator degrees of freedom for initial test */

dendf = 15; /* Denominator degrees of freedom for initial test */

alpha = 0.05;

critval = finv(1-alpha,numdf,dendf);

zero = {0 0}; S_table = repeat(zero,numdf,1); /* Make empty matrix */

/* Label the columns */

namz = {"Number of Contrasts in followup test"

" Scheffe Critical Value"}; mattrib S_table colname=namz;

do i = 1 to numdf;

s_table(|i,1|) = i;

s_table(|i,2|) = numdf/i * critval;

end;

reset noname; /* Makes output look nicer in this case */

print "Initial test has" numdf " and " dendf "degrees of freedom."

"Using significance level alpha = " alpha;

print s_table;

proc glm;

title2 "Actually it’s a two-way ANOVA";

class ncolours cartoon;

model sales = ncolours|cartoon;

means ncolours|cartoon;

/* The model statement could have been

model sales = ncolours cartoon ncolours*cartoon; */

The proc format statement provides labels for the package designs. After reading
the data in a routine way, if statements are used to construct the categorical indepen-
dent variables ncolours and cartoon. Notice the extra space in the ’No ’ value of the
alphanumeric variable cartoon. At first I didn’t have a space, and Yes was truncated to
Ye.

Now we’ll look at what the first proc glm does. The complete proc glm statement is
given above. Here, we will look at it a piece at a time, examining the output as we go.
First, we have

proc glm;

class package;

model sales = package;
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The class statement declares package to be categorical. Without it, proc glm would do
a regression with package as a quantitative independent variable. The main F -test for
equality of the four means is

General Linear Models Procedure

Dependent Variable: SALES Number of Cases Sold

Sum of Mean

Source DF Squares Mean Square F Value Pr > F

Model 3 588.2210526 196.0736842 18.59 <.0001

Error 15 158.2000000 10.5466667

Corrected Total 18 746.4210526

R-Square C.V. Root MSE SALES Mean

0.788055 17.43042 3.2475632 18.631579

We conclude that package design (or, if the study was poorly controlled, some variable
confounded with package design) caused a difference in sales. Note that almost 79% of
the variation in sales comes from package design; this is the value, which is exactly the
R2 from a multiple regression that is equivalent to this one-way ANOVA.

The statement means package; produces mean sales for each value of the variable
package.

Level of ------------SALES------------

PACKAGE N Mean SD

3Col No Cartoon 5 13.4000000 3.64691651

3Colour Cartoon 5 14.6000000 2.30217289

5Col No Cartoon 5 27.2000000 3.96232255

5Colour Cartoon 4 19.5000000 2.64575131

Such a display is essential for seeing what is going on, but it still does not tell you
which means are different from which other means. But before we lose control and start
doing all possible t-tests, consider the following.

3.2 The Curse of a Thousand t-tests

Significance tests are supposed to help screen out random garbage, and help us ignore
“trends” that could easily be due to chance. But all the common significance tests are
designed in isolation, as if each one were the only test you would ever be doing. The
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chance of getting significant results when nothing is going on may be about 0.05 (more
or less, depending on how well the assumptions are met), but if you do a lot of tests on a
data set that is purely noise (no true relationships between any independent variable and
any dependent variable), the chances of false significance mount up. It’s like looking for
your birthday in tables of stock market prices. If you look long enough, you will find it.

This problem definitely applies when you have a significant difference among more than
two treatment means, and you want to know which ones are different from each other.
For example, in an experiment with 10 treatment conditions (this is not an unusually
large number, for real experiments), there are 45 pairwise differences among means.

You have to pity the poor scientist who learns about this and is honest enough to take
this problem seriously (let’s use the term “scientist” generously to apply to anyone trying
to use significance test to learn something about a data set). On one hand, good scientific
practice and common sense dictate that if you have gone to the trouble to collect data,
you should explore thoroughly and try to learn something from the data. But at the same
time, it appears that some stern statistical entity is scolding you, and saying that you’re
naughty if you peek.

There are two main ways to resolve the dilemma. One is to basically ignore the
problem, while perhaps acknowledging that it is there. According to this point of view,
well, you’re crazy if you don’t explore the data. Maybe the true significance level for the
entire process is greater than 0.05, but still the use of significance tests is a useful way to
decide which results might be real. Nothing’s perfect; let’s carry on.

The other reaction is to look for ways that significance tests can be modified to allow
for the fact that we’re doing a lot of them. What we want are methods for holding
the chances of false significance to a single low level for a set of tests, simultaneously.
The general term for such methods is multiple comparison procedures. Often, when a
significance test (like a one-way ANOVA) tests several things simultaneously and turns out
to be significant, multiple comparison procedures are used as a second step, to investigate
where the effect came from. In cases like this, the multiple comparisons are called follow-
up tests, or post hoc tests, or sometimes probing.

It is generally acknowledged that multiple comparison methods are often helpful (even
necessary) for following up significant F -tests in order to see where an effect comes from.
There is less agreement on how far the principle should be extended. Personally, I like
the idea of limiting the chance of false significance to 0.05 for an entire study – say, for all
the tests reported in a scientific paper, and all the ones that were not reported, too. This
is a fairly radical view, shared by almost no one. But it can work in practice if you have
enough data. More on this later. For now, let’s concentrate on following up a significant
F test in a one-way analysis of variance.

