
Contingency Tables: Part Two∗

STA 312: Fall 2022

Suggested Reading: Chapter 2

• Read Section 2.6 about Fisher’s exact test

• Read Section 2.7 about multi-dimensional tables and Simpson’s paradox.
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1 Testing for the Product Multinomial

Testing Association for the Product Multinomial
Prospective and retrospective designs

Prospective design:

• A conditional multinomial in each row

• I independent random samples, one for each value of X

• Likelihood is a product of I multinomials

• Null hypothesis is that all I sets of conditional probabilities are the same.

A retrospective design is just like this, but with rows and columns reversed.

∗See last slide for copyright information.
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Null hypothesis is no differences among the I vectors of conditional probabili-
ties

Attack Stroke Both Neither Total

Drug n1+

Drug and Exercise n2+

Total n+1 n+2 n+3 n+4 n

• Both n1+ and n2+ are fixed by the design. They are sample sizes.

• Under H0, MLE of the (common) conditional probability is the marginal sample pro-
portion:

π̂ij = p+j =
n+j

n

• And the expected cell frequency is just

µ̂ij = ni+ π̂ij = ni+
n+j

n
=
ni+n+j

n
.

Expected frequencies are the same!
For testing both independence and testing equal conditional probabilities,

µ̂ij =
ni+n+j

n
.

The degrees of freedom are the same too. For the product multinomial,

• There are I(J − 1) free parameters in the unconstrained model.

• There are J − 1 free parameters under the null hypothesis.

• H0 imposes I(J − 1) − (J − 1) = (I − 1)(J − 1) constraints on the parameter vector.

• So df = (I − 1)(J − 1).

Attack Stroke Both Neither Total
Drug n1+
Drug and Exercise n2+
Total n+1 n+2 n+3 n+4 n

This is very fortunate

• The cross-sectional, prospective and retrospectives are different from one another con-
ceptually.

• The multinomial and product-multinomial models are different from one another tech-
nically.

• But the tests for relationship between explanatory and response variables are 100%
the same.

• Same expected frequencies and same degrees of freedom.

• Therefore we get the same test statistics and p-values.
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2 Fisher’s Exact Test

Fisher’s Exact Test

• Everything so far is based on large-sample theory.

• What if the sample is small?

• Fisher’s exact test is good for 2 × 2 tables.

• There are extensions for larger tables.

Fisher’s exact test is a permutation test

X
1
2

Y
1 2
x a− x a

b− x n− a− b+ x n− a
b n− b n

• Think of a data file with 2 columns, X and Y , filled with ones and twos.

• X has a ones and Y has b ones.

• Calculate the estimated odds ratio θ̂.

• If X and Y are unrelated, all possible pairings of X and Y values should be equally
likely.

• There are n! ways to order the X values, and for each of these, n! ways to order the Y
values.

Idea of a permutation test

X
1
2

Y
1 2
x a − x a

b − x n − a − b + x n − a
b n − b n

• There are (n!)2 ways to arrange the X and Y values.

• For what fraction of these is the (estimated) odds ratio

– Greater than or equal to θ̂ (Upper tail p-value)

– Less than or equal to θ̂ (Lower tail p-value)

For a 2-sided test, add the probabilities of all the tables less likely than or equally
likely to the one we have observed. (This is what R does.)

Nice idea, but hard to compute. Fisher thought of it and simplified it.
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Let us count together

X
1
2

Y
1 2
x a − x a

b − x n − a − b + x n − a
b n − b n

• The n! permutations of 1s and 2s have lots of repeats that look the same.

• There are
(
n
a

)
ways to choose which cases have X = 1.

• For each of these, there are
(
n
b

)
ways to choose which cases have Y = 1.

• So the total number of 2 × 2 tables with n observations, n1+ = a and n+1 = b is
(
n
a

)(
n
b

)
.

• Of these, the number of ways to get the values in the table is just the multinomial coefficient(
n

x a− x b− x n− a− b + x

)
=

n!

x!(a− x)!(b− x)!(n− a− b + x)!
.

Hypergeometric probability

X
1
2

Y
1 2
x a − x a = n1+

b − x n − a − b + x n − a = n2+
b = n+1 n − b = n+2 n

Dividing the number of ways to get n11 = x by the total number of equally likely outcomes,

P (n11 = x) =

(
n

x a−x b−x n−a−b+x

)(
n
a

)(
n
b

)
=

n!
x!(a−x)!(b−x)!(n−a−b+x)!

n!
a!(n−a)!

n!
b!(n−b)!

=

(
a
x

)(
n−a
b−x

)(
n
b

)
=

(
n1+

n11

)(
n2+

n+1−n11

)(
n

n+1

) (Eq. 2.11, p. 46)

Adding up the probabilities
Always remembering that a, b and n are fixed

X
1
2

Y
1 2
x a − x a

b − x n − a − b + x n − a
b n − b n
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• Fortunately, θ(x) is an increasