STA429/1007 F 2004 Handout 14
Structural Equation Models with proc calis
In the classical structural equation models, where everything is normal with expected value zero (accomplished by centering all variables by subtracting off the mean), there is a "saturated model" -- one that imposes no constraints on the variance-covariance matrix of the manifest variables, other than the obscure constraints implied by multivariate normal distribution. The saturated model is most easily estimated by just estimating all the population varianes and covariances by the corresponding sample quantities. For any data set, there are infinitely many potential saturated models. They all have the same number of parameters as the number of variances and covariances of manifest variables, and their parameters are one-to-one functions of the variances and covariances. Each member of this class of saturated models has the same -2 log likelihood. In other words, they are all equivalent, and they all fit the data equally well. Rather than minimizing -2 Likelihood (equivalent to maximizing the likelihood), proc calis does something else equivalent; it minimizes
Once this quantity is minimized over the set of parameters, the parameter values at which the minimum occurs are the Maximum Likelihood Estimates.
In the output, the minimum value is called either the "objective function" or the "fit function," depending on where you look. The number called objective function is preferable, because it is displayed to more decimal places of accuracy. Multiply it by n, and you get a likelihood ratio test for goodness of fit, comparing the specified model to the saturated model.
So the likelihood ratio test for goodness of fit is
and the degrees of freedom for the test are
where there are p manifest variables and k parameters in the model.
To compare a full and a reduced model, you can use the difference of the chisquare values for goodness of fit, with degrees of freedom equal to the difference in degrees of freedom. The result is a classical likelihood ratio test. There is another way to get a chisquare test for goodness of fit. In the massive table of fit information, the value labelled "Chi-square" is
(n - 1) Chi-square = -------- * G n
I have no idea why they multiply by (n-1)/n. Of course, since these are large-sample likelihood ratio tests, the effect of this multiplier is negligible, and the result is still a valid chi-square test -- a bit more conservative than the standard one. It's convenient, too, because it comes with a p-value. And as you might expect, the difference between Chi-square values for a full and a reduced model is also a valid chisquare test, with df equal to the diference in degrees of freedom.
There's one more useful test that is given by default. The "Independence Model Chi-Square" compares the saturated model to one that has zero covariances (no relationship at all) among all the variables. It is a simultaneous test for all the covariances (or equivalently, all the correlations) among manifest variables. If it's not significant, then there's not much point in fitting a structural equation model.
/* chain3.sas*/ options linesize=79 noovp formdlim='_'; title 'Three-var chain model'; data chain3; infile 'chain.dat'; input y1 y2 y3; proc calis cov pshort simple; title2 'Full (unrestricted) Model: y1 -> y2 -> y3'; var y1 y2 y3; /* Manifest vars in the data set */ lineqs y2 = b1 y1 + e1, y3 = b2 y2 + e2; std /* Variances not standard deviation */ y1 = sigy1, e1 = sigee1, e2 = sigee2; /* cov statement is unnecessary */ cov /* Covariances */ y1 e1 = 0, y1 e2 = 0, e1 e2 = 0; bounds 0.0 < sigy1, 0.0 < sigee1, 0.0 < sigee2; proc calis cov pshort; title2 'Full (unrestricted) Model: y3 -> y2 -> y1'; var y1 y2 y3; /* Manifest vars are in the data set */ lineqs y2 = b1 y1 + e1, y3 = b2 y2 + e2; std /* Variances not standard deviation */ y1 = sigy1, e1 = sigee1, e2 = sigee2; /* cov statement is unnecessary */ cov /* Covariances */ y1 e1 = 0, y1 e2 = 0, e1 e2 = 0; bounds 0.0 < sigy1, 0.0 < sigee1, 0.0 < sigee2; proc calis cov pshort; title2 'Reduced Model: y1 -> y2 y3'; var y1 y2 