STA429/1007 F 2004 Handout 15
Unidentified Models with SAS
/* path2a.sas */ options linesize=79 noovp formdlim='_'; title 'STA429f04 Path 2a: Non-identified Simple Regression with Meas Error'; title2 'Just try to fit the model'; data path1; infile 'path2.dat'; input x1 x2 y; proc calis cov pshort; /* Analyze the covariance matrix (Default is corr) */ var x1 y; /* Manifest vars are in the data set */ lineqs /* Simultaneous equations, separated by commas */ y = b F + e1, x1 = F + e2; std /* Variances (not standard deviations) */ F = sigsqF, /* Optional starting values in parentheses */ e1 = sigsqe1, e2 = sigsqe2; bounds 0.0 < sigsqF, 0.0 < sigsqe1, 0.0 < sigsqe2; /* path2b.sas */ options linesize=79 noovp formdlim='_'; title 'STA429f04 Path 2b: Identified Simple Regression with Meas Error'; title2 'Test H0: b=0'; data path1; infile 'path2.dat'; input x1 x2 y; proc calis cov; /* Analyze the covariance matrix (Default is corr) */ title3 'Full model'; var x1 x2 y; /* Manifest vars are in the data set */ lineqs /* Simultaneous equations, separated by commas */ y = b F + e1, x1 = F + e2, x2 = F + e3; std /* Variances (not standard deviations) */ F = sigsqF, /* Optional starting values in parentheses */ e1 = sigsqe1, e2 = sigsqe, e3 = sigsqe; bounds 0.0 < sigsqF, 0.0 < sigsqe, 0.0 < sigsqe1; proc calis cov; /* Analyze the covariance matrix (Default is corr) */ title3 'Reduced model'; var x1 x2 y; /* Manifest vars are in the data set */ lineqs /* Simultaneous equations, separated by commas */ y = b F + e1, x1 = F + e2, x2 = F + e3; std /* Variances (not standard deviations) */ F = sigsqF, /* Optional starting values in parentheses */ e1 = sigsqe1, e2 = sigsqe, e3 = sigsqe; bounds 0.0 < sigsqF, 0.0 < sigsqe, 0.0 < sigsqe1; lincon b=0; _______________________________________________________________________________ STA429f04 Path 2a: Non-identified Simple Regression with Meas Error 1 Just try to fit the model 00:07 Thursday, December 2, 2004 The CALIS Procedure Covariance Structure Analysis: Pattern and Initial Values LINEQS Model Statement Matrix Rows Columns ------Matrix Type------- Term 1 1 _SEL_ 2 5 SELECTION 2 _BETA_ 5 5 EQSBETA IMINUSINV 3 _GAMMA_ 5 3 EQSGAMMA 4 _PHI_ 3 3 SYMMETRIC The 2 Endogenous Variables Manifest x1 y Latent The 3 Exogenous Variables Manifest Latent F Error e1 e2 _______________________________________________________________________________ STA429f04 Path 2a: Non-identified Simple Regression with Meas Error 2 Just try to fit the model 00:07 Thursday, December 2, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Levenberg-Marquardt Optimization Scaling Update of More (1978) Parameter Estimates 4 Functions (Observations) 3 Lower Bounds 3 Upper Bounds 0 Optimization Start Active Constraints 0 Objective Function 0.0765191703 Max Abs Gradient Element 12.435221312 Radius 452.22765911 Actual Max Abs Over Rest Func Act Objective Obj Fun Gradient Pred Iter arts Calls Con Function Change Element Lambda Change 1 0 2 0 4.49913E-6 0.0765 0.1639 0 1.309 2* 0 3 0 1.5469E-13 4.499E-6 0.000031 111E-16 1.002 3 0 4 0 0 1.55E-13 1.28E-10 0 1.000 Optimization Results Iterations 3 Function Calls 5 Jacobian Calls 4 Active Constraints 0 Objective Function 0 Max Abs Gradient Element 1.280183E-10 Lambda 0 Actual Over Pred Change 0.9998970626 Radius 0.0002251807 GCONV2 convergence criterion satisfied. NOTE: Covariance matrix for the estimates is not full rank. NOTE: The variance of some parameter estimates is zero or some parameter estimates are linearly related to other parameter estimates as shown in the following equations: sigsqF = -283260 + 21760 * b - 170.062427 * sigsqe1 + 1.000000 * sigsqe2 _______________________________________________________________________________ STA429f04 Path 2a: Non-identified Simple Regression with Meas Error 3 Just try to fit the model 00:07 Thursday, December 2, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Fit Function 0.0000 Goodness of Fit Index (GFI) 1.0000 GFI Adjusted for Degrees of Freedom (AGFI) . Root Mean Square Residual (RMR) 0.0000 Parsimonious GFI (Mulaik, 1989) -1.0000 Chi-Square 0.0000 Chi-Square DF -1 Pr > Chi-Square . Independence Model Chi-Square 0.0013 Independence Model Chi-Square DF 1 RMSEA Estimate 0.0000 RMSEA 90% Lower Confidence Limit . RMSEA 90% Upper Confidence Limit . ECVI Estimate 0.0000 ECVI 90% Lower Confidence Limit . ECVI 90% Upper Confidence Limit . Probability of Close Fit . Bentler's Comparative Fit Index . Normal Theory Reweighted LS Chi-Square 0.0000 Akaike's Information Criterion 2.0000 Bozdogan's (1987) CAIC 6.2983 Schwarz's Bayesian Criterion 5.2983 McDonald's (1989) Centrality 0.9975 Bentler & Bonett's (1980) Non-normed Index . Bentler & Bonett's (1980) NFI 1.0000 James, Mulaik, & Brett (1982) Parsimonious NFI -1.0000 Z-Test of Wilson & Hilferty (1931) . Bollen (1986) Normed Index Rho1 . Bollen (1988) Non-normed Index Delta2 0.0013 Hoelter's (1983) Critical N . _______________________________________________________________________________ STA429f04 Path 2a: Non-identified Simple Regression with Meas Error 4 Just try to fit the model 00:07 Thursday, December 2, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Manifest Variable Equations with Estimates x1 = 1.0000 F + 1.0000 e2 y = 13.0408*F + 1.0000 e1 b Variances of Exogenous Variables Variable Parameter Estimate F sigsqF 0.0005993 e1 sigsqe1 3.01230 e2 sigsqe2 2.97844 _______________________________________________________________________________ STA429f04 Path 2a: Non-identified Simple Regression with Meas Error 5 Just try to fit the model 00:07 Thursday, December 2, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Manifest Variable Equations with Standardized Estimates x1 = 0.0142 F + 0.9999 e2 y = 0.1809*F + 0.9835 e1 b Squared Multiple Correlations Error Total Variable Variance Variance R-Square 1 x1 2.97844 2.97904 0.000201 2 y 3.01230 3.11421 0.0327 /* factor1.sas*/ options linesize=79 noovp formdlim='_'; title 'Three-variables and one factor using LINEQS'; data chain3; infile 'chain.dat'; input y1 y2 y3; proc calis cov pshort; title2 'Unidentified model'; var y1 y2 y3; /* Manifest vars are in the data set */ lineqs y1 = L1 F + e1, /* L stands for Loading */ y2 = L2 F + e2, y3 = L3 F + e3; std /* Variances not standard deviation */ e1 = sige1, e2 = sige2, e3 = sige3, F = 1; bounds -1.0 <= L1 <= 1.0, /* Because the loadings are correlations */ -1.0 <= L2 <= 1.0, -1.0 <= L3 <= 1.0; /* Now define functions of the parameters, functions that I am going to constrain in the nlincon statement. First name them and give (initial) numerical values. */ parameters vy1 vy2 vy3 (1.); vy1 = sige1 + L1**2; vy2 = sige2 + L2**2; vy3 = sige3 + L3**2; nlincon vy1 = 1, vy2 = 1 , vy3 = 1; proc calis cov pshort; title2 'Identified model 1'; var y1 y2 y3; /* Manifest vars are in the data set */ lineqs y1 = L1 F + e1, /* L stands for Loading */ y2 = L2 F + e2, y3 = L3 F + e3; std /* Variances not standard deviation */ e1 = sige1, e2 = sige2, e3 = sige3, F = 1; bounds 0.0 <= L1 <= 1.0, /* Make L1 Positive */ -1.0 <= L2 <= 1.0, -1.0 <= L3 <= 1.0; /* Now define functions of the parametes, functions that I am going to constrain in the nlincon statement. First name them and give (initial) numerical values. */ parameters vy1 vy2 vy3 (1.); vy1 = sige1 + L1**2; vy2 = sige2 + L2**2; vy3 = sige3 + L3**2; nlincon vy1 = 1, vy2 = 1 , vy3 = 1; proc calis cov pshort; title2 'Identified model 2'; var y1 y2 y3; /* Manifest vars