STA429/1007 F 2004 Handout 12
Loglinear modelling (Fever and death penalty data)
/************* dengue.sas ************************ Dengue fever example: NWK data set C.3 **************************************************/ title 'Log-linear on Dengue fever data'; options linesize=79 pagesize=500 noovp formdlim='_'; proc format; /* value labels used in data step below */ value agefmt 1 = '12 and under' 2 = '13-29' 3 = '30+'; value sesfmt 1 = 'High' 2 = 'Middle' 3 = 'Low'; value ynfmt 0 = 'No' 1 = 'Yes'; data mexico; infile 'fever.dat'; input id age ses sector gotfever savings; label ses = 'Socioeconomic Status' sector = 'Area of City' savgings = 'Have Savings Account'; if 1 <= age <= 12 then agegrp=1; else if 13 <= age <= 29 then agegrp=2; else if age >= 30 then agegrp=3; /* if savings=2 then err=id; */ format agegrp agefmt.; format ses sesfmt.; format gotfever savings ynfmt.; proc freq; title2 'Check to make sure there are no sampling zeros'; tables agegrp*ses*sector*gotfever / norow nocol nopercent; proc freq; title2 'First look, to see what we have'; tables agegrp * (ses sector gotfever) ses * (sector gotfever) sector*gotfever / nopercent chisq; /* Here is a rough summary of the findings agegrp ses sector gotfever agegrp x . . youngLess ses x 1=low . sector x 2=yes gotfever x The first model we will try will have just these relationships -- see if it fits okay. In bracket notation, [agegrp gotfever] [ses sector] [sector gotfever] Here are the proc catmod syntax rules for loglinear models: model and all the vars, separated by *s = _response_; loglin and all the subsets (items in same brackets) connected by |s; */ proc catmod; title2 'Model with just selected 2-way relationships'; model agegrp*ses*sector*gotfever = _response_ / nodesign noprofile noresponse noparm; loglin agegrp|gotfever ses|sector sector|gotfever; /* In practice, we never have to fit a saturated model in order to test goodness of fit because SAS produces the LR test by default. It is being done here just to verify that this is exactly the test for goodness of fit that SAS produces. */ proc catmod; title2 'Saturated model'; model agegrp*ses*sector*gotfever = _response_ / nodesign noprofile noresponse noparm; loglin agegrp|ses|sector|gotfever; proc iml; title2 'Reproduce Goodness of fit LR Chisquare = 10.18 with 24 df'; G = 1318.5055 - 1308.3252; pval = 1-probchi(G,24); print "G = " G ", df = 24, p = " pval; /* Now test each of the three 2-way relationships with LR tests. Just do the first here. */ proc catmod; title2 'Reduced model for testing agegrp by gotfever'; model agegrp*ses*sector*gotfever = _response_ / nodesign noprofile noresponse noparm; loglin agegrp ses|sector sector|gotfever; proc iml; title2 'LR Chisquare for agegrp by gotfever. Compare Wald chisq = 14.08'; G = 1336.9829 - 1318.5055; pval = 1-probchi(G,2); print "G = " G ", df = 2, p = " pval; _______________________________________________________________________________ Log-linear on Dengue fever data 1 Check to make sure there are no sampling zeros 11:00 Monday, November 22, 2004 The FREQ Procedure Table 1 of sector by gotfever Controlling for agegrp=12 and under ses=High sector(Area of City) gotfever Frequency|No |Yes | Total ---------+--------+--------+ 1 | 9 | 1 | 10 ---------+--------+--------+ 2 | 6 | 1 | 7 ---------+--------+--------+ Total 15 2 17 Table 2 of sector by gotfever Controlling for agegrp=12 and under ses=Middle sector(Area of City) gotfever Frequency|No |Yes | Total ---------+--------+--------+ 1 | 10 | 1 | 11 ---------+--------+--------+ 2 | 6 | 1 | 7 ---------+--------+--------+ Total 16 2 18 Table 3 of sector by gotfever Controlling for agegrp=12 and under ses=Low sector(Area of City) gotfever Frequency|No |Yes | Total ---------+--------+--------+ 1 | 18 | 1 | 19 ---------+--------+--------+ 2 | 5 | 1 | 6 ---------+--------+--------+ Total 23 2 25 Table 4 of sector by gotfever Controlling for agegrp=13-29 ses=High sector(Area of City) gotfever Frequency|No |Yes | Total ---------+--------+--------+ 1 | 13 | 3 | 16 ---------+--------+--------+ 2 | 8 | 7 | 15 ---------+--------+--------+ Total 21 10 31 Table 5 of sector by gotfever Controlling for agegrp=13-29 ses=Middle sector(Area of City) gotfever Frequency|No |Yes | Total ---------+--------+--------+ 1 | 7 | 2 | 9 ---------+--------+--------+ 2 | 2 | 3 | 5 ---------+--------+--------+ Total 9 5 14 Table 6 of sector by gotfever Controlling for agegrp=13-29 ses=Low sector(Area of City) gotfever Frequency|No |Yes | Total ---------+--------+--------+ 1 | 12 | 6 | 18 ---------+--------+--------+ 2 | 3 | 3 | 6 ---------+--------+--------+ Total 15 9 24 Table 7 of sector by gotfever Controlling for agegrp=30+ ses=High sector(Area of City) gotfever Frequency|No |Yes | Total ---------+--------+--------+ 1 | 9 | 3 | 12 ---------+--------+--------+ 2 | 8 | 9 | 17 ---------+--------+--------+ Total 17 12 29 Table 8 of sector by gotfever Controlling for agegrp=30+ ses=Middle sector(Area of City) gotfever Frequency|No |Yes | Total ---------+--------+--------+ 1 | 6 | 1 | 7 ---------+--------+--------+ 2 | 4 | 7 | 11 ---------+--------+--------+ Total 10 8 18 Table 9 of sector by gotfever Controlling for agegrp=30+ ses=Low sector(Area of City) gotfever Frequency|No |Yes | Total ---------+--------+--------+ 1 | 11 | 5 | 16 ---------+--------+--------+ 2 | 2 | 3 | 5 ---------+--------+--------+ Total 13 8 21 _______________________________________________________________________________ Log-linear on Dengue fever data 2 First look, to see what we have 11:00 Monday, November 22, 2004 The FREQ Procedure Table of agegrp by ses agegrp ses(Socioeconomic Status) Frequency | Row Pct | Col Pct |High |Middle |Low | Total -------------+--------+--------+--------+ 12 and under | 17 | 18 | 25 | 60 | 28.33 | 30.00 | 41.67 | | 22.08 | 36.00 | 35.71 | -------------+--------+--------+--------+ 13-29 | 31 | 14 | 24 | 69 | 44.93 | 20.29 | 34.78 | | 40.26 | 28.00 | 34.29 | -------------+--------+--------+--------+ 30+ | 29 | 18 | 21 | 68 | 42.65 | 26.47 | 30.88 | | 37.66 | 36.00 | 30.00 | -------------+--------+--------+--------+ Total 77 50 70 197 Statistics for Table of agegrp by ses Statistic DF Value Prob ------------------------------------------------------ Chi-Square 4 4.8988 0.2978 Likelihood Ratio Chi-Square 4 5.0638 0.2808 Mantel-Haenszel Chi-Square 1 2.5837 0.1080 Phi Coefficient 0.1577 Contingency Coefficient 0.1558 Cramer's V 0.1115 Sample Size = 197 Table of agegrp by sector agegrp sector(Area of City) Frequency | Row Pct | Col Pct | 1| 2| Total -------------+--------+--------+ 12 and under | 40 | 20 | 60 | 66.67 | 33.33 | | 33.90 | 25.32 | -------------+--------+--------+ 13-29 | 43 | 26 | 69 | 62.32 | 37.68 | | 36.44 | 32.91 | -------------+--------+--------+ 30+ | 35 | 33 | 68 | 51.47 | 48.53 | | 29.66 | 41.77 | -------------+--------+--------+ Total 118 79 197 Statistics for Table of agegrp by sector Statistic DF Value Prob ------------------------------------------------------ Chi-Square 2 3.3233 0.1898 Likelihood Ratio Chi-Square 2 3.3146 0.1907 Mantel-Haenszel Chi-Square 1 3.1106 0.0778 Phi Coefficient 0.1299 Contingency Coefficient 0.1288 Cramer's V 0.1299 Sample Size = 197 Table of agegrp by gotfever agegrp gotfever Frequency | Row Pct | Col Pct |No |Yes | Total -------------+--------+--------+ 12 and under | 54 | 6 | 60 | 90.00 | 10.00 | | 38.85 | 10.34 | -------------+--------+--------+ 13-29 | 45 | 24 | 69 | 65.22 | 34.78 | | 32.37 | 41.38 | -------------+--------+--------+ 30+ | 40 | 28 | 68 | 58.82 | 41.18 | | 28.78 | 48.28 | -------------+--------+--------+ Total 139 58 197 Statistics for Table of agegrp by gotfever Statistic DF Value Prob ------------------------------------------------------ Chi-Square 2 16.3723 0.0003 Likelihood Ratio Chi-Square 2 18.4774 <.0001 Mantel-Haenszel Chi-Square 1 14.4765 0.0001 Phi Coefficient 0.2883 Contingency Coefficient 0.2770 Cramer's V 0.2883 Sample Size = 197 Table of ses by sector ses(Socioeconomic Status) sector(Area of City) Frequency| Row Pct | Col Pct | 1| 2| Total ---------+--------+--------+ High | 38 | 39 | 77 | 49.35 | 50.65 | | 32.20 | 49.37 | ---------+--------+--------+ Middle | 27 | 23 | 50 | 54.00 | 46.00 | | 22.88 | 29.11 | ---------+--------+--------+ Low | 53 | 17 | 70 | 75.71 | 24.29 | | 44.92 | 21.52 | ---------+--------+--------+ Total 118 79 197 Statistics for Table of ses by sector Statistic DF Value Prob ------------------------------------------------------ Chi-Square 2 11.5803 0.0031 Likelihood Ratio Chi-Square 2 11.9927 0.0025 Mantel-Haenszel Chi-Square 1 10.3971 0.0013 Phi Coefficient 0.2425 Contingency Coefficient 0.2356 Cramer's V 0.2425 Sample Size = 197 Table of ses by gotfever ses(Socioeconomic Status) gotfever Frequency| Row Pct | Col Pct |No |Yes | Total ---------+--------+--------+ High | 53 | 24 | 77 | 68.83 | 31.17 | | 38.13 | 41.38 | ---------+--------+--------+ Middle | 35 | 15 | 50 | 70.00 | 30.00 | | 25.18 | 25.86 | ---------+--------+--------+ Low | 51 | 19 | 70 | 72.86 | 27.14 | | 36.69 | 32.76 | ---------+--------+--------+ Total 139 58 197 Statistics for Table of ses by gotfever Statistic DF Value Prob ------------------------------------------------------ Chi-Square 2 0.2961 0.8624 Likelihood Ratio Chi-Square 2 0.2977 0.8617 Mantel-Haenszel Chi-Square 1 0.2819 0.5954 Phi Coefficient 0.0388 Contingency Coefficient 0.0387 Cramer's V 0.0388 Sample Size = 197 Table of sector by gotfever sector(Area of City) gotfever Frequency| Row Pct | Col Pct |No |Yes | Total ---------+--------+--------+ 1 | 95 | 23 | 118 | 80.51 | 19.49 | | 68.35 | 39.66 | ---------+--------+--------+ 2 | 44 | 35 | 79 | 55.70 | 44.30 | | 31.65 | 60.34 | ---------+--------+--------+ Total 139 58 197 Statistics for Table of sector by gotfever Statistic DF Value Prob ------------------------------------------------------ Chi-Square 1 14.0238 0.0002 Likelihood Ratio Chi-Square 1 13.8852 0.0002 Continuity Adj. Chi-Square 1 12.8548 0.0003 Mantel-Haenszel Chi-Square 1 13.9526 0.0002 Phi Coefficient 0.2668 Contingency Coefficient 0.2578 Cramer's V 0.2668 Fisher's Exact Test ---------------------------------- Cell (1,1) Frequency (F) 95 Left-sided Pr <= F 0.9999 Right-sided Pr >= F 1.797E-04 Table Probability (P) 1.290E-04 Two-sided Pr <= P 2.360E-04 Sample Size = 197 _______________________________________________________________________________ Log-linear on Dengue fever data 3 Model with just selected 2-way relationships 11:00 Monday, November 22, 2004 The CATMOD Procedure Data Summary Response agegrp*ses*sector*gotfev Response Levels 36 Weight Variable None