Within-cases analysis of the Monkey Data

MONKE	Y 1	TREATMENT	WEE	IK2	WEEK4	V	VEEK8	WEEK12	WEEK16	
Spank		CONTROL	95	75	80	65	70			
Chim		CONTROL	85	75	55	75	85			
Chak		CONTROL	75	95	60	40	45			
Alf		CONTROL	85	80	70	45	80			
Poet		CONTROL	65	80	75	65	65			
Jessi	e	CONTROL	70	90	85	75	75			
Phil		CONTROL	75	80	70	70	70			
Irv		TREATED	75	50	70	75	75			
Edy		TREATED	85	85	60	70	70			
Allen	L	TREATED	60	70	70	75	70			
Poe		TREATED	60	65	70	70	60			
Joey		TREATED	65	60	80	70	60			
Just		TREATED	55	70	60	65	75			
Junic	or	TREATED	60	55	75	70	50			
Andy		TREATED	55	65	45	70	65			
Sport		TREATED	60	70	70	85	70			
Corne	lius	TREATED	45	60	65	65	70			
Dunca	n	TREATED	65	55	55	80	75			
optic title title	ons 1: e 'Pr: 2 'Mu	inesize=79 imate hipp iltivariat) page pocamp ce app	esize Dal f Droac	=100 no unction h to re	oovp n: Z epea	o formd Sola-Mo ated me	lim='_'; organ and asures (v	Squire, 1 vithin-cas	990'; es)';
data proc	memon infi input means	fy; Le 'monkey monkey \$ mean;	y.data S trea	a' fi atmnt	rstobs= \$ wee]	=2; <2 v	veek4 w	eek8 wee}	x12 week16	;
L	clas: var v	s treatmnt veek2 v	; veek16	;						
proc	glm; class mode: repea	s treatmnt L week2 ated time	- week profi	:16 = .1e /	treatr short	nnt; t su	ummary	nouni;		
proc	glm; title class model manov /* M	e3 'Replic s treatmnt L week2 va H = tre M = wee is a matr	cate t ; - week eatmnt ek2+we cix of	al6 = 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	for ma: treatr week8+v fficier	in e nnt; week nts	effect 12+wee for tr	of treatm k16 / sho ansformin	nent: F=8. ort; ng the DVs	08, p=0.0118'; */
proc	glm; title title class model manov	e3 'Replic e4 'And ti s treatmnt L week2 ya H = int M = wee / sh	cate t ime by ; - week cercep ek2-we nort;	tests tre 16 = ot tr eek4,	for ma atment treatme eatmnt week4	ain int nnt; -wee	effect ceracti	of time: on: Lambo wek8-week1	: Lambda=0 da=0.44106 12, week12	.84009249'; 117'; -week16

/* But the real point is that the treatment only affects recent memories, not older ones. A basic MANOVA is really more to the point. Follow up with Bonferroni. $\ast/$

```
proc glm;
title3 'MANOVA, no repeated measures';
class treatmnt;
model week2 -- week16 = treatmnt;
manova h = treatmnt;
```

Primate hippocampal function: Zola-Morgan and Squire, 1990 Multivariate approach to repeated measures (within-cases) 1

treatmnt	N Obs	Variable	Mean
CONTROL	7	week2 week4 week8 week12 week16	78.5714286 82.1428571 70.7142857 62.1428571 70.0000000
TREATED	11	week2 week4 week8 week12 week16	62.2727273 64.0909091 65.4545455 72.2727273 67.2727273

The MEANS Procedure

First we get univariate analyses of all the dependent variables – before the transformations that make time a within-cases factor. Often you ignore these, but here they're interesting.

	Primate hippoca Multivariate a	mpal f	unction: Z h to repea	ola-Mo ted me	organ a easures	and Squi 5 (withi	re, 1990 n-cases)	2
		1	The GLM Pr	ocedur	e			
		Clas	s Level In	format	ion			
	Class		Levels	Valu	ies			
	treatm	int	2	CONT	ROL TH	REATED		
	Numbe Numbe	er of O er of O	bservation bservation	s Read s Used	l	18 18		
	Primate hippoca Multivariate a	mpal f	unction: Z h to repea	ola-Mo ted me	organ a asures	and Squi 6 (withi	re, 1990 n-cases)	3
		1	The GLM Pr	ocedur	e			
Dependent	Variable: week2	!						
Source		DF	Sum Squa	of res	Mean	Square	F Value	Pr > F
Model		1	1136.381	674	1136.	381674	10.37	0.0054
Error		16	1753.896	104	109.	618506		
Corrected	Total	17	2890.277	778				
	R-Square	Coef	f Var	Root	MSE	week2	Mean	
	0.393174	15.	25975	10.46	989	68.6	1111	
Source		DF	Туре І	SS	Mean	Square	F Value	Pr > F
treatmnt		1	1136.381	674	1136.	381674	10.37	0.0054
Source		DF	Type III	SS	Mean	Square	F Value	Pr > F
treatmnt		1	1136.381	674	1136.	381674	10.37	0.0054

Primate hippocampal function: Zola-Morgan and Squire, 1990 Multivariate approach to repeated measures (within-cases)

The GLM Procedure

Dependent Variable: week4

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	1394.011544	1394.011544	17.37	0.0007
Error	16	1283.766234	80.235390		
Corrected Total	17	2677.77778			
		· · · · · · · · · · · · · · · · · · ·		-	

R-Square	Coeff Var	Root MSE	week4 Mean
0.520585	12.59637	8.957421	71.11111

Dependent Variable: week8

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	118.344156	118.344156	1.15	0.2991
Error	16	1644.155844	102.759740		
Corrected Total	17	1762.500000			

R-Square	Coeff Var	Root MSE	week8 Mean
0.067146	15.01785	10.13705	67.50000

Dependent Variable: week12

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	1	438.961039	438.961039	4.50	0.0499
Error	16	1561.038961	97.564935		
Corrected Total	17	2000.000000			

R-Square	Coeff Var	Root MSE	week12 Mean
0.219481	14.45487	9.877496	68.33333

-

Dependent Variable: week16

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	1	31.818182	31.818182	0.31	0.5826
Error	16	1618.181818	101.136364		
Corrected Total	17	1650.000000			

R-Square	Coeff Var	Root MSE	week16 Mean
0.019284	14.71706	10.05666	68.33333

4

Now the tests for main effect and interactions

Primate hippocampal function: Zola-Morgan and Squire, 1990 Multivariate approach to repeated measures (within-cases) The GLM Procedure Repeated Measures Analysis of Variance Repeated Measures Level Information Dependent Variable week2 week4 week8 week12 week16 5 Level of time 1 2 3 4 MANOVA Test Criteria and Exact F Statistics for the Hypothesis of no time Effect H = Type III SSCP Matrix for time E = Error SSCP Matrix S=1 M=1 N = 5.5Statistic Value F Value Num DF Den DF Pr > FWilks' Lambda 0.84009249 0.62 4 13 0.6571 Pillai's Trace 0.15990751 0.62 4 13 0.6571 Hotelling-Lawley Trace 0.19034512 0.62 4 13 0.6571 Roy's Greatest Root 0.19034512 0.62 4 13 0.6571 MANOVA Test Criteria and Exact F Statistics for the Hypothesis of no time*treatmnt Effect H = Type III SSCP Matrix for time*treatmnt E = Error SSCP Matrix S=1 M=1N = 5.5Statistic F Value Num DF Den DF Value Pr > FWilks' Lambda 0.44106117 4.12 0.0227 13 4 Pillai's Trace 0.55893883 4.12 0.0227 4 13 Hotelling-Lawley Trace 1.26725921 4.12 4 13 0.0227 Roy's Greatest Root 1.26725921 4.12 13 0.0227 4 Primate hippocampal function: Zola-Morgan and Squire, 1990 9 Multivariate approach to repeated measures (within-cases) The GLM Procedure Repeated Measures Analysis of Variance Tests of Hypotheses for Between Subjects Effects Source Mean Square \mathbf{DF} Type III SS F Value Pr > F8.08 887.503608 887.503608 0.0118 treatmnt 1

1758.051948

109.878247

16

Error

8

The profile option on the repeated statement yields these successive difference variables. Default is contrast with the last category.

	n-cases)	
The GLM Procedure Repeated Measures Analysis of Variance Analysis of Variance of Contrast Variables		
time_N represents the nth successive difference in time		
Contrast Variable: time_1		
Source DF Type III SS Mean Square	F Value	Pr > F
Mean1124.260462124.260462treatmnt113.14935113.149351Error162999.350649187.459416	0.66 0.07	0.4275 0.7945
Contrast Variable: time_2		
Source DF Type III SS Mean Square	F Value	Pr > F
Mean1433.351371433.351371treatmnt1700.018038700.018038Error163340.259740208.766234	2.08 3.35	0.1689 0.0858
Contrast Variable: time_3		
Source DF Type III SS Mean Square	F Value	Pr > F
Mean113.14935113.149351treatmnt11013.1493511013.149351Error162599.350649162.459416	0.08 6.24	0.7797 0.0238
Contrast Variable: time_4		
Source DF Type III SS Mean Square	F Value	Pr > F
Mean134.92063534.920635treatmnt1707.142857707.142857Error161692.857143105.803571	0.33 6.68	0.5736 0.0199

Now get the tests for main effects and interactions a different way, by specifying the **M** matrix for transforming the dependent variables. The output starts with tests on the untransformed dependent variables, but we've already seen those, so they are omitted. For the first run, we use a single linear combination of the dependent variables: their sum.