y3; /* Manifest vars are in the data set */ lineqs y2 = b1 y1 + e1, y3 = b2 y2 + e2; std /* Variances not standard deviation */ y1 = sigy1, e1 = sigee1, e2 = sigee2; /* cov statement is unnecessary */ cov /* Covariances */ y1 e1 = 0, y1 e2 = 0, e1 e2 = 0; bounds 0.0 < sigy1, 0.0 < sigee1, 0.0 < sigee2; lincon b2=0; /* Linear constraints separated by commas. The independence model would be lincon b1=0 b2=0; */ _______________________________________________________________________________ Three-var chain model 1 Full (unrestricted) Model: y1 -> y2 -> y3 20:39 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Pattern and Initial Values LINEQS Model Statement Matrix Rows Columns ------Matrix Type------- Term 1 1 _SEL_ 3 5 SELECTION 2 _BETA_ 5 5 EQSBETA IMINUSINV 3 _GAMMA_ 5 3 EQSGAMMA 4 _PHI_ 3 3 SYMMETRIC The 2 Endogenous Variables Manifest y2 y3 Latent The 3 Exogenous Variables Manifest y1 Latent Error e1 e2 _______________________________________________________________________________ Three-var chain model 2 Full (unrestricted) Model: y1 -> y2 -> y3 20:39 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Observations 200 Model Terms 1 Variables 3 Model Matrices 4 Informations 6 Parameters 5 Variable Mean Std Dev y1 0.07600 1.07182 y2 -0.09045 1.47679 y3 0.03195 1.35460 _______________________________________________________________________________ Three-var chain model 3 Full (unrestricted) Model: y1 -> y2 -> y3 20:39 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Levenberg-Marquardt Optimization Scaling Update of More (1978) Parameter Estimates 5 Functions (Observations) 6 Lower Bounds 3 Upper Bounds 0 Optimization Start Active Constraints 0 Objective Function 2.2667947436 Max Abs Gradient Element 0.7827946588 Radius 1 Actual Max Abs Over Rest Func Act Objective Obj Fun Gradient Pred Iter arts Calls Con Function Change Element Lambda Change 1 0 2 0 1.42926 0.8375 0.1975 0.338 1.000 2 0 3 0 0.09884 1.3304 0.1695 0 3.263 3 0 4 0 0.01771 0.0811 2.93E-16 0 1.320 Optimization Results Iterations 3 Function Calls 5 Jacobian Calls 4 Active Constraints 0 Objective Function 0.0177065358 Max Abs Gradient Element 2.925504E-16 Lambda 0 Actual Over Pred Change 1.3197130985 Radius 0.7012876847 ABSGCONV convergence criterion satisfied. _______________________________________________________________________________ Three-var chain model 4 Full (unrestricted) Model: y1 -> y2 -> y3 20:39 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Fit Function 0.0177 Goodness of Fit Index (GFI) 0.9884 GFI Adjusted for Degrees of Freedom (AGFI) 0.9306 Root Mean Square Residual (RMR) 0.0671 Parsimonious GFI (Mulaik, 1989) 0.3295 Chi-Square 3.5236 Chi-Square DF 1 Pr > Chi-Square 0.0605 Independence Model Chi-Square 65.979 Independence Model Chi-Square DF 3 RMSEA Estimate 0.1126 RMSEA 90% Lower Confidence Limit . RMSEA 90% Upper Confidence Limit 0.2497 ECVI Estimate 0.0690 ECVI 90% Lower Confidence Limit . ECVI 90% Upper Confidence Limit 0.1193 Probability of Close Fit 0.1255 Bentler's Comparative Fit Index 0.9599 Normal Theory Reweighted LS Chi-Square 3.4926 Akaike's Information Criterion 1.5236 Bozdogan's (1987) CAIC -2.7747 Schwarz's Bayesian Criterion -1.7747 McDonald's (1989) Centrality 0.9937 Bentler & Bonett's (1980) Non-normed Index 0.8798 Bentler & Bonett's (1980) NFI 0.9466 James, Mulaik, & Brett (1982) Parsimonious NFI 0.3155 Z-Test of Wilson & Hilferty (1931) 1.5781 Bollen (1986) Normed Index Rho1 0.8398 Bollen (1988) Non-normed Index Delta2 0.9612 Hoelter's (1983) Critical N 218 _______________________________________________________________________________ Three-var chain model 5 Full (unrestricted) Model: y1 -> y2 -> y3 20:39 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Manifest Variable Equations with Estimates y2 = -0.0626*y1 + 1.0000 e1 b1 y3 = 0.4747*y2 + 1.0000 e2 b2 Variances of Exogenous Variables Variable Parameter Estimate y1 sigy1 1.14880 e1 sigee1 2.17641 e2 sigee2 1.34344 _______________________________________________________________________________ Three-var chain model 6 Full (unrestricted) Model: y1 -> y2 -> y3 20:39 