STA429/1007 F 2004 Handout 8

Mixed and Random Effects, nesting (Bread and Health data)



/*************  bread.sas ************************
 Subsampling Example from NKNW Ch. 28 (Table 28.9)
**************************************************/

title 'Nested mixed model: Bread data';
options linesize=79 pagesize=35 noovp formdlim=' ';

proc format;  /* value labels used in data step below */
     value tempfmt 1 = 'Low'  2 = 'Medium' 3 = 'High';
data school;
     infile 'bread.dat';
     input temp batch crusty;
     label crusty = 'Crustiness of bread';
     format temp tempfmt.;

proc glm;
     title2 'Classical F-tests with proc glm';
     class temp batch;
     model crusty = temp batch(temp);  /* batch(temp) = batch within temp */
     random batch(temp) / test;        /* batch(temp) is a random effect.
                                                           Test it. */
     means temp batch(temp);

proc varcomp method=type1;  /* Just Expected Mean Squares */
  title2 'Estimate variance components: Expected Mean Squares ';
     class temp batch;
     model crusty = temp batch(temp) / fixed=1; /* One fixed effect (Any
                                                   fixed effects are first) */

proc varcomp method=ML;  /* Maximum Likelihood */
     title2 'Maximum Likelihood Estimates of variance components';
     class temp batch;
     model crusty = temp batch(temp) / fixed=1;

Here is bread.lst




                        Nested mixed model: Bread data                        1
                        Classical F-tests with proc glm
                                                 14:29 Sunday, October 24, 2004

                               The GLM Procedure

                           Class Level Information

                   Class         Levels    Values

                   temp               3    High Low Medium

                   batch              2    1 2


                         Number of observations    18



                        Nested mixed model: Bread data                        2
                        Classical F-tests with proc glm
                                                 14:29 Sunday, October 24, 2004

                               The GLM Procedure

Dependent Variable: crusty   Crustiness of bread

                                      Sum of
Source                     DF        Squares    Mean Square   F Value   Pr > F

Model                       5    284.4444444     56.8888889     21.79   <.0001

Error                      12     31.3333333      2.6111111

Corrected Total            17    315.7777778


              R-Square     Coeff Var      Root MSE    crusty Mean

              0.900774      13.59163      1.615893       11.88889


Source                     DF      Type I SS    Mean Square   F Value   Pr > F

temp                        2    235.4444444    117.7222222     45.09   <.0001
batch(temp)                 3     49.0000000     16.3333333      6.26   0.0084


Source                     DF    Type III SS    Mean Square   F Value   Pr > F

temp                        2    235.4444444    117.7222222     45.09   <.0001
batch(temp)                 3     49.0000000     16.3333333      6.26   0.0084



                        Nested mixed model: Bread data                        3
                        Classical F-tests with proc glm
                                                 14:29 Sunday, October 24, 2004

                               The GLM Procedure

  Source                  Type III Expected Mean Square

  temp                    Var(Error) + 3 Var(batch(temp)) + Q(temp)

  batch(temp)             Var(Error) + 3 Var(batch(temp))



                        Nested mixed model: Bread data                        4
                        Classical F-tests with proc glm
                                                 14:29 Sunday, October 24, 2004

                               The GLM Procedure
           Tests of Hypotheses for Mixed Model Analysis of Variance

Dependent Variable: crusty   Crustiness of bread

Source                     DF    Type III SS    Mean Square   F Value   Pr > F

temp                        2     235.444444     117.722222      7.21   0.0715

Error                       3      49.000000      16.333333
Error: MS(batch(temp))


Source                     DF    Type III SS    Mean Square   F Value   Pr > F

batch(temp)                 3      49.000000      16.333333      6.26   0.0084

Error: MS(Error)           12      31.333333       2.611111



                        Nested mixed model: Bread data                        5
                        Classical F-tests with proc glm
                                                 14:29 Sunday, October 24, 2004

               Level of           ------------crusty-----------
               temp         N             Mean          Std Dev

               High         6       16.5000000       1.87082869
               Low          6        7.6666667       3.01109061
               Medium       6       11.5000000       1.87082869


         Level of     Level of           ------------crusty-----------
         batch        temp         N             Mean          Std Dev

         1            High         3       15.3333333       1.52752523
         2            High         3       17.6666667       1.52752523
         1            Low          3        5.3333333       1.52752523
         2            Low          3       10.0000000       2.00000000
         1            Medium       3       12.6666667       1.52752523
         2            Medium       3       10.3333333       1.52752523



                        Nested mixed model: Bread data                        6
             Estimate variance components: Expected Mean Squares
                                                 14:29 Sunday, October 24, 2004

                   Variance Components Estimation Procedure

                           Class Level Information

                   Class         Levels    Values

                   temp               3    High Low Medium

                   batch              2    1 2


                         Number of observations    18


                         Dependent Variable:    crusty


                          Type 1 Analysis of Variance

                                              Sum of
           Source                 DF         Squares     Mean Square

           temp                    2      235.444444      117.722222


                         Type 1 Analysis of Variance

         Source             Expected Mean Square

         temp               Var(Error) + 3 Var(batch(temp)) + Q(temp)



                        Nested mixed model: Bread data                        7
             Estimate variance components: Expected Mean Squares
                                                 14:29 Sunday, October 24, 2004

                   Variance Components Estimation Procedure

                          Type 1 Analysis of Variance

                                              Sum of
           Source                 DF         Squares     Mean Square

           batch(temp)             3       49.000000       16.333333
           Error                  12       31.333333        2.611111
           Corrected Total        17      315.777778               .