Populations 1 Data Set MEXICO Total Frequency 197 Frequency Missing 0 Observations 197 Maximum Likelihood Analysis Sub -2 Log Convergence Parameter Estimates Iteration Iteration Likelihood Criterion 1 2 3 ------------------------------------------------------------------------------ 0 0 1411.9065 1.0000 0 0 0 1 0 1327.4244 0.0598 -0.0863 0.0508 0.4112 2 0 1318.7325 0.006548 -0.3476 0.1630 0.4727 3 0 1318.5067 0.000171 -0.4024 0.1921 0.5028 4 0 1318.5055 9.7208E-7 -0.4074 0.1946 0.5052 5 0 1318.5055 4.623E-11 -0.4074 0.1946 0.5052 Maximum Likelihood Analysis Parameter Estimates Iteration 4 5 6 7 8 9 --------------------------------------------------------------------------- 0 0 0 0 0 0 0 1 0.3198 -0.0914 0.1726 -0.2386 0.1980 -0.2132 2 0.5100 -0.1859 0.2308 -0.2080 0.0946 -0.2315 3 0.5632 -0.2136 0.2280 -0.2070 0.0988 -0.2249 4 0.5682 -0.2161 0.2279 -0.2070 0.0987 -0.2249 5 0.5682 -0.2161 0.2279 -0.2070 0.0987 -0.2249 Maximum Likelihood Analysis Parameter Estimates Iteration 10 11 --------------------------------- 0 0 0 1 -0.1371 0.3198 2 -0.1343 0.2950 3 -0.1317 0.2974 4 -0.1317 0.2974 5 -0.1317 0.2974 Maximum likelihood computations converged. Maximum Likelihood Analysis of Variance Source DF Chi-Square Pr > ChiSq -------------------------------------------------- agegrp 2 6.92 0.0314 gotfever 1 28.12 <.0001 agegrp*gotfever 2 14.08 0.0009 ses 2 5.94 0.0514 sector 1 1.37 0.2424 ses*sector 2 11.13 0.0038 sector*gotfever 1 13.44 0.0002 Likelihood Ratio 24 10.18 0.9938 _______________________________________________________________________________ Log-linear on Dengue fever data 4 Saturated model 11:00 Monday, November 22, 2004 The CATMOD Procedure Data Summary Response agegrp*ses*sector*gotfev Response Levels 36 Weight Variable None Populations 1 Data Set MEXICO Total Frequency 197 Frequency Missing 0 Observations 197 Maximum Likelihood Analysis Sub -2 Log Convergence Parameter Estimates Iteration Iteration Likelihood Criterion 1 2 3 ------------------------------------------------------------------------------ 0 0 1411.9065 1.0000 0 0 0 1 0 1333.0577 0.0558 -0.0863 0.0508 0.1726 2 0 1309.1189 0.0180 -0.2863 0.1403 0.2158 3 0 1308.3283 0.000604 -0.3299 0.1690 0.2239 4 0 1308.3252 2.4154E-6 -0.3312 0.1697 0.2244 5 0 1308.3252 7.295E-11 -0.3312 0.1697 0.2244 Maximum Likelihood Analysis Parameter Estimates Iteration 4 5 6 7 8 9 --------------------------------------------------------------------------- 0 0 0 0 0 0 0 1 -0.2386 -0.3096 0.1472 0.1929 -0.1726 0.1980 2 -0.2401 -0.2834 0.1956 0.1625 -0.2084 0.1289 3 -0.2426 -0.2764 0.2166 0.1486 -0.1989 0.1243 4 -0.2424 -0.2758 0.2173 0.1483 -0.1994 0.1238 5 -0.2424 -0.2758 0.2174 0.1483 -0.1994 0.1238 Maximum Likelihood Analysis Parameter Estimates Iteration 10 11 12 13 14 15 --------------------------------------------------------------------------- 0 0 0 0 0 0 0 1 0.1066 0.0609 -0.2132 -0.1371 0.0457 0.0152 2 0.0597 0.0852 -0.2166 -0.1388 0.1186 0.0639 3 0.0601 0.0895 -0.2022 -0.1393 0.1193 0.0828 4 0.0593 0.0900 -0.2019 -0.1390 0.1201 0.0836 5 0.0593 0.0900 -0.2019 -0.1390 0.1202 0.0836 Maximum Likelihood Analysis Parameter Estimates Iteration 16 17 18 19 20 21 --------------------------------------------------------------------------- 0 0 0 0 0 0 0 1 3.984E-17 0.0609 0.4112 0.3198 -0.0914 0.0305 2 -0.1017 0.1447 0.4955 0.5278 -0.2379 0.0378 3 -0.1017 0.1371 0.5089 0.5398 -0.2471 0.0382 4 -0.1023 0.1371 0.5089 0.5397 -0.2472 0.0386 5 -0.1023 0.1371 0.5089 0.5397 -0.2472 0.0386 Maximum Likelihood Analysis Parameter Estimates Iteration 