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Manifest Variable Equations with Standardized Estimates y2 = -0.0454*y1 + 0.9990 e1 b1 y3 = 0.5175*y2 + 0.8557 e2 b2 Squared Multiple Correlations Error Total Variable Variance Variance R-Square 1 y2 2.17641 2.18091 0.00207 2 y3 1.34344 1.83494 0.2679 _______________________________________________________________________________ Three-var chain model 7 Full (unrestricted) Model: y3 -> y2 -> y1 20:39 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Pattern and Initial Values LINEQS Model Statement Matrix Rows Columns ------Matrix Type------- Term 1 1 _SEL_ 3 5 SELECTION 2 _BETA_ 5 5 EQSBETA IMINUSINV 3 _GAMMA_ 5 3 EQSGAMMA 4 _PHI_ 3 3 SYMMETRIC The 2 Endogenous Variables Manifest y2 y3 Latent The 3 Exogenous Variables Manifest y1 Latent Error e1 e2 _______________________________________________________________________________ Three-var chain model 8 Full (unrestricted) Model: y3 -> y2 -> y1 20:39 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Levenberg-Marquardt Optimization Scaling Update of More (1978) Parameter Estimates 5 Functions (Observations) 6 Lower Bounds 3 Upper Bounds 0 Optimization Start Active Constraints 0 Objective Function 2.2667947436 Max Abs Gradient Element 0.7827946588 Radius 1 Actual Max Abs Over Rest Func Act Objective Obj Fun Gradient Pred Iter arts Calls Con Function Change Element Lambda Change 1 0 2 0 1.42926 0.8375 0.1975 0.338 1.000 2 0 3 0 0.09884 1.3304 0.1695 0 3.263 3 0 4 0 0.01771 0.0811 2.93E-16 0 1.320 Optimization Results Iterations 3 Function Calls 5 Jacobian Calls 4 Active Constraints 0 Objective Function 0.0177065358 Max Abs Gradient Element 2.925504E-16 Lambda 0 Actual Over Pred Change 1.3197130985 Radius 0.7012876847 ABSGCONV convergence criterion satisfied. _______________________________________________________________________________ Three-var chain model 9 Full (unrestricted) Model: y3 -> y2 -> y1 20:39 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Fit Function 0.0177 Goodness of Fit Index (GFI) 0.9884 GFI Adjusted for Degrees of Freedom (AGFI) 0.9306 Root Mean Square Residual (RMR) 0.0671 Parsimonious GFI (Mulaik, 1989) 0.3295 Chi-Square 3.5236 Chi-Square DF 1 Pr > Chi-Square 0.0605 Independence Model Chi-Square 65.979 Independence Model Chi-Square DF 3 RMSEA Estimate 0.1126 RMSEA 90% Lower Confidence Limit . RMSEA 90% Upper Confidence Limit 0.2497 ECVI Estimate 0.0690 ECVI 90% Lower Confidence Limit . ECVI 90% Upper Confidence Limit 0.1193 Probability of Close Fit 0.1255 Bentler's Comparative Fit Index 0.9599 Normal Theory Reweighted LS Chi-Square 3.4926 Akaike's Information Criterion 1.5236 Bozdogan's (1987) CAIC -2.7747 Schwarz's Bayesian Criterion -1.7747 McDonald's (1989) Centrality 0.9937 Bentler & Bonett's (1980) Non-normed Index 0.8798 Bentler & Bonett's (1980) NFI 0.9466 James, Mulaik, & Brett (1982) Parsimonious NFI 0.3155 Z-Test of Wilson & Hilferty (1931) 1.5781 Bollen (1986) Normed Index Rho1 0.8398 Bollen (1988) Non-normed Index Delta2 0.9612 Hoelter's (1983) Critical N 218 _______________________________________________________________________________ Three-var chain model 10 Full (unrestricted) Model: y3 -> y2 -> y1 20:39 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Manifest Variable Equations with Estimates y2 = -0.0626*y1 + 1.0000 e1 b1 y3 = 0.4747*y2 + 1.0000 e2 b2 Variances of Exogenous Variables Variable Parameter Estimate y1 sigy1 1.14880 e1 sigee1 2.17641 e2 sigee2 1.34344 _______________________________________________________________________________ Three-var chain model 11 Full (unrestricted) Model: y3 -> y2 -> y1 20:39 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Manifest Variable Equations with Standardized Estimates y2 = -0.0454*y1 + 0.9990 e1 b1 y3 = 0.5175*y2 + 0.8557 e2 b2 Squared Multiple Correlations Error Total Variable Variance Variance R-Square 1 y2 2.17641 2.18091 0.00207 2 y3 1.34344 1.83494 0.2679 _______________________________________________________________________________ Three-var chain model 12 Reduced Model: y1 -> y2 y3 20:39 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Pattern and Initial Values