
Within-cases for binary response data using
non-linear mixed models1

1This slide show is an open-source document. See last slide for copyright
information.
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Vocabulary: Linear vs. non-linear models

In a linear model, E(y|x) is a linear function of the parameters.

Ordinary regression is linear:

E(y|x) = β0 + β1x1 + · · ·+ βp−1xp−1

Logistic regression is non-linear:

E(y|x) =
eβ0+β1x1+···+βp−1xp−1

1 + eβ0+β1x1+···+βp−1xp−1
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Within-cases for binary data: The idea

There are several binary responses for each case.

Like was the person employed right after graduation, 6 months
after, one year after . . . Yes or No.

Or did the consumer purchase at least one computer in 2016, 2017,
2018 . . .

Or did the patient have a seizure on day 1, day 2, . . . after
treatment.

Binary choices in laboratory studies can be repeated measures.

Model: Logistic regression with a random shock for case, pushing
all the log odds values for that case up and down by the same
amount.

Random shock is added to the regression equation for the log odds.

Usually the random shock is normal — what else?
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A random intercept model
For i = 1, . . . , n and j = 1, . . . , k

∆1, . . . ,∆n
i.i.d.∼ N(0, σ2)

Conditionally on ∆i = δi for i = 1, . . . , n, binary responses yij are
independent with

log

(
πij

1− πij

)
= (β0 + δi) + β1xi,j,1 + . . .+ βp−1xi,j,p−1

= x′ijβ + δi, so that

πij =
ex
′
ijβ+δi

1 + ex
′
ijβ+δi

where πij = P{yij = 1|∆i = δi}.

Some of the xij` could be dummy variables for time period or
within-case treatment, different for j = 1, . . . , k within case i.
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Maximum likelihood

Parameter vector is θ = (β0, β1, . . . , βp−1, σ
2)′.

Vector of binary observations yi = (yi1, . . . , yik)
′ for each case.

Likelihood function is L(θ) =
∏n
i=1 pθ(yi)

Where pθ(yi) is the probability of observing the vector yi.

Need to calculate pθ(yi) as a function of θ and maximize the
likelihood.
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Model gives us a conditional probability
But we need the unconditional probability pθ(yi)

Given ∆i = δi, the yij are independent, so

pθ(yi|∆i = δi) =
k∏
j=1

(
ex
′
ijβ+δi

1 + ex
′
ijβ+δi

)yij (
1− ex

′
ijβ+δi

1 + ex
′
ijβ+δi

)1−yij

This is a conditional probability.

Conditional on xij as well as δi.

It’s okay to treat xij as known constants because they are
observed.

But δi are unobservable (latent random variables).

Integrate them out using the law of total probability.
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Law of total probability
Double expectation

pθ(yi) =

∫ ∞
−∞

pθ(yi|∆i = δi)f(δi|σ2) dδi

=

∫ ∞
−∞

k∏
j=1

(
ex

′
ijβ+δi

1 + ex
′
ijβ+δi

)yij (
1− ex

′
ijβ+δi

1 + ex
′
ijβ+δi

)1−yij

f(δ|σ2) dδi

where f(δ|σ2) = 1
σ
√
2π

exp(− δ2

2σ2 ).

The likelihood is a product of n terms like this.

Nobody can do the integral.

It has to be done numerically, n times.

Numerical integration as well as a numerical search.
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State of the art
Contemporary, not just modern

The theory is mainstream large-sample maximum likelihood.

Computation is a bit bleeding edge.

Methods for finding parameter estimates are iterative.

Convergence problems are common.

R and SAS give similar results for all the examples I’ve seen.

In R, use the glmer function in the lme4 package.

In SAS, use proc nlmixed.

It’s not at all like proc mixed.
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistical Sciences, University of Toronto. It is licensed under a
Creative Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The LATEX source
code is available from the course website:

http://www.utstat.toronto.edu/∼brunner/oldclass/441s20
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