22 23 24 25 26 27 --------------------------------------------------------------------------- 0 0 0 0 0 0 0 1 -0.1066 -0.1675 0.0152 0.1523 -0.0305 0.3198 2 0.001349 -0.1054 -0.0458 0.0993 -0.0390 0.2948 3 0.004996 -0.0907 -0.0311 0.1001 -0.0551 0.2960 4 0.005608 -0.0900 -0.0306 0.0997 -0.0555 0.2956 5 0.005609 -0.0899 -0.0306 0.0997 -0.0555 0.2956 Maximum Likelihood Analysis Parameter Estimates Iteration 28 29 30 31 32 33 --------------------------------------------------------------------------- 0 0 0 0 0 0 0 1 -0.0152 2.456E-17 -0.0305 -0.0457 -0.1371 -0.0761 2 -0.1062 0.0139 -0.0526 0.0783 -0.0454 -0.1532 3 -0.1116 0.0109 -0.0497 0.0804 -0.0332 -0.1368 4 -0.1125 0.0114 -0.0494 0.0811 -0.0323 -0.1365 5 -0.1125 0.0114 -0.0494 0.0811 -0.0323 -0.1365 Maximum Likelihood Analysis Parameter Estimates Iteration 34 35 --------------------------------- 0 0 0 1 0.1218 3.655E-17 2 0.0797 0.0450 3 0.0760 0.0267 4 0.0756 0.0265 5 0.0756 0.0265 Maximum likelihood computations converged. Maximum Likelihood Analysis of Variance Source DF Chi-Square Pr > ChiSq ---------------------------------------------------------- agegrp 2 4.23 0.1205 ses 2 3.52 0.1724 agegrp*ses 4 2.02 0.7325 sector 1 1.50 0.2206 agegrp*sector 2 1.40 0.4966 ses*sector 2 6.03 0.0490 agegrp*ses*sector 4 2.06 0.7253 gotfever 1 25.36 <.0001 agegrp*gotfever 2 11.25 0.0036 ses*gotfever 2 0.12 0.9394 agegrp*ses*gotfever 4 0.54 0.9695 sector*gotfever 1 8.56 0.0034 agegrp*sector*gotfever 2 0.66 0.7201 ses*sector*gotfever 2 0.30 0.8598 agegrp*ses*sector*gotfev 4 0.81 0.9375 Likelihood Ratio 0 . . _______________________________________________________________________________ Log-linear on Dengue fever data 5 Reproduce Goodness of fit LR Chisquare = 10.18 with 24 df 11:00 Monday, November 22, 2004 G PVAL G = 10.1803 , df = 24, p = 0.9937627 _______________________________________________________________________________ Log-linear on Dengue fever data 6 Reduced model for testing agegrp by gotfever 11:00 Monday, November 22, 2004 The CATMOD Procedure Data Summary Response agegrp*ses*sector*gotfev Response Levels 36 Weight Variable None Populations 1 Data Set MEXICO Total Frequency 197 Frequency Missing 0 Observations 197 Maximum Likelihood Analysis Sub -2 Log Convergence Parameter Estimates Iteration Iteration Likelihood Criterion 1 2 3 ------------------------------------------------------------------------------ 0 0 1411.9065 1.0000 0 0 0 1 0 1340.6702 0.0505 -0.0863 0.0508 0.1726 2 0 1336.9981 0.002739 -0.0883 0.0515 0.2309 3 0 1336.9829 0.0000113 -0.0883 0.0515 0.2279 4 0 1336.9829 1.67E-10 -0.0883 0.0515 0.2279 Maximum Likelihood Analysis Parameter Estimates Iteration 4 5 6 7 8 9 --------------------------------------------------------------------------- 0 0 0 0 0 0 0 1 -0.2386 0.1980 -0.2132 -0.1371 0.4112 0.3198 2 -0.2080 0.0943 -0.2317 -0.1343 0.4145 0.2963 3 -0.2070 0.0987 -0.2249 -0.1317 0.4118 0.2974 4 -0.2070 0.0987 -0.2249 -0.1317 0.4118 0.2974 Maximum likelihood computations converged. Maximum Likelihood Analysis of Variance Source DF Chi-Square Pr > ChiSq -------------------------------------------------- agegrp 2 0.74 0.6907 ses 2 5.94 0.0514 sector 1 1.37 0.2424 ses*sector 2 11.13 0.0038 gotfever 1 25.77 <.0001 sector*gotfever 1 13.44 0.0002 Likelihood Ratio 26 28.66 0.3269 _______________________________________________________________________________ Log-linear on Dengue fever data 7 LR Chisquare for agegrp by gotfever. Compare Wald chisq = 14.08 11:00 Monday, November 22, 2004 G PVAL G = 18.4774 , df = 2, p = 0.0000972 /**************************** deathpen2.sas *********************************/ options linesize=79 pagesize=35 noovp formdlim='_'; title 'Race & Death Penalty: Am. Soc. Review 1981, 46, 918-927'; title2 'Log-linear analysis with sampling zeros'; data deathrow; input deathp $ victrace $ defrace $ numbr; label defrace = 'Race of Defendant' victrace = 'Race of Victim' deathp = 'Death Penalty'; if numbr=0 then numbr=1.0E-20; /* That's the zero cell freq */ /* proc catmod assumes all zeros are structural */ datalines; Yes White White 19 Yes White Black 11 Yes Black Black 6 Yes Black White 0 No White White 132 No White Black 52 No Black White 9 No Black Black 97 ; proc catmod; title3 'Test any association among vars with goodness of fit test'; model deathp*victrace*defrace=_response_ / nodesign noprofile noresponse noparm; loglin deathp victrace defrace; weight numbr; proc catmod; title3 'Model with all 2-way relationships'; model deathp*victrace*defrace=_response_ / nodesign noprofile noresponse noparm; loglin deathp|victrace deathp|defrace victrace|defrace; weight numbr; /* Now test each relationship in turn. Start with deathp|defrace */ proc catmod; title3 'Test deathp by defrace'; model deathp*victrace*defrace=_response_ / nodesign noprofile noresponse noparm; loglin deathp|victrace victrace|defrace; weight numbr; proc iml; title2 'LR Chisquare for deathp by defrace'; G = 961.76247 - 960.58132; pval = 1-probchi(G,1); print "G = " G ", df = 1, p = " pval; /* Now I'd use this as a new full model and test the other two relationships.*/ _______________________________________________________________________________ Race & Death Penalty: Am. Soc. Review 1981, 46, 918-927 1 Log-linear analysis with sampling zeros Test any association among vars with goodness of fit test 22:02 Sunday, November 21, 2004 The CATMOD Procedure Data Summary Response deathp*victrace*defrace Response Levels 8 Weight Variable numbr Populations 1 Data Set DEATHROW Total Frequency 326 Frequency Missing 0 Observations 8 Maximum Likelihood Analysis Sub -2 Log Convergence Parameter Estimates Iteration Iteration Likelihood Criterion 1 2 3 ------------------------------------------------------------------------------ 0 0 1355.7959 1.0000 0 0 0 1 0 1108.0806 0.1827 0.7791 -0.3129 0.0184 2 0 1098.0538 0.009049 1.0000 -0.3237 0.0184 3 0 1097.8102 0.000222 1.0418 -0.3237 0.0184 4 0 1097.8099 2.2821E-7 1.0432 -0.3237 0.0184 5 0 1097.8099 2.699E-13 1.0432 -0.3237 0.0184 Maximum likelihood computations converged. _______________________________________________________________________________ Race & Death Penalty: Am. Soc. Review 1981, 46, 918-927 2 Log-linear analysis with sampling zeros Test any association among vars with goodness of fit test 22:02 Sunday, November 21, 2004 The CATMOD Procedure Maximum Likelihood Analysis of Variance Source DF Chi-Square Pr > ChiSq -------------------------------------------------- deathp 1 139.40 <.0001 victrace 1 30.82 <.0001 defrace 1 0.11 0.7397 Likelihood Ratio 4 137.93 <.0001 _______________________________________________________________________________ Race & Death Penalty: Am. Soc. Review 1981, 46, 918-927 3 Log-linear analysis with sampling zeros Model with all 2-way relationships 22:02 Sunday, November 21, 2004 The CATMOD Procedure Data Summary Response deathp*victrace*defrace Response Levels 8 Weight Variable numbr Populations 1 Data Set DEATHROW Total Frequency 326 Frequency Missing 0 Observations 8 Maximum Likelihood Analysis Sub -2 Log Convergence