In the Kenton package design data, there are 4 treatment conditions, and 6 potential
pairwise comparisons. The next line in the SAS program,

means package / bon tukey scheffe;

requests three kinds of multiple comparison tests for all pairwise differences among means.
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3.2.1 Bonferroni

The Bonferroni method is very general, and extends far beyond pairwise comparisons of
means. It is a simple correction that can be applied when you are performing multiple
tests, and you want to hold the chances of false significance to a single low level for all
the tests simultaneously. It applies when you are testing multiple sets of independent
variables, multiple dependent variables, or both.

The Bonferroni correction consists of simply dividing the desired significance level
(that’s α, the maximum probability of getting significant results when actually nothing is
happening, usually α = 0.05) by the number of tests. In a way, you’re splitting the alpha
equally among the tests you do.

For example, if you want to perform 5 tests at joint significance level 0.05, just do
everything as usual, but only declare the results significant at the joint 0.05 level if one
of the tests gives you p < 0.01 (0.01=0.05/5). If you want to perform 20 tests at joint
significance level 0.05, do the individual tests and calculate individual p-values as usual,
but only believe the results of tests that give p < 0.0025 (0.0025=0.05/20). Say something
like “Protecting the 20 tests at joint significance level 0.05 by means of a Bonferroni
correction, the difference in reported liking between worms and spinach soufflé was the
only significant food category effect.”

The Bonferroni correction is conservative. That is, if you perform 20 tests, the prob-
ability of getting significance at least once just by chance is less than or equal to 0.0025
– almost always less. The big advantages of the Bonferroni approach are simplicity and
flexibility. It is the only way I know to analyze quantitative and categorical dependent
variables simultaneously.

The main disadvantages of the Bonferroni approach are

1. You have to know how many tests you want to perform in advance, and you have
to know what they are. In a typical data analysis situation, not all the significance
tests are planned in advance. The results of one test will give rise to ideas for
other tests. If you do this and then apply a Bonferroni correction to all the tests
that you happened to do, it no longer protects all the tests simultaneously. On the
other hand, you could randomly split your data into an exploratory sample and a
replication sample. Test to your heart’s content on the first sample. Then, when you
think you know what your results are, perform only those tests on the replication
sample, and protect them simultaneously with a Bonferroni correction. This could
be called ”Bonferroni-protected cross-validation.” It sounds good, eh?

2. The Bonferroni correction can be too conservative, especially when the number of
tests becomes large. For example, to simultaneously test all 780 correlations in a
40 by 40 correlation matrix at joint α = 0.05, you’d only believe correlations with
p < 0.0000641 = 0.05/780.

Is this “too” conservative? Well, with n = 200 in that 40 by 40 example, you’d need
r = 0.27 for significance (compared to r = .14 with no correction). With n = 100
you’d need r = .385, or about 14.8% of one variable explained by another single
variable. Is this too much to ask? You decide.
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3.2.2 Tukey

This is Tukey’s Honestly Significant Difference (HSD) method. It is not his Least Sig-
nificant Different (LSD) method, which has a better name but does not really get the
job done. Tukey tests apply only to pairwise differences among means in ANOVA. It is
based on a deep study of the probability distribution of the difference between the largest
sample mean and the smallest sample mean, assuming the population means are in fact
all equal.

• If you are interested in all pairwise differences among means and nothing else, and
if the sample sizes are equal, Tukey is the best (most powerful) test, period.

• If the sample sizes are unequal, the Tukey tests still get the job of simultaneous
protection done, but they are a bit conservative. When sample sizes are unequal,
Bonferroni or Scheffé can sometimes be more powerful.

3.2.3 Scheffé

Suppose there are p treatments (groups, values of the categorical independent variable,
whatever you want to call them). A contrast is a special kind of linear combination of
means in which the weights add up to zero. A population contrast has the form

` = a1µ1 + a2µ2 + · · ·+ apµp

where a1 + a2 + · · ·+ ap = 0. The case where all of the a values are zero is uninteresting,
and is excluded. A population contrast is estimated by a sample contrast:

L = a1Y 1 + a2Y 2 + · · ·+ apY p.

By setting a1 = 1, a2 = −1, and the rest of the a values to zero we get L = Y 1 − Y 2,
so it’s easy to see that any pairwise difference is a contrast. Also, the average of one set
of means minus the average of another set is a contrast.

The initial F test for equality of p means can be viewed as a simultaneous test of p−1
contrasts. For example, suppose there are four treatments, and the null hypothesis of the
initial test is H0 : µ1 = µ2 = µ3 = µ4. The table gives the a1, a2, a3, a4 values for three
contrasts; if all three contrasts equal zero then the four population means are equal, and
vice versa.

a1 a2 a3 a4

1 -1 0 0
0 1 -1 0
0 0 1 -1

The way you read this table is

µ1 - µ2 = 0
µ2 - µ3 = 0

µ3 - µ4 = 0
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Clearly, if µ1 = µ2 and µ2 = µ3 and µ3 = µ4, then µ1 = µ2 = µ3 = µ4, and if
µ1 = µ2 = µ3 = µ4, then µ1 = µ2 and µ2 = µ3 and µ3 = µ4. The simultaneous F test
for the three contrasts is 100% equivalent to a one-way ANOVA; it yields the same F
statistic, the same degrees of freedom, and the same p-value.