Primate hippocampal function: Zola-Morgan and Squire, 1990 17 Multivariate approach to repeated measures (within-cases) Replicate test for main effect of treatment: F=8.08, p=0.0118					
The GLM Procedure Multivariate Analysis of Variance					
M Matrix	Describing 1	ransformed V	ariables		
week2	week4	week8	week1	2	week16
MVAR1 1	1	1		1	1
Primate hippocampal function: Zola-Morgan and Squire, 1990 18 Multivariate approach to repeated measures (within-cases) Replicate test for main effect of treatment: F=8.08, p=0.0118					
Mult:	The GLM F ivariate Anal	Procedure Sysis of Vari	ance		
Characteristic Roots and Vectors of: E Inverse * H, where H = Type III SSCP Matrix for treatmnt E = Error SSCP Matrix					
Variables ha	ave been tran	sformed by t	he M Matri	x	
Character	ristic Root Per	Char	acteristic MVAR1	Vector	V'EV=1
0.504	482217 10	0.00 0.	01066594		
MANOVA Test Criteria and Exact F Statistics for the Hypothesis of No Overall treatmnt Effect on the Variables Defined by the M Matrix Transformation H = Type III SSCP Matrix for treatmnt E = Error SSCP Matrix S=1 M=-0.5 N=7					
Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks' Lambda Pillai's Trace Hotelling-Lawley Trace Roy's Greatest Root	0.66453035 0.33546965 0.50482217 0.50482217	8.08 8.08 8.08 8.08	1 1 1	16 16 16 16	0.0118 0.0118 0.0118 0.0118

Now we transform the 5 dependent variables into 4 linear combinations: successive differences (changes over time). Test of the "intercept" is a simultaneous test of whether the four population mean differences equal zero. If this null hypothesis were true, there would be no change in recall as a function of elapsed time – averaging across treatment and control conditions. Test of treatment is for whether the set of changes depend on treatment; this is the treatment by time interaction. Once again we skip all the univariate tests on the untransformed variables. We start with the transformation matrix, which is a set of contrasts, in this case.

The GLM Procedure Multivariate Analysis of Variance M Matrix Describing Transformed Variables						
	week2	week4	week8	week12	week16	
MVAR1	1	-1	0	0	0	
MVAR2	0	1	-1	0	0	
MVAR3	0	0	1	-1	0	
MVAR4	0	0	0	1	-1	
Primate hippocampal function: Zola-Morgan and Squire, 1990 19 Multivariate approach to repeated measures (within-cases) Replicate tests for main effect of time: Lambda=0.84009249 And time by treatment interaction: Lambda=0.44106117						

Skipping the "Characteristic Roots and Vectors" part ...

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of No Overall Intercept Effect on the Variables Defined by the M Matrix Transformation H = Type III SSCP Matrix for Intercept E = Error SSCP Matrix

	S=1 M=1	N=5.5			
Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks' Lambda	0.84009249	0.62	4	13	0.6571
Pillai's Trace	0.15990751	0.62	4	13	0.6571
Hotelling-Lawley Trace	0.19034512	0.62	4	13	0.6571
Roy's Greatest Root	0.19034512	0.62	4	13	0.6571

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of No Overall treatmnt Effect on the Variables Defined by the M Matrix Transformation H = Type III SSCP Matrix for treatmnt E = Error SSCP Matrix

	S=1 M=1	N=5.5			
Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks' Lambda	0.44106117	4.12	4	13	0.0227
Pillai's Trace	0.55893883	4.12	4	13	0.0227
Hotelling-Lawley Trace	1.26725921	4.12	4	13	0.0227
Roy's Greatest Root	1.26725921	4.12	4	13	0.0227

But the real point is that the treatment only affects recent memories, not older ones. A basic MANOVA is really more to the point. taking the output of the last proc glm out of order, we start by verifying that the treatment has an effect on the 5 recall variables considered simultaneously.

MANOVA Te the Hypo H =	st Criteria and thesis of No Ov Type III SSCP M E = Error S	Exact F St erall treat atrix for t SCP Matrix	atistics f mnt Effect reatmnt	or	
	S=1 M=1	.5 N=5			
Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks' Lambda	0.30021681	5.59	5	12	0.0069
Pillai's Trace	0.69978319	5.59	5	12	0.0069
Hotelling-Lawley Trace	2.33092613	5.59	5	12	0.0069
Roy's Greatest Root	2.33092613	5.59	5	12	0.0069

Now let's look at the 5 univariate tests for treatment, with a Bonferroni correction. Summarizing output we have already examined ...

F	р	Significant by Bonferroni?
10.37	0.0054	Yes
17.37	0.0007	Yes
1.15	0.2991	No
4.50	0.0499	No
0.31	0.5826	No
	F 10.37 17.37 1.15 4.50 0.31	Fp10.370.005417.370.00071.150.29914.500.04990.310.5826

Conclusion: Blocking hippocampal function impaired the monkeys' average performance on tasks learned two and four weeks before the procedure, but there was no evidence of an effect for tasks learned eight, twelve or sixteen weeks before the procedure. This supports the idea that the hippocampus is involved more in shortterm memory than in long-term memory.