                         Type 1 Analysis of Variance

         Source             Expected Mean Square

         batch(temp)        Var(Error) + 3 Var(batch(temp))
         Error              Var(Error)
         Corrected Total    .


                               Type 1 Estimates

                      Variance Component        Estimate

                      Var(batch(temp))           4.57407
                      Var(Error)                 2.61111



                        Nested mixed model: Bread data                        8
              Maximum Likelihood Estimates of variance components
                                                 14:29 Sunday, October 24, 2004

                   Variance Components Estimation Procedure

                           Class Level Information

                   Class         Levels    Values

                   temp               3    High Low Medium

                   batch              2    1 2


                         Number of observations    18


                         Dependent Variable:    crusty


                         Maximum Likelihood Iterations

                                            Var(batch
      Iteration          Objective            (temp))         Var(Error)

              0      24.9947701601       3.8117283951       2.1759259259
              1      24.1609121270       2.1819629992       2.4911480395
              2      24.1177557504       1.8652543177       2.6055996112
              3      24.1176751083       1.8517086457       2.6111703288
              4      24.1176750991       1.8518518356       2.6111111178



                        Nested mixed model: Bread data                        9
              Maximum Likelihood Estimates of variance components
                                                 14:29 Sunday, October 24, 2004

                   Variance Components Estimation Procedure

       Convergence criteria met.


                         Maximum Likelihood Estimates

                        Variance
                        Component             Estimate

                        Var(batch(temp))       1.85185
                        Var(Error)             2.61111


                  Asymptotic Covariance Matrix of Estimates

                               Var(batch(temp))            Var(Error)

         Var(batch(temp))               2.59642              -0.37877
         Var(Error)                    -0.37877               1.13632


/*************  health.sas ************************
 Subsampling Example from NWK prob 26.11
**************************************************/

title 'Pure random effects with subsampling:  Health Awareness data';
options linesize=79 pagesize=35 noovp formdlim=' ';

data final;
     infile 'health.dat';
     input state city househld aware;

proc glm;
     title2 'Classical F-test with proc glm';
     class state city;
     model aware = state city(state);
     random state city(state) / test;

proc varcomp method=type1;  /* Expected Mean Squares */
     title2 'Estimate variance components: Expected Mean Squares ';
     class state city;
     model aware = state city(state);

proc varcomp method=ML;  /* Maximum Likelihood */
     title2 'Maximum Likelihood Estimates of variance components';
     class state city;
     model aware = state city(state);

proc sort;         /* May be needed by proc nested */
     by state city;

proc nested;
     title2 'Estimate % of variance with proc nested';
     class state city; /* Assume all IVs random and nested in order given */
     var aware;        /* Just name the DV(s) */

Here is health.lst.



         Pure random effects with subsampling:  Health Awareness data         1
                        Classical F-test with proc glm
                                                 14:36 Sunday, October 24, 2004

                               The GLM Procedure

                           Class Level Information

                        Class         Levels    Values

                        state              3    1 2 3

                        city               3    1 2 3


                         Number of observations    45



         Pure random effects with subsampling:  Health Awareness data         2
                        Classical F-test with proc glm
                                                 14:36 Sunday, October 24, 2004

                               The GLM Procedure

Dependent Variable: aware

                                      Sum of
Source                     DF        Squares    Mean Square   F Value   Pr > F

Model                       8     7144.44444      893.05556      8.26   <.0001

Error                      36     3893.20000      108.14444

Corrected Total            44    11037.64444


              R-Square     Coeff Var      Root MSE    aware Mean

              0.647280      24.94490      10.39925      41.68889


Source                     DF      Type I SS    Mean Square   F Value   Pr > F

state                       2    6976.844444    3488.422222     32.26   <.0001
city(state)                 6     167.600000      27.933333      0.26   0.9526


Source                     DF    Type III SS    Mean Square   F Value   Pr > F

state                       2    6976.844444    3488.422222     32.26   <.0001
city(state)                 6     167.600000      27.933333      0.26   0.9526



         Pure random effects with subsampling:  Health Awareness data         3
                        Classical F-test with proc glm
                                                 14:36 Sunday, October 24, 2004

                               The GLM Procedure

  Source                  Type III Expected Mean Square

  state                   Var(Error) + 5 Var(city(state)) + 15 Var(state)

  city(state)             Var(Error) + 5 Var(city(state))



         Pure random effects with subsampling:  Health Awareness data         4
                        Classical F-test with proc glm
                                                 14:36 Sunday, October 24, 2004