are in the data set */ lineqs y1 = L1 F + e1, /* L stands for Loading */ y2 = L2 F + e2, y3 = L3 F + e3; std /* Variances not standard deviation */ e1 = sige1, e2 = sige2, e3 = sige3, F = 1; bounds -1.0 <= L1 <= 1.0, -1.0 <= L2 <= 1.0, 0.0 <= L3 <= 1.0; /* Make L3 Positive */ /* Now define functions of the parametes, functions that I am going to constrain in the nlincon statement. First name them and give (initial) numerical values. */ parameters vy1 vy2 vy3 (1.); vy1 = sige1 + L1**2; vy2 = sige2 + L2**2; vy3 = sige3 + L3**2; nlincon vy1 = 1, vy2 = 1 , vy3 = 1; _______________________________________________________________________________ Three-variables and one factor using LINEQS 1 Unidentified model 22:55 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Pattern and Initial Values LINEQS Model Statement Matrix Rows Columns ------Matrix Type------- Term 1 1 _SEL_ 3 7 SELECTION 2 _BETA_ 7 7 EQSBETA IMINUSINV 3 _GAMMA_ 7 4 EQSGAMMA 4 _PHI_ 4 4 SYMMETRIC The 3 Endogenous Variables Manifest y1 y2 y3 Latent The 4 Exogenous Variables Manifest Latent F Error e1 e2 e3 _______________________________________________________________________________ Three-variables and one factor using LINEQS 2 Unidentified model 22:55 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation NOTE: Initial point was changed to be feasible for boundary and linear constraints. _______________________________________________________________________________ Three-variables and one factor using LINEQS 3 Unidentified model 22:55 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Dual Quasi-Newton Optimization Modified VMCWD Algorithm of Powell (1978, 1982) Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS) Lagrange Multiplier Update of Powell(1982) Parameter Estimates 6 Functions (Observations) 6 Lower Bounds 3 Upper Bounds 3 Nonlinear Constraints 3 Nonlinear Equality Constraints 3 Optimization Start Objective Function 0.9685074192 Maximum Constraint 0.0001388008 Violation Maximum Gradient of the 0.7932665457 Lagran Func Maximum Gradient Element Maximum Predicted of the Function Objective Constraint Function Step Lagrange Iter Restarts Calls Function Violation Reduction Size Function 1 0 15 0.47335 0.6293 0.4388 1.000 0.974 2 0 16 0.59895 0.1015 0.1114 1.000 0.259 3 0 17 0.56294 0.0149 0.0730 1.000 0.216 4 0 19 0.54488 0.0107 0.0319 0.479 0.0374 5 0 20 0.56087 0.000218 0.000237 1.000 0.0170 6 0 21 0.56071 0.000036 0.00126 1.000 0.0154 7* 0 22 0.55802 0.00121 0.00192 1.000 0.0318 8 0 24 0.55762 0.00114 0.00285 0.306 0.0361 9* 0 25 0.54663 0.00744 0.0212 1.000 0.0597 10 0 26 0.55637 0.000432 0.00193 1.000 0.0260 11 0 27 0.55373 0.00212 0.00224 1.000 0.0108 12* 0 28 0.54473 0.00911 0.0184 1.000 0.0359 13 0 29 0.55374 0.000046 0.00104 1.000 0.0167 14* 0 30 0.54887 0.00482 0.00810 1.000 0.0153 15* 0 31 0.55153 0.00134 0.00237 1.000 0.0252 16 0 32 0.55271 0.000019 0.000038 1.000 0.00244 17 0 33 0.55272 4.118E-7 3.859E-7 1.000 0.00012 Optimization Results Iterations 17 Function Calls 35 Gradient Calls 20 Active Constraints 4 Objective Function 0.5527247315 Maximum Constraint 4.1183614E-7 Violation _______________________________________________________________________________ Three-variables and one factor using LINEQS 4 Unidentified model 22:55 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Optimization Results Maximum Projected 0.0001202793 Value Lagrange Function 0.5527249264 Gradient Maximum Gradient of the 0.0001179179 Slope of Search Direction -3.859116E-7 Lagran Func FCONV2 convergence criterion satisfied. WARNING: The point x is feasible only at the LCEPSILON= 1E-6 range. WARNING: There are 4 active constraints at the solution. The standard errors and Chi-Square test statistic assume the solution is located in the interior of the parameter space and hence do not apply if it is likely that some different set of inequality constraints could be active. NOTE: The degrees of freedom are increased by the number of active constraints (see Dijkstra, 1992). The number of parameters in calculating fit indices is decreased by the number of active constraints. To turn off the adjustment, use the NOADJDF option. _______________________________________________________________________________ Three-variables and one factor using LINEQS 5 Unidentified model 22:55 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Fit Function 0.5527 Goodness of Fit Index (GFI) 0.7842 GFI Adjusted for Degrees of Freedom (AGFI) 0.6763 Root Mean Square Residual (RMR) 0.6535 Parsimonious GFI (Mulaik, 1989) 1.0456 Chi-Square 109.9922 Chi-Square DF 4 Pr > Chi-Square <.0001 Independence Model Chi-Square 65.979 Independence Model Chi-Square DF 3 RMSEA Estimate 0.3649 RMSEA 90% Lower Confidence Limit 0.3079 RMSEA 90% Upper Confidence Limit 0.4253 ECVI Estimate 0.5732 ECVI 90% Lower Confidence Limit 0.4184 ECVI 90% Upper Confidence Limit 0.7662 Probability of Close Fit 0.0000 Bentler's Comparative Fit Index -0.6830 Normal Theory Reweighted LS Chi-Square 186.5728 Akaike's Information Criterion 101.9922 Bozdogan's (1987) CAIC 84.7990 Schwarz's Bayesian Criterion 88.7990 McDonald's (1989) Centrality 0.7672 Bentler & Bonett's (1980) Non-normed Index -0.2622 Bentler & Bonett's (1980) NFI -0.6671 James, Mulaik, & Brett (1982) Parsimonious NFI -0.8895 Z-Test of Wilson & Hilferty (1931) 8.7988 Bollen (1986) Normed Index Rho1 -0.2503 Bollen (1988) Non-normed Index Delta2 -0.7101 Hoelter's (1983) Critical N 19 WARNING: The central parameter matrix _PHI_ has probably 1 zero eigenvalue(s). _______________________________________________________________________________ Three-variables and one factor using LINEQS 6 Unidentified model 22:55 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Manifest Variable Equations with Estimates y1 = 0.1006*F + 1.0000 e1 L1 y2 = -0.3740*F + 1.0000 e2 L2 y3 = -1.0000*F + 1.0000 e3 L3 Variances of Exogenous Variables Variable Parameter Estimate F 1.00000 e1 sige1 0.98989 e2 sige2 0.86015 e3 sige3 -4.215E-11 _______________________________________________________________________________ Three-variables and one factor using LINEQS 7 Unidentified model 22:55 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Manifest Variable Equations with Standardized Estimates y1 = 0.1006*F + 0.9949 e1 L1 y2 = -0.3740*F + 0.9274 e2 L2 y3 = -1.0000*F + 1.0000 e3 L3 Squared Multiple Correlations Error Total Variable Variance Variance R-Square 1 y1 0.98989 1.00000 0.0101 2 y2 0.86015 1.00000 0.1398 3 y3 -4.215E-11 1.00000 1.0000 _______________________________________________________________________________ Three-variables and one factor using LINEQS 8 Identified model 1 22:55 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Pattern and Initial Values LINEQS Model Statement Matrix Rows Columns ------Matrix Type------- Term 1 1 _SEL_ 3 7 SELECTION 2 _BETA_ 7 7 EQSBETA IMINUSINV 3 _GAMMA_ 7 4 EQSGAMMA 4 _PHI_ 4 4 SYMMETRIC The 3 Endogenous Variables Manifest y1 y2 y3 Latent The 4 Exogenous Variables Manifest Latent F Error e1 e2 e3 _______________________________________________________________________________ Three-variables and one factor using LINEQS 9 Identified model 1 22:55 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation NOTE: Initial point was changed to be feasible for boundary and linear constraints. _______________________________________________________________________________ Three-variables and one factor using LINEQS 10 Identified model 1 22:55 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Dual Quasi-Newton Optimization Modified VMCWD Algorithm of Powell (1978, 1982) Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS) Lagrange Multiplier Update of Powell(1982) Parameter Estimates 6 Functions (Observations) 6 Lower Bounds 3 Upper Bounds 3 Nonlinear Constraints 3 Nonlinear Equality Constraints 3 Optimization Start Objective Function 0.9685074192 Maximum Constraint 0.0001388008 Violation Maximum Gradient of the 0.7932665457 Lagran Func Maximum Gradient Element Maximum Predicted of the Function Objective Constraint Function Step Lagrange Iter Restarts Calls Function Violation Reduction Size Function 1 0 15 0.47335 0.6293 0.4388 1.000 0.974 2 0 16 0.59895 0.1015 0.1114 1.000 0.259 3 0 17 0.56294 0.0149 0.0730 1.000 0.216 4 0 19 0.54488 0.0107 0.0319 0.479 0.0374 5 0 20 0.56087 0.000218 0.000237 1.000 0.0170 6 0 21 0.56071 0.000036 0.00126 1.000 0.0154 7* 0 22 0.55802 0.00121 0.00192 1.000 0.0318 8 0 24 0.55762 0.00114 0.00285 0.306 0.0361 9* 0 25 0.54663 0.00744 0.0212 1.000 0.0597 10 0 26 0.55637 0.000432 0.00193 1.000 0.0260 11 0 27 0.55373 0.00212 0.00224 1.000 0.0108 12* 0 28 0.54473 0.00911 0.0184 1.000 0.0359 13 0 29 0.55374 0.000046 0.00104 1.000 0.0167 14* 0 30 0.54887 0.00482 0.00810 1.000 0.0153 15* 0 31 0.55153 0.00134 0.00237 1.000 0.0252 16 0 32 0.55271 0.000019 0.000038 1.000 0.00244 17 0 33 0.55272 4.118E-7 3.859E-7 1.000 0.00012 Optimization Results Iterations 17 Function Calls 35 Gradient Calls 20 Active Constraints 4 Objective Function 0.5527247315 Maximum Constraint 4.1183614E-7 Violation _______________________________________________________________________________ Three-variables and one factor using LINEQS 11 Identified model 1 22:55 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Optimization Results Maximum Projected 0.0001202793 Value Lagrange Function 0.5527249264 Gradient Maximum Gradient of the 0.0001179179 Slope of Search Direction -3.859116E-7 Lagran Func FCONV2 convergence criterion satisfied. WARNING: The point x is feasible only at the LCEPSILON= 1E-6 range. WARNING: There are 4 active constraints at the solution. The standard errors and Chi-Square test statistic assume the solution is located in the interior of the parameter space and hence do not apply if it is likely that some different set of inequality constraints could be active. NOTE: The degrees of freedom are increased by the number of active constraints (see Dijkstra, 1992). The number of parameters in calculating fit indices is decreased by the number of active constraints. To turn off the adjustment, use the NOADJDF option. _______________________________________________________________________________ Three-variables and one factor using LINEQS 12 Identified model 1 22:55 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Fit Function 0.5527 Goodness of Fit Index (GFI) 0.7842 GFI Adjusted for Degrees of Freedom (AGFI) 0.6763 Root Mean Square Residual (RMR) 0.6535 Parsimonious GFI (Mulaik, 1989) 1.0456 Chi-Square 109.9922 Chi-Square DF 4 Pr > Chi-Square <.0001 Independence Model Chi-Square 65.979 Independence Model Chi-Square DF 3 RMSEA Estimate 0.3649 RMSEA 90% Lower Confidence Limit 0.3079 RMSEA 90% Upper Confidence Limit 0.4253 ECVI Estimate 0.5732 ECVI 90% Lower Confidence Limit 0.4184 ECVI 90% Upper Confidence Limit 0.7662 Probability of Close Fit 0.0000 Bentler's Comparative Fit Index -0.6830 Normal Theory Reweighted LS Chi-Square 186.5728 Akaike's Information Criterion 101.9922 Bozdogan's (1987) CAIC 84.7990 Schwarz's Bayesian Criterion 88.7990 McDonald's (1989) Centrality 0.7672 Bentler & Bonett's (1980) Non-normed Index -0.2622 Bentler & Bonett's (1980) NFI -0.6671 James, Mulaik, & Brett (1982) Parsimonious NFI -0.8895 Z-Test of Wilson & Hilferty (1931) 8.7988 Bollen (1986) Normed Index Rho1 -0.2503 Bollen (1988) Non-normed Index Delta2 -0.7101 Hoelter's (1983) Critical N 19 WARNING: The central parameter matrix _PHI_ has probably 1 zero eigenvalue(s). _______________________________________________________________________________ Three-variables and one factor using LINEQS 13 Identified model 1 22:55 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Manifest Variable Equations with Estimates y1 = 0.1006*F + 1.0000 e1 L1 y2 = -0.3740*F + 1.0000 e2 L2 y3 = -1.0000*F + 1.0000 e3 L3 Variances of Exogenous Variables Variable Parameter Estimate F 1.00000 e1 sige1 0.98989 e2 sige2 0.86015 e3 sige3 -4.215E-11 _______________________________________________________________________________ Three-variables and one factor using LINEQS 14 Identified model 1 22:55 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Manifest Variable Equations with Standardized Estimates y1 = 0.1006*F + 0.9949 e1 L1 y2 = -0.3740*F + 0.9274 e2 L2 y3 = -1.0000*F + 1.0000 e3 L3 Squared Multiple Correlations Error Total Variable Variance Variance R-Square 1 y1 0.98989 1.00000 0.0101 2 y2 0.86015 1.00000 0.1398 3 y3 -4.215E-11 1.00000 1.0000 _______________________________________________________________________________ Three-variables and one factor using LINEQS 15 Identified model 2 22:55 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Pattern and Initial Values LINEQS Model Statement Matrix Rows Columns ------Matrix Type------- Term 1 1 _SEL_ 3 7 SELECTION 2 _BETA_ 7 7 EQSBETA IMINUSINV 3 _GAMMA_ 7 4 EQSGAMMA 4 _PHI_ 4 4 SYMMETRIC The 3 Endogenous Variables Manifest y1 y2 y3 Latent The 4 Exogenous Variables Manifest Latent F Error e1 e2 e3 _______________________________________________________________________________ Three-variables and one factor using LINEQS 16 Identified model 2 22:55 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation NOTE: Initial point was changed to be feasible for boundary and linear constraints. _______________________________________________________________________________ Three-variables and one factor using LINEQS 17 Identified model 2 22:55 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Dual Quasi-Newton Optimization Modified VMCWD Algorithm of Powell (1978, 1982) Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS) Lagrange Multiplier Update of Powell(1982) Parameter Estimates 6 Functions (Observations) 6 Lower Bounds 3 Upper Bounds 3 Nonlinear Constraints 3 Nonlinear Equality Constraints 3 Optimization Start Objective Function 1.5265896183 Maximum Constraint 0.0000825999 Violation Maximum Gradient of the 2.5393371004 Lagran Func Maximum Gradient Element Maximum Predicted of the Function Objective Constraint Function Step Lagrange Iter Restarts Calls Function Violation Reduction Size Function 1 0 18 0.29691 0.5188 1.0001 0.589 1.456 2 0 19 0.58904 0.0472 0.0692 1.000 0.579 3 0 20 0.57891 0.00570 0.0749 1.000 0.391 4 0 21 0.53572 0.0204 0.0377 1.000 0.161 5 0 22 0.55329 0.00168 0.00360 1.000 0.0143 6 0 23 0.55507 9.889E-6 0.000030 1.000 0.00784 7' 0 24 0.55506 2.856E-6 0.000498 1.000 0.00725 8* 0 25 0.55406 0.000736 0.00103 1.000 0.0185 9 0 27 0.55380 0.000777 0.00309 0.207 0.0213 10 0 29 0.55343 0.000916 0.00337 0.100 0.0227 11 0 31 0.55312 0.000999 0.00309 0.100 0.0216 12 0 33 0.55288 0.00104 0.00253 0.100 0.0193 13 0 35 0.55267 0.00107 0.00199 0.111 0.0162 14 0 37 0.55248 0.00108 0.00152 0.127 0.0123 15 0 39 0.55233 0.00107 0.00152 0.150 0.00791 16* 0 40 0.54817 0.00500 0.00937 1.000 0.0387 17 0 41 0.55276 0.000080 0.000149 1.000 0.0216 18 0 42 0.55268 0.000080 0.000089 1.000 0.00785 19 0 43 0.55272 1.923E-6 4.318E-6 1.000 