There is always more than one way to set up the contrasts to test a given hypothesis.
Staying with the example of testing differences among four means, we could have specified

a1 a2 a3 a4

1 0 0 -1
0 1 0 -1
0 0 1 -1

so that all the means are equal to the last one. These contrasts (differences between means)
are actually equal to the regression coefficients in a multiple regression with indicator
dummy variables, in which the last category is the reference category. But no matter how
you set up collection of contrasts, if you do it correctly you always get the same answer.

The Scheffé tests allow testing whether any contrast (or set of contrasts) of treatment
means differs significantly from zero, with the tests for all possible contrasts simultane-
ously protected at the same significance level, usually 0.05.

When asked for Scheffé follow-ups to a one-way ANOVA, SAS tests all pairwise dif-
ferences between means, but there are infinitely many more contrasts in the same family
that it does not do — and they are all jointly protected against false significance at the
0.05 level.

It’s a miracle. You can do infinitely many tests, all simultaneously protected. You
do not have to know what they are in advance. It’s an license for unlimited data fishing,
at least within the class of contrasts of treatment means. And you can test up to p − 1
contrasts simultaneously if you wish. They are all part of the same family.

Two more miracles:

• If the initial one-way ANOVA is not significant, it’s impossible for any of the Scheffé
follow-ups to be significant. This is not quite true of Bonferroni or Tukey.

• If the initial one-way ANOVA is significant, there must be a single contrast that is
significantly different from zero. It may not be a pairwise difference, you may not
think of it, and if you do find one it may not be easy to interpret, but there is at
least one out there. Well, actually, there are infinitely many, but they may all be
extremely similar to one another. Incidentally, if you test any collection of contrasts
that includes a contrast that is significantly different from zero by a Scheffé test,
then the Scheffé test for the collection will be significant too.

Given all this, clearly it is helpful to be able to test any set of contrast you wish. As
you will see below, the contrast statement of proc glm lets you do it easily. For now,
let’s assume that you have done an initial F test for differences among p treatment means,
it’s statistically significant, and also you can get F tests for any contrast of collection of
contrasts you specify.

71



As usual, the F tests for contrasts (which are sometimes optimistically called “planned
comparisons”) are designed in a vacuum, as if each one were the only test you would ever
do on your data. But you can convert them into Scheffé follow-ups to the initial test by
using a different critical value (Recall that if a test statistic is greater than the critical
value, it’s significant).

Suppose that the follow-up test you want to do involves s contrasts; for a test of a
single difference between means or some other single contrast, s = 1. Compute the usual
F statistic for testing the contrast, and compare it to a modified critical value that we
will call FS−crit; the S is for Scheffé. The formula for FS−crit is

FS−crit =
p− 1

s
Fcrit, (3.1)

where Fcrit is the critical value for the initial test — the one you are following up. You
reject the null hypothesis and declare your Scheffé test significant if F > FS−crit.

You can do as many of these tests as you want easily, using SAS and a small table of
FS−crit critical values. You can make the table you need with proc iml. This is illustrated
in the example below; the code can easily be modified to suit any problem. Or, you can
use a textbook table of the F distribution and a calculator.

Please take another look at Formula (3.1). Notice that multiplying by the number of
means (minus one) is a kind of penalty for the richness of the infinite family of tests you
could do, while dividing by the number of contrasts you’re testing reduces the penalty
because you’re looking for something bigger. As soon as Mr. Scheffé discovered these
tests, people started complaining that the penalty was very severe, and it was too hard
to get significance. In my opinion, what’s remarkable is not that a license for unlimited
fishing is expensive, but that it’s for sale at all. You can pay for it by increasing the
sample size.

When sample sizes are unequal, SAS presents follow-up tests for pairwise differences
between means in the form of confidence intervals. If the 95% confidence interval does
not include zero, the test (Bonferroni, Tukey or Scheffé) is significant at 0.05. Since all
three types of follow-up test point to exactly the same conclusions for these data, only
the Scheffé will be reproduced here.

General Linear Models Procedure

Scheffe’s test for variable: SALES

NOTE: This test controls the type I experimentwise error rate but

generally has a higher type II error rate than Tukey’s for all

pairwise comparisons.

Alpha= 0.05 Confidence= 0.95 df= 15 MSE= 10.54667

Critical Value of F= 3.28738

Comparisons significant at the 0.05 level are indicated by ’***’.
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Simultaneous Simultaneous

Lower Difference Upper

PACKAGE Confidence Between Confidence

Comparison Limit Means Limit

5Col No Cartoon - 5Colour Cartoon 7.700 0.859 14.541 ***

5Col No Cartoon - 3Colour Cartoon 12.600 6.150 19.050 ***

5Col No Cartoon - 3Col No Cartoon 13.800 7.350 20.250 ***

5Colour Cartoon - 5Col No Cartoon -7.700 -14.541 -0.859 ***

5Colour Cartoon - 3Colour Cartoon 4.900 -1.941 11.741

5Colour Cartoon - 3Col No Cartoon 6.100 -0.741 12.941

3Colour Cartoon - 5Col No Cartoon -12.600 -19.050 -6.150 ***

3Colour Cartoon - 5Colour Cartoon -4.900 -11.741 1.941

3Colour Cartoon - 3Col No Cartoon 1.200 -5.250 7.650

3Col No Cartoon - 5Col No Cartoon -13.800 -20.250 -7.350 ***

3Col No Cartoon - 5Colour Cartoon -6.100 -12.941 0.741

3Col No Cartoon - 3Colour Cartoon -1.200 -7.650 5.250

Notice that the critical value for the initial test (Fcrit, not FS−crit) for performing more
tests is conveniently provided.