LINEQS Model Statement Matrix Rows Columns ------Matrix Type------- Term 1 1 _SEL_ 3 5 SELECTION 2 _BETA_ 5 5 EQSBETA IMINUSINV 3 _GAMMA_ 5 3 EQSGAMMA 4 _PHI_ 3 3 SYMMETRIC The 2 Endogenous Variables Manifest y2 y3 Latent The 3 Exogenous Variables Manifest y1 Latent Error e1 e2 _______________________________________________________________________________ Three-var chain model 13 Reduced Model: y1 -> y2 y3 20:39 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation NOTE: Initial point was changed to be feasible for boundary and linear constraints. _______________________________________________________________________________ Three-var chain model 14 Reduced Model: y1 -> y2 y3 20:39 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Levenberg-Marquardt Optimization Scaling Update of More (1978) Parameter Estimates 5 Functions (Observations) 6 Lower Bounds 4 Upper Bounds 1 Optimization Start Active Constraints 1 Objective Function 1.4108855332 Max Abs Gradient Element 0.0672113951 Radius 1 Actual Max Abs Over Rest Func Act Objective Obj Fun Gradient Pred Iter arts Calls Con Function Change Element Lambda Change 1 0 2 1 0.32948 1.0814 2.94E-16 0 2.952 Optimization Results Iterations 1 Function Calls 3 Jacobian Calls 2 Active Constraints 1 Objective Function 0.3294830486 Max Abs Gradient Element 2.944582E-16 Lambda 0 Actual Over Pred Change 2.95231001 Radius 1.7118184209 ABSGCONV convergence criterion satisfied. WARNING: There are 1 active constraints at the solution. The standard errors and Chi-Square test statistic assume the solution is located in the interior of the parameter space and hence do not apply if it is likely that some different set of inequality constraints could be active. NOTE: The degrees of freedom are increased by the number of active constraints (see Dijkstra, 1992). The number of parameters in calculating fit indices is decreased by the number of active constraints. To turn off the adjustment, use the NOADJDF option. _______________________________________________________________________________ Three-var chain model 15 Reduced Model: y1 -> y2 y3 20:39 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Fit Function 0.3295 Goodness of Fit Index (GFI) 0.8424 GFI Adjusted for Degrees of Freedom (AGFI) 0.5271 Root Mean Square Residual (RMR) 0.4304 Parsimonious GFI (Mulaik, 1989) 0.5616 Chi-Square 65.5671 Chi-Square DF 2 Pr > Chi-Square <.0001 Independence Model Chi-Square 65.979 Independence Model Chi-Square DF 3 RMSEA Estimate 0.3996 RMSEA 90% Lower Confidence Limit 0.3199 RMSEA 90% Upper Confidence Limit 0.4855 ECVI Estimate 0.3705 ECVI 90% Lower Confidence Limit 0.2548 ECVI 90% Upper Confidence Limit 0.5242 Probability of Close Fit 0.0000 Bentler's Comparative Fit Index -0.0093 Normal Theory Reweighted LS Chi-Square 55.8602 Akaike's Information Criterion 61.5671 Bozdogan's (1987) CAIC 52.9705 Schwarz's Bayesian Criterion 54.9705 McDonald's (1989) Centrality 0.8531 Bentler & Bonett's (1980) Non-normed Index -0.5140 Bentler & Bonett's (1980) NFI 0.0062 James, Mulaik, & Brett (1982) Parsimonious NFI 0.0042 Z-Test of Wilson & Hilferty (1931) 6.9349 Bollen (1986) Normed Index Rho1 -0.4906 Bollen (1988) Non-normed Index Delta2 0.0064 Hoelter's (1983) Critical N 20 _______________________________________________________________________________ Three-var chain model 16 Reduced Model: y1 -> y2 y3 20:39 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Manifest Variable Equations with Estimates y2 = -0.0626*y1 + 1.0000 e1 b1 y3 = 0*y2 + 1.0000 e2 b2 Variances of Exogenous Variables Variable Parameter Estimate y1 sigy1 1.14880 e1 sigee1 2.17641 e2 sigee2 1.83494 _______________________________________________________________________________ Three-var chain model 17 Reduced Model: y1 -> y2 y3 20:39 Wednesday, December 1, 2004 The CALIS Procedure Covariance Structure Analysis: Maximum Likelihood Estimation Manifest Variable Equations with Standardized Estimates y2 = -0.0454*y1 + 0.9990 e1 b1 y3 = 0*y2 + 1.0000 e2 b2 Squared Multiple Correlations Error Total Variable Variance Variance R-Square 1 y2 2.17641 2.18091 0.00207 2 y3 1.83494 1.83494 0