0.00050 20 0 44 0.55272 1.375E-8 8.01E-9 1.000 0.00004 _______________________________________________________________________________ Three-variables and one factor using LINEQS 18 Identified model 2 22:55 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Optimization Results Iterations 20 Function Calls 46 Gradient Calls 23 Active Constraints 4 Objective Function 0.5527249205 Maximum Constraint 1.3749371E-8 Violation Maximum Projected 0.0000425824 Value Lagrange Function 0.5527249249 Gradient Maximum Gradient of the 0.000041746 Slope of Search Direction -8.009844E-9 Lagran Func FCONV2 convergence criterion satisfied. WARNING: The point x is feasible only at the LCEPSILON= 1E-7 range. WARNING: There are 4 active constraints at the solution. The standard errors and Chi-Square test statistic assume the solution is located in the interior of the parameter space and hence do not apply if it is likely that some different set of inequality constraints could be active. NOTE: The degrees of freedom are increased by the number of active constraints (see Dijkstra, 1992). The number of parameters in calculating fit indices is decreased by the number of active constraints. To turn off the adjustment, use the NOADJDF option. _______________________________________________________________________________ Three-variables and one factor using LINEQS 19 Identified model 2 22:55 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Fit Function 0.5527 Goodness of Fit Index (GFI) 0.7842 GFI Adjusted for Degrees of Freedom (AGFI) 0.6763 Root Mean Square Residual (RMR) 0.6535 Parsimonious GFI (Mulaik, 1989) 1.0456 Chi-Square 109.9923 Chi-Square DF 4 Pr > Chi-Square <.0001 Independence Model Chi-Square 65.979 Independence Model Chi-Square DF 3 RMSEA Estimate 0.3649 RMSEA 90% Lower Confidence Limit 0.3079 RMSEA 90% Upper Confidence Limit 0.4253 ECVI Estimate 0.5732 ECVI 90% Lower Confidence Limit 0.4184 ECVI 90% Upper Confidence Limit 0.7662 Probability of Close Fit 0.0000 Bentler's Comparative Fit Index -0.6830 Normal Theory Reweighted LS Chi-Square 186.5722 Akaike's Information Criterion 101.9923 Bozdogan's (1987) CAIC 84.7990 Schwarz's Bayesian Criterion 88.7990 McDonald's (1989) Centrality 0.7672 Bentler & Bonett's (1980) Non-normed Index -0.2622 Bentler & Bonett's (1980) NFI -0.6671 James, Mulaik, & Brett (1982) Parsimonious NFI -0.8895 Z-Test of Wilson & Hilferty (1931) 8.7988 Bollen (1986) Normed Index Rho1 -0.2503 Bollen (1988) Non-normed Index Delta2 -0.7101 Hoelter's (1983) Critical N 19 WARNING: The central parameter matrix _PHI_ has probably 1 zero eigenvalue(s). _______________________________________________________________________________ Three-variables and one factor using LINEQS 20 Identified model 2 22:55 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Manifest Variable Equations with Estimates y1 = -0.1006*F + 1.0000 e1 L1 y2 = 0.3740*F + 1.0000 e2 L2 y3 = 1.0000*F + 1.0000 e3 L3 Variances of Exogenous Variables Variable Parameter Estimate F 1.00000 e1 sige1 0.98988 e2 sige2 0.86015 e3 sige3 -4.215E-11 _______________________________________________________________________________ Three-variables and one factor using LINEQS 21 Identified model 2 22:55 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Manifest Variable Equations with Standardized Estimates y1 = -0.1006*F + 0.9949 e1 L1 y2 = 0.3740*F + 0.9274 e2 L2 y3 = 1.0000*F + 1.0000 e3 L3 Squared Multiple Correlations Error Total Variable Variance Variance R-Square 1 y1 0.98988 1.00000 0.0101 2 y2 0.86015 1.00000 0.1399 3 y3 -4.215E-11 1.00000 1.0000 _______________________________________________________________________________ Three-variables and one factor using LINEQS 22 Try it with Factor 22:55 