This pairwise confidence interval format is not so easy to look at, even if the significant
differences are indicated by “***.” For one thing, each comparison is given twice, once in
each direction. For another, the actual means are not printed, just the differences between
means. It helps to re-arrange the means from highest to lowest. This next display is not
part of the SAS output; it’s SAS output edited with a word processor.

Level of ------------SALES------------

PACKAGE N Mean SD

5Col No Cartoon 5 27.2000000 3.96232255

5Colour Cartoon 4 19.5000000 2.64575131

3Colour Cartoon 5 14.6000000 2.30217289

3Col No Cartoon 5 13.4000000 3.64691651

Now we see that the 5-colour No Cartoon treatment is significantly different from each
of the others, which are not significantly different from each other. That’s the kind of
package design they should use; from a marketing standpoint, we’re done. But let’s look
at some more follow-up tests anyway.

Testing Contrasts The proc glm in kenton1b.sas continues

/* Test some custom contrasts */

contrast ’3Colourvs5Colour’ package 1 1 -1 -1;

contrast ’Cartoon’ package 1 -1 1 -1;

contrast ’CartoonDepends’ package 1 -1 -1 1;

/* Test a collection of contrasts */

contrast ’Overall F’ package 1 -1 0 0,

package 0 1 -1 0,

package 0 0 1 -1;
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The syntax for specifying a contrast goes: The word contrast, a label for the test in single
or double quotes (this will appear in the output), the name of the independent variable,
the coefficients of the contrast (the a values), and a semicolon to end the statement. If you
are testing more than one contrast simultaneously, put a comma after the first one, repeat
the independent variable name, and give another set of coefficients. The last contrast ends
with a semi-colon instead of a comma. As the example shows, you can do as many tests
as you like.

3.2.4 Proper Follow-ups

We will describe a set of tests as proper follow-ups to to an initial test if

1. The null hypothesis of the initial test logically implies the null hypotheses of all the
tests in the follow-up set.

2. All the tests are jointly protected against Type I error (false significance) at a known
significance level, usually α = 0.05.

The first property requires explanation. First, consider that the Tukey tests, which are
limited to pairwise differences between means, automatically satisfy this, because if all
the population means are equal, then each pair is equal to each other. But it’s possible
to make mistakes with Bonferroni and Scheffé if you’re not careful.

Here’s why the first property is important. Suppose the null hypothesis of a follow-
up test does follow logically from the null hypothesis of the initial test. Then, if the
null hypothesis of the follow-up is false (there’s really something going on), then the null
hypothesis of the initial test must be incorrect too, and this is one way in which the initial
null hypothesis is false. Thus if we correctly reject the follow-up null hypothesis, we have
uncovered one of the ways in which the initial null hypothesis is false. In other words, we
have (partly, perhaps) identified where the initial effect comes from.

On the other hand, if the null hypothesis of a potential follow-up test is not implied
by the null hypothesis of the initial test, then the truth or untruth of the follow-up null
hypothesis does not tell us anything about the null hypothesis of the initial test. They are
in different domains. For example, suppose we conclude 2µ1 is different from 3µ2. Great,
but if we want to know how the statement µ1 = µ2 = µ3 might be wrong, it’s irrelevant.

If you stick to testing contrasts as a follow-up to a one-way ANOVA, you’re fine. This
is because if a set of population means are all equal, then any contrast of those means is
equal to zero. That is, the null hypothesis of the initial test automatically implies the null
hypotheses of any potential follow-up test, and everything is okay. Furthermore, if you try
to specify a linear combination that is not a contrast with the contrast statement of proc
glm, SAS will just say something like NOTE: CONTRAST SOandSO is not estimable in
the log file. There is no other error message or warning; the test just does not appear in
your list file.

Usually, when you are testing a contrast you only want to know if it is significantly
different from zero. But sometimes you want the actual sample contrast, which is also
the estimated population contrast. In this case, use the estimate statement. It will give
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the sample value of any linear combination of treatment means, along with a t-test for
whether the linear combination is significantly different from zero. Here’s output from
the estimate statement in kenton1b.sas:

Standard

Parameter Estimate Error t Value Pr > |t|

3Colourvs5Colour -9.35000000 1.49705266 -6.25 <.0001

Note t2 = F immediately below.

3.2.5 Converting Tests for Contrasts into Scheffé tests

Here is the output from the first set of contrast statements.

Contrast DF Contrast SS Mean Square F Value Pr > F

3Colourvs5Colour 1 411.4000000 411.4000000 39.01 <.0001

Cartoon 1 49.7058824 49.7058824 4.71 0.0464

CartoonDepends 1 93.1882353 93.1882353 8.84 0.0095

Overall F 3 588.2210526 196.0736842 18.59 <.0001

By ordinary one-at-a-time F tests, all the tests are significant. But let’s treat them as
Scheffé tests. To do this, we need the FS−crit critical values for s = 1, 2 and 3. Actually
we don’t need one for s = 3, because by (3.1), it’s the same as the critical value of the
initial test. And in fact, any test of p − 1 non-redundant contrasts is equivalent to the
initial one-way ANOVA, always.