                               The GLM Procedure
           Tests of Hypotheses for Random Model Analysis of Variance

Dependent Variable: aware

Source                     DF    Type III SS    Mean Square   F Value   Pr > F

state                       2    6976.844444    3488.422222    124.88   <.0001

Error                       6     167.600000      27.933333
Error: MS(city(state))


Source                     DF    Type III SS    Mean Square   F Value   Pr > F

city(state)                 6     167.600000      27.933333      0.26   0.9526

Error: MS(Error)           36    3893.200000     108.144444



         Pure random effects with subsampling:  Health Awareness data         5
             Estimate variance components: Expected Mean Squares
                                                 14:36 Sunday, October 24, 2004

                   Variance Components Estimation Procedure

                           Class Level Information

                        Class         Levels    Values

                        state              3    1 2 3

                        city               3    1 2 3


                         Number of observations    45


                         Dependent Variable:    aware


                          Type 1 Analysis of Variance

                                              Sum of
           Source                 DF         Squares     Mean Square

           state                   2     6976.844444     3488.422222


                         Type 1 Analysis of Variance

      Source             Expected Mean Square

      state              Var(Error) + 5 Var(city(state)) + 15 Var(state)



         Pure random effects with subsampling:  Health Awareness data         6
             Estimate variance components: Expected Mean Squares
                                                 14:36 Sunday, October 24, 2004

                   Variance Components Estimation Procedure

                          Type 1 Analysis of Variance

                                              Sum of
           Source                 DF         Squares     Mean Square

           city(state)             6      167.600000       27.933333
           Error                  36     3893.200000      108.144444
           Corrected Total        44           11038               .


                         Type 1 Analysis of Variance

      Source             Expected Mean Square

      city(state)        Var(Error) + 5 Var(city(state))
      Error              Var(Error)
      Corrected Total    .


                               Type 1 Estimates

                      Variance Component        Estimate

                      Var(state)               230.69926
                      Var(city(state))         -16.04222
                      Var(Error)               108.14444



         Pure random effects with subsampling:  Health Awareness data         7
              Maximum Likelihood Estimates of variance components
                                                 14:36 Sunday, October 24, 2004

                   Variance Components Estimation Procedure

                           Class Level Information

                        Class         Levels    Values

                        state              3    1 2 3

                        city               3    1 2 3


                         Number of observations    45


                         Dependent Variable:    aware


                         Maximum Likelihood Iterations

                                                     Var(city
 Iteration        Objective       Var(state)         (state))       Var(Error)

         0   215.3846762821   202.5274227843                0    94.9383872844
         1   215.2568105655   149.3097905207                0    96.6541361806
         2   215.2567768466   148.5955055944                0    96.6857039721
         3   215.2567768466   148.5955055944                0    96.6857039721


       Convergence criteria met.



         Pure random effects with subsampling:  Health Awareness data         8
              Maximum Likelihood Estimates of variance components
                                                 14:36 Sunday, October 24, 2004

                   Variance Components Estimation Procedure

                         Maximum Likelihood Estimates

                        Variance
                        Component             Estimate

                        Var(state)           148.59551
                        Var(city(state))             0
                        Var(Error)            96.68570


                   Asymptotic Covariance Matrix of Estimates

                           Var(state)     Var(city(state))           Var(Error)

Var(state)                    16027.2                    0            -29.67765
Var(city(state))                    0                    0                    0
Var(Error)                  -29.67765                    0            445.14883


         Pure random effects with subsampling:  Health Awareness data         9
                    Estimate % of variance with proc nested
                                                 21:10 Sunday, October 24, 2004

                             The NESTED Procedure

                    Coefficients of Expected Mean Squares

                    Source      state      city      Error

                    state          15         5          1
                    city            0         5          1
                    Error           0         0          1



        Nested Random Effects Analysis of Variance for Variable aware

       Variance                    Sum of                         Error
       Source          DF         Squares    F Value    Pr > F    Term

       Total           44           11038
       state            2     6976.844444     124.88    <.0001    city
       city             6      167.600000       0.26    0.9526    Error

                        Nested Random Effects Analysis
                        of Variance for Variable aware

             Variance                        Variance     Percent
             Source       Mean Square       Component    of Total

             Total         250.855556      338.843704    100.0000
             state        3488.422222      230.699259     68.0843
             city           27.933333      -16.042222      0.0000



         Pure random effects with subsampling:  Health Awareness data        10
                    Estimate % of variance with proc nested
                                                 21:10 Sunday, October 24, 2004

                             The NESTED Procedure


        Nested Random Effects Analysis of Variance for Variable aware

       Variance                    Sum of                         Error
       Source          DF         Squares    F Value    Pr > F    Term

       Error           36     3893.200000

                        Nested Random Effects Analysis
                        of Variance for Variable aware

             Variance                        Variance     Percent
             Source       Mean Square       Component    of Total

             Error         108.144444      108.144444     31.9157


                aware Mean                         41.68888889
                Standard Error of aware Mean        8.80457233