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Pattern and Initial Values FACTOR Model Statement Matrix Rows Columns ------Matrix Type------- Term 1 1 _F_ 3 1 GENERAL 2 _P_ 1 1 SYMMETRIC Term 2 3 _U_ 3 3 SYMMETRIC _______________________________________________________________________________ Three-variables and one factor using LINEQS 23 Try it with Factor 22:55 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Levenberg-Marquardt Optimization Scaling Update of More (1978) Parameter Estimates 6 Functions (Observations) 6 Optimization Start Active Constraints 0 Objective Function 0.0496168138 Max Abs Gradient Element 0.2356045213 Radius 1 Actual Max Abs Over Rest Func Act Objective Obj Fun Gradient Pred Iter arts Calls Con Function Change Element Lambda Change 1 0 2 0 0.03439 0.0152 0.2565 0 0.316 2 0 3 0 0.00263 0.0318 0.1734 0 1.104 3 0 4 0 4.97854E-7 0.00263 0.00268 0 1.050 4 0 5 0 0 4.979E-7 2.071E-8 0 1.001 Optimization Results Iterations 4 Function Calls 6 Jacobian Calls 5 Active Constraints 0 Objective Function 0 Max Abs Gradient Element 2.0706604E-8 Lambda 0 Actual Over Pred Change 1.0006655111 Radius 0.0023771506 GCONV2 convergence criterion satisfied. _______________________________________________________________________________ Three-variables and one factor using LINEQS 24 Try it with Factor 22:55 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Fit Function 0.0000 Goodness of Fit Index (GFI) 1.0000 GFI Adjusted for Degrees of Freedom (AGFI) . Root Mean Square Residual (RMR) 0.0000 Parsimonious GFI (Mulaik, 1989) 0.0000 Chi-Square 0.0000 Chi-Square DF 0 Pr > Chi-Square <.0001 Independence Model Chi-Square 65.979 Independence Model Chi-Square DF 3 RMSEA Estimate 0.0000 RMSEA 90% Lower Confidence Limit . RMSEA 90% Upper Confidence Limit . ECVI Estimate 0.0615 ECVI 90% Lower Confidence Limit . ECVI 90% Upper Confidence Limit . Probability of Close Fit . Bentler's Comparative Fit Index 1.0000 Normal Theory Reweighted LS Chi-Square 0.0000 Akaike's Information Criterion 0.0000 Bozdogan's (1987) CAIC 0.0000 Schwarz's Bayesian Criterion 0.0000 McDonald's (1989) Centrality 1.0000 Bentler & Bonett's (1980) Non-normed Index . Bentler & Bonett's (1980) NFI 1.0000 James, Mulaik, & Brett (1982) Parsimonious NFI 0.0000 Z-Test of Wilson & Hilferty (1931) . Bollen (1986) Normed Index Rho1 . Bollen (1988) Non-normed Index Delta2 1.0000 Hoelter's (1983) Critical N . WARNING: The central parameter matrix _U_ has probably 1 negative eigenvalue(s). Estimated Parameter Matrix _P_[1:1] Identity Matrix Constant Model Matrix _______________________________________________________________________________ Three-variables and one factor using LINEQS 25 Try it with Factor 22:55 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Estimated Parameter Matrix _F_[3:1] Lower Triangular Matrix FACT1 y1 -0.1096 [_F1] y2 0.4147 [_F2] y3 1.2479 [_F3] _______________________________________________________________________________ Three-variables and one factor using LINEQS 26 Try it with Factor 22:55 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Estimated Parameter Matrix _U_[3:3] Diagonal Matrix UVAR1 UVAR2 UVAR3 y1 0.9880 0 0 [_U1] y2 0 0.8280 0 [_U2] y3 0 0 -0.5574 [_U3] _______________________________________________________________________________ Three-variables and one factor using LINEQS 27 Try it with Factor 22:55 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Standardized Factor Loadings FACT1 y1 -0.1096 y2 0.4147 y3 1.2479 Squared Multiple Correlations Error Total Variable Variance Variance R-Square 1 y1 0.98799 1.00000 0.0120 2 y2 0.82801 1.00000 0.1720 3 y3 -0.55736 1.00000 1.5574 Factor Score Regression Coefficients FACT1 y1 0.0705 y2 -0.3182 y3 1.4222