It’s easy to get the FS−crit values from proc iml. The following code is written
carefully so that you can use it for any problem by just modifying the vales of numdf and
dendf (and maybe alpha if you don’t want to use 0.05).
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proc iml;

title2 ’Table of critical values for all possible Scheffe tests’;

numdf = 3; /* Numerator degrees of freedom for initial test (p-1) */

dendf = 15; /* Denominator degrees of freedom for initial test (n-p) */

alpha = 0.05;

critval = finv(1-alpha,numdf,dendf);

zero = {0 0}; S_table = repeat(zero,numdf,1); /* Make empty matrix */

/* Label the columns */

namz = {"Number of Contrasts in followup test"

" Scheffe Critical Value"};

mattrib S_table colname=namz;

do i = 1 to numdf;

s_table(|i,1|) = i;

s_table(|i,2|) = numdf/i * critval;

end;

reset noname; /* Makes output look nicer in this case */

print "Initial test has" numdf " and " dendf "degrees of freedom."

"Using significance level alpha = " alpha;

print s_table;

Here is the output.

Kenton Oneway Example From Neter et al. 8

Table of critical values for all possible Scheffe tests

Initial test has 3 and 15 degrees of freedom.

Using significance level alpha = 0.05

Number of Contrasts in followup test Scheffe Critical Value

1 9.8621463

2 4.9310732

3 3.2873821

For the one-degree-of-freedom tests (single contrasts) we need F > 9.86 for signifi-
cance. This means 3Colourvs5Colour is significant, but Cartoon and CartoonDepends

are not, even though CartoonDepends has a p-value of 0.0095 by the one-at-a-time test.
ColourCartoon is also significant, because 22.74 > 4.93. And of course Overall F is
significant; it’s the initial test.

The last six contrasts are the pairwise differences between means. Their value is that
we can convert them easily to Bonferroni or Scheffé follow-up tests. We already did these
pairwise comparisons the easy way with the second means statement.
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/* All pairwise comparisons */

contrast ’1 vs 2’ package 1 -1 0 0;

contrast ’1 vs 3’ package 1 0 -1 0;

contrast ’1 vs 4’ package 1 0 0 -1;

contrast ’2 vs 3’ package 0 1 -1 0;

contrast ’2 vs 4’ package 0 1 0 -1;

contrast ’3 vs 4’ package 0 0 1 -1;

Here’s the output:

Contrast DF Contrast SS Mean Square F Value Pr > F

1 vs 2 1 3.6000000 3.6000000 0.34 0.5677

1 vs 3 1 476.1000000 476.1000000 45.14 <.0001

1 vs 4 1 82.6888889 82.6888889 7.84 0.0135

2 vs 3 1 396.9000000 396.9000000 37.63 <.0001

2 vs 4 1 53.3555556 53.3555556 5.06 0.0399

3 vs 4 1 131.7555556 131.7555556 12.49 0.0030

Sample Question 3.2.1 What is the Scheffé critical value for the pairwise comparisons?
What do we conclude from the tests?

Answer to Sample Question 3.2.1 We use the same critical value for any single con-
trast: F = 9.8621463. As in the earlier multiple comparisons, we conclude that sales are
highest with five colours and no cartoons (that’s µ3). The other three treatment combina-
tions are not significantly different from one another.

Sample Question 3.2.2 What p-value would we use for a Bonferroni correction to pro-
tect all pairwise comparisons at the 0.05 level? The answer is a number.

Answer to Sample Question 3.2.2 0.05/6 = 0.00833

Sample Question 3.2.3 What if we wanted to also protect for the other three (single)
contrasts? Again, the answer is a number.

Answer to Sample Question 3.2.3 0.05/9 = 0.0055

With the Bonferroni method of correction for multiple tests, protecting for more tests
results in a more stringent criterion for significance — though in this case the conclusions
did not change. With the Scheffé tests, the criterion does not change; an infinite family
of tests is protected in advance. Also, remember that for the Bonferroni method to be
valid, you have to select the tests before looking at the data. This is not a requirement
of the Scheffé tests.
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3.3 Two-way ANOVA

To really understand the first three contrast statements, we need to recognize that the
4-category variable package actually represents the combination of two independent vari-
ables: Number of colours and Presence versus absence of cartoons. That is, we have a
two-factor design. The term factor is just another way of saying categorical independent
variable. A multi-factor design is one with more than one factor. A complete factorial
design is one that includes all combinations of all the independent variables. The term
“way” is equivalent to “factor.” A three-factor design could also be called a three-way
design, and since all the tests will be based on analysis of variance, it can be called a
three-way ANOVA.

3.3.1 Main Effects

Consider the following table:

Table 3.1: Population Cell Means and Marginal Means for the Kenton Example

Cartoon No Cartoon
3 Colours µ1 µ2

µ1+µ2

2

5 Colours µ3 µ4
µ3+µ4

2
µ1+µ3

2
µ2+µ4

2

In addition to population mean sales for each package design (denoted by µ1 through
µ4), the table above shows marginal means – quantities like µ2+µ4

2
, which are obtained by

averaging over rows or columns.
If there are differences among marginal means for a categorical independent variable in

a two-way (or higher) layout like this, we say there is a main effect for that variable. Tests
for main effects are of great interest; they can indicate whether, averaging over the values
of the other categorical independent variables in the design, whether the independent
variable in question is related to the dependent variable.