Iteration Iteration Likelihood Criterion ------------------------------------------------- 0 0 1355.7959 1.0000 1 0 1007.3817 0.2570 2 0 966.58695 0.0405 3 0 960.82256 0.005964 4 0 960.58234 0.000250 5 0 960.58132 1.0681E-6 6 0 960.58132 3.562E-11 Maximum Likelihood Analysis Parameter Estimates Iteration 1 2 3 4 5 6 --------------------------------------------------------------------------- 0 0 0 0 0 0 0 1 0.7791 -0.3129 -0.1656 0.0184 0.0307 0.5583 _______________________________________________________________________________ Race & Death Penalty: Am. Soc. Review 1981, 46, 918-927 4 Log-linear analysis with sampling zeros Model with all 2-way relationships 22:02 Sunday, November 21, 2004 The CATMOD Procedure Maximum Likelihood Analysis Parameter Estimates Iteration 1 2 3 4 5 6 --------------------------------------------------------------------------- 2 1.0319 -0.5367 0.1184 0.2993 0.0163 0.7490 3 1.1522 -0.7969 0.2911 0.4564 -0.1057 0.8166 4 1.1968 -0.8500 0.3278 0.4784 -0.1098 0.8387 5 1.2000 -0.8540 0.3310 0.4794 -0.1101 0.8395 6 1.2001 -0.8540 0.3311 0.4794 -0.1101 0.8395 Maximum likelihood computations converged. Maximum Likelihood Analysis of Variance Source DF Chi-Square Pr > ChiSq -------------------------------------------------- deathp 1 100.06 <.0001 victrace 1 33.83 <.0001 deathp*victrace 1 6.50 0.0108 defrace 1 14.87 0.0001 deathp*defrace 1 1.21 0.2722 victrace*defrace 1 77.29 <.0001 Likelihood Ratio 1 0.70 0.4025 _______________________________________________________________________________ Race & Death Penalty: Am. Soc. Review 1981, 46, 918-927 5 Log-linear analysis with sampling zeros Test deathp by defrace 22:02 Sunday, November 21, 2004 The CATMOD Procedure Data Summary Response deathp*victrace*defrace Response Levels 8 Weight Variable numbr Populations 1 Data Set DEATHROW Total Frequency 326 Frequency Missing 0 Observations 8 Maximum Likelihood Analysis Sub -2 Log Convergence Iteration Iteration Likelihood Criterion --------------------------------------------------- 0 0 1355.7959 1.0000 1 0 1011.0092 0.2543 2 0 966.42214 0.0441 3 0 961.92902 0.004649 4 0 961.76311 0.000172 5 0 961.76247 6.6622E-7 6 0 961.76247 1.515E-11 Maximum Likelihood Analysis Parameter Estimates Iteration 1 2 3 4 5 -------------------------------------------------------------------------- 0 0 0 0 0 0 1 0.7791 -0.3129 -0.1656 0.0184 0.5583 _______________________________________________________________________________ Race & Death Penalty: Am. Soc. Review 1981, 46, 918-927 6 Log-linear analysis with sampling zeros Test deathp by defrace 22:02 Sunday, November 21, 2004 The CATMOD Procedure Maximum Likelihood Analysis Parameter Estimates Iteration 1 2 3 4 5 -------------------------------------------------------------------------- 2 1.0385 -0.5414 0.1306 0.3155 0.7534 3 1.1347 -0.7481 0.2279 0.3760 0.8130 4 1.1688 -0.7956 0.2620 0.3904 0.8274 5 1.1713 -0.7986 0.2645 0.3908 0.8279 6 1.1714 -0.7986 0.2645 0.3908 0.8279 Maximum likelihood computations converged. Maximum Likelihood Analysis of Variance Source DF Chi-Square Pr > ChiSq -------------------------------------------------- deathp 1 102.17 <.0001 victrace 1 33.59 <.0001 deathp*victrace 1 5.21 0.0225 defrace 1 17.05 <.0001 victrace*defrace 1 76.52 <.0001 Likelihood Ratio 2 1.88 0.3903 _______________________________________________________________________________ Race & Death Penalty: Am. Soc. Review 1981, 46, 918-927 7 LR Chisquare for deathp by defrace 22:02 Sunday, November 21, 2004 G PVAL G = 1.18115 , df = 1, p = 0.277122