The population means in the preceding table are estimated by corresponding sample
quantities. The numbers in the table below come from the means output of the first
proc glm.

Table 3.2: Sample Cell and Marginal Means for the Kenton Example

Cartoon No Cartoon
3 Colours 14.6 13.4 14.00
5 Colours 19.5 27.7 23.35

17.05 20.30
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(14.6+13.4)/2 = 14, and so on.
The custom contrast 3Colourvs5Colour is for the main effect of number of colours (3

vs. 5). Here is the contrast statement from proc glm:

contrast 3Colourvs5Colour package 1 1 -1 -1;

It tests whether µ1+µ2

2
= µ3+µ4

2
, because

µ1 + µ2

2
=

µ3 + µ4

2
if and only if 1µ1 + 1µ2 − 1µ3 − 1µ4 = 0.

That’s also the same thing as asking whether the marginal sample mean for 3 Colours
(14) is significantly different from the marginal sample mean for 5 colours (23.35). Here’s
part of the output again:

Contrast DF Contrast SS Mean Square F Value Pr > F

3Colourvs5Colour 1 411.4000000 411.4000000 39.01 <.0001

So the answer is Yes: the main effect for 3 versus 5 colours is statistically significant.

Sample Question 3.3.1 What do you conclude from the test for the main effect of Num-
ber of Colours? Use plain, non-technical language.

Answer to Sample Question 3.3.1 There were more sales when the package had 5
colours.

Similarly, the main effect for presence versus absence of cartoons on the package is
tested by asking whether µ1+µ3

2
= µ2+µ4

2
. This is the same as asking whether the linear

combination
L = 1µ1 − 1µ2 + 1µ3 − 1µ4

is equal to zero. The contrast statement gives the coefficients of this linear combination,

contrast ’Cartoon’ package 1 -1 1 -1;

and the result is

Contrast DF Contrast SS Mean Square F Value Pr > F

Cartoon 1 49.7058824 49.7058824 4.71 0.0464

So the main effect for Cartoon is barely significant, with Non-cartoon designs doing
better. Treating it as a Scheffé followup to the initial test for differences among the four
means, its not significant any more (F = 4.71 < 9.86).
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3.3.2 Interactions

The two-way design we have been looking at is called a factorial design. In a factorial
design, there are two or more categorical independent variables (called factors, in this con-
text) typically with data with for all combinations of the factors being collected. Factorial
designs are often found in experimental studies, but not always.

When Sir Ronald Fisher (in whose honour the F-test is named) dreamed up factorial
designs, he pointed out that they enable the scientist to investigate the effects of several
independent variables at much less expense than if a separate experiment had to be
conducted to test each one. In addition, they allow one to ask systematically whether the
effect of one independent variable depends on the value of another independent variable.
If the effect of one independent variable depends on another, we will say there is an
interaction between those variables. We talk about an A ”by” B or A x B interaction.
An interaction means ”it depends.”

Consider the table of population means (Table 3.1) again. The effect of Cartoons
when the package has three colours is represented by µ1 − µ2. The effect of Cartoons
when the package has five colours is represented by µ3 − µ4. Therefore, the interaction
of Cartoon by number of colours is a difference between differences, and we want to test
whether µ1 − µ2 = µ3 − µ4, or equivalently, whether the linear combination

L = 1µ1 − 1µ2 − 1µ3 + 1µ4

is equal to zero. The contrast statement for this is

contrast ’CartoonDepends’ package 1 -1 -1 1;

yielding

Contrast DF Contrast SS Mean Square F Value Pr > F

CartoonDepends 1 93.1882353 93.1882353 8.84 0.0095

This significant interaction suggests that the effect of cartoons depends on the num-
ber of colours. We might also ask whether the effect of number of colours depends upon
presence versus absence of cartoons — that is, we might ask whether µ1 − µ3 = µ2 − µ4.
Notice, however, that µ1−µ3 = µ2−µ4 is algebraically equivalent to µ1−µ2 = µ3−µ4. So
the two ways of talking about the interaction are the same thing, mathematically. Fortu-
nately, this always happens, no matter how big the design. If you express an interaction
correctly as a collection of differences between differences, it is algebraically equivalent
to all other correct ways of expressing the interaction. Choose the one that is easiest to
think about.

Incidentally, p = 0.0095 seems impressive, but the test is not significant if it is consid-
ered as a Scheffé follow-up. The Scheffé critical value is 9.78, and the F for interaction is
8.84. Too bad, but let’s pursue the interaction for instructional purposes.

If an interaction is significant, you should graph it to figure out what it means. Fig-
ure 3.1 is an example. It’s easiest to use a spreadsheet program like Excel.

Whenever you have an interaction, such graphs will display non-parallel lines. Well
actually, when you plot an interaction with real data, the lines will always be at least a

80



Figure 3.1:

Here's the test statement and the output.

     inter2:   test p1-p3 = p2-p4; /* Effect of ncolours depends on cartoon */

Dependent Variable: SALES   
Test: INTER2   Numerator:     93.1882  DF:    1   F value:   8.8358
               Denominator:  10.54667  DF:   15   Prob>F:    0.0095

Notice that this F test is identical to the last one? It happens because μ1–μ2=μ3–μ4 is algebraically

equivalent to μ1–μ3=μ2–μ4. So the two ways of talking about the interaction are the same thing,

mathematically. Fortunately, this always happens, no matter how big the design. If you express

an interaction correctly as a collection of differences between differences, it is algebraically

equivalent to all other correct ways of expressing the interaction. Choose the one that is easiest to

think about. 

Incidentally, p = 0.0095 seems impressive, but the test is not significant if it

is considered as a Scheffe follow-up:  Fsch = 8.8358/3 = 2.945267 < 3.29. 

If an interaction is significant, you should graph it to figure out what it means. Here is one

example:
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1 5

1 0
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3 Colours 5 Colours

Package Design and Sales 1

No Cartoon

Cartoon

Chapter 5, Page 20

little non-parallel. The question is whether they depart significantly from being parallel.
Here, the advantage of 5 colours over 3 is significantly greater for designs without cartoons
(unless you are a member of the Scheffé cult, as I am), and we can see it in the graph.

The follow-up tests tell us that there are significantly more sales with 5-colour designs,
for both the cartoon and non-cartoon conditions. The interaction tells us that this effect
is significantly greater when there are no cartoons.

Remember the significant main effect for cartoon? It was just barely significant:
p = 0.0464. Figure 3.1 shows that this effect is entirely due to the advantage of no-cartoon
designs in the 5-colour condition. So here, we have a main effect that’s significant, but
we really should not interpret it, because of the interaction.

Some texts claim that if you have an interaction, you should never interpret the main
effects. But look at Figure 3.2, which graphs the same interaction in the other direction
(there are only two ways to do it, because it is a two-factor interaction).

The picture that emerges here is that 5-colour designs are better overall, and the
advantage is greater in the No-cartoon condition. Here, we can see that it makes sense to
interpret both the main effect for number of colours and the interaction. This example
shows why I disagree with the advice to never interpret main effects when there is an
interaction.

Personally, I like the idea of letting the tests for main effects, interactions and all
pairwise differences as follow-ups to the initial oneway ANOVA. I prefer Scheffé, because
I dont need to know in advance how many tests Im going to do. I also love the Scheffé
tests because of their 100% consistency with the initial tests. If the initial test is non-
significant, no Scheffé follow-up can be significant, as a mathematical certainty. And if
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Figure 3.2:

Whenever you have an interaction, such graphs will display non-parallel lines. Well actually, when

you plot an interaction with real data, the lines will always be at least a little non-parallel. The

question is whether they depart significantly from being parallel. Here, the advantage of 5 colours

over 3 is significantly greater for designs without cartoons (unless you are a member of the Scheffé

cult, as I am), and we can see it in the graph. 

The post-hoc tests tell us that there is a significantly more sales with 5-colour designs, for both the

cartoon and non-cartoon conditions. The interaction tells us that this effect is significantly greater

when there are no cartoons.

Remember the significant main effect for cartoon? It was just barely significant: p = 0.0464.  The

graph above shows quite clearly that this effect is entirely due to the advantage of no-cartoon

designs in the 5-colour condition.  So here, we have a main effect that's significant, but we really

should not interpret it, because of the interaction. 

Some texts claim that if you have an interaction, you should never interpret the main effects. But

look at the next figure, which graphs the same interaction in the other direction (there are only two

ways to do it, because it is a two-factor interaction).
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the initial test is significant, then there must be a significant Scheffé follow-up.
The result if we adopt this approach here is that when you treat the test for interaction

as a follow-up test instead of a one-at-a-time test, it’s no longer significant. You are left
with a simpler story. Five-colour designs work better than three-colour designs, and
designs without cartoons work better in the 5- colour condition.

In general, if you go the multiple comparison route, it’s going to make you more
conservative. You will draw fewer conclusions. On the other hand, in terms of this
particular example, the implications for action (marketing action) are the same whether
or not you use multiple comparisons. The Kenton company should use a 5-colour design
without cartoons.

3.3.3 Factorial ANOVA the easy way

To test main effects and interactions, it’s often more convenient to let proc glm set up
the contrasts for you. You name all the categorical independent variables (factors) in a
class statement, and then specify the analysis you want with

model Dependent variable(s) = Independent variable(s)

Here’s the Kenton example:

proc glm;

title2 "Actually it’s a two-way ANOVA";

class ncolours cartoon;

model sales = ncolours|cartoon;
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The model statement could have been

model sales = ncolours cartoon ncolours*cartoon;

This would specify both main effects (by mentioning the variables), and the interaction.
By connecting two or more independent variables with vertical bars, you include all the
main effects and interactions involving those variables. Here’s the output. First we are
given basic information, including the number of independent variables, the values they
assume, and the number of cases.

Kenton Oneway Example From Neter et al. 9

Actually it’s a two-way ANOVA

The GLM Procedure

Class Level Information

Class Levels Values

ncolours 2 3 5

cartoon 2 No Yes

Number of Observations Read 19

Number of Observations Used 19

Then we get the ANOVA summary table for an overall, simultaneous test of all the
independent variables and their interactions. It is exactly the same as a one-way ANVA
on a combination variable consisting of all combinations of the factors. Here, it is 100%
equivalent to the one-way ANOVA with package as the only independent variable. You
can compare the F statistic and p-value from the earlier output. We also get the R2 (pro-
portion of variation in the dependent variable explained by all the independent variables),
the coefficient of variation of the dependent variable (standard deviation divided by the
mean, then multiplied by 100 to make it a percent), Root MSE (literally the square root
of mean squared error), and the mean of the dependent variable.
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The GLM Procedure

Dependent Variable: sales Number of Cases Sold

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 3 588.2210526 196.0736842 18.59 <.0001

Error 15 158.2000000 10.5466667

Corrected Total 18 746.4210526

R-Square Coeff Var Root MSE sales Mean

0.788055 17.43042 3.247563 18.63158

Next come two ANOVA summary tables, one for “Type I SS” and another for “Type
III SS.” We will focus on the Type Three table, because it gives exactly what we get from
contrasts. It gives a F -test for each main effect and interaction, and you will notice that
the tests statistics and p values are exactly what we got from contrast statements on
the combination variable package.

Source DF Type I SS Mean Square F Value Pr > F

ncolours 1 452.8654971 452.8654971 42.94 <.0001

cartoon 1 42.1673203 42.1673203 4.00 0.0640

ncolours*cartoon 1 93.1882353 93.1882353 8.84 0.0095

Source DF Type III SS Mean Square F Value Pr > F

ncolours 1 411.4000000 411.4000000 39.01 <.0001

cartoon 1 49.7058824 49.7058824 4.71 0.0464

ncolours*cartoon 1 93.1882353 93.1882353 8.84 0.0095

Just for the record, here are some comments about the Type I sums of squares.

• The tests based on Type I sums of squares are sequential. If you are familiar with
the multiple regression way of expressing factorial ANOVA, effects in Type I sums of
squares are corrected only for preceding effects in the list, so it’s sort of hierarchical.
In Type III sums of squares, each effect is corrected for all the others; it is as if each
effect came last on the list.
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• When sample sizes are equal or proportional, the independent variables have zero
relationship with one another, and “correcting” one effect for another does nothing.
In this case, Type I and Type III sums of squares yield the same tests.

• If there is just one independent variable, Type I and Type III sums of squares are
not only identical to each other, they are identical to the initial test. In this case,
the SAS output is very redundant.

• I can never remember what Type II sums of squares are.

• There are more types, and in general they all yield identical results when sample
sizes are equal. If you do ANOVA using unfamiliar software, always try an example
with unequal ns to find out what the software is really doing.

Finally, the means statement, whose syntax parallels that of the model statement,
gives marginal and cell means. I usually ask only for sets of means corresponding to main
effects and interactions that are statistically significant.

Kenton Oneway Example From Neter et al. 11

Actually it’s a two-way ANOVA

The GLM Procedure

Level of ------------sales------------

ncolours N Mean Std Dev

3 10 14.0000000 2.94392029

5 9 23.7777778 5.19080383

Level of ------------sales------------

cartoon N Mean Std Dev

No 9 16.7777778 3.45607356

Yes 10 20.3000000 8.11103501

Level of Level of ------------sales------------

ncolours cartoon N Mean Std Dev

3 No 5 14.6000000 2.30217289

3 Yes 5 13.4000000 3.64691651

5 No 4 19.5000000 2.64575131

5 Yes 5 27.2000000 3.96232255
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3.3.4 Beyond the Two-by-two Case

Methods for factorial ANOVA and testing interactions can easily be extended to allow
for more than two factors and more than two values for a factor. Extension to more
than two factors is straightforward. Suppose we had grocery stores of three different sizes
(small, medium and large), and within each size, the four package designs were randomly
allocated to stores. We would have three factors – store size, number of colours, and
presence versus absence of cartoons.

• For each independent variable, averaging over the other two variables would give
marginal means – the basis for estimating and testing for main effects.

• Averaging over each of the independent variables in turn, we would have a two-way
marginal table of means for the other two variables, and the pattern of means in
that table could show a two-way interaction.

• The full three-dimensional table of means would provide a basis for looking at a
three-way, or three-factor interaction. The interpretation of a three-way interaction
is that the nature of the two-way interaction depends on the value of the third
variable. This principle extends to any number of factors, so we would interpret a
six-way interaction to mean that the nature of the 5-way interaction depends on the
value of the sixth variable.

• Fortunately, the order in which one considers the variables does not matter. For
example, we can say that the A by B interaction depends on the value of C, or that
the A by C interaction depends on B, or that the B by C interaction depends on
the value of A. The translations of these statements into algebra are all equivalent
to one another, always. This principle extends to any number of factors.

• As you might imagine, as the number of factors becomes large, interpreting higher-
way interactions – that is, figuring out what they mean – becomes more and more
difficult. For this reason, sometimes the higher-order interactions are deliberately
omitted from the full model in big experimental designs; if they are omitted, they
can never be tested. Is this reasonable? Most of my answers are just elaborate ways
to say I don’t know.

More than two values for an independent variable Regardless of how many factors
we have, or how many levels there are in each factor, we could always form a combination
variable – that is, a single categorical independent variable whose values represent all the
combinations of independent variable values in the factorial design. We have seen that in
a two-by-two design, the tests for both main effects and the interaction resolve themselves
into tests for single contrasts – contrasts of the means of the combination variable. When
independent variables have more than two values, the same thing is true, except that
tests for main effects and interactions appear as test for collections of contrasts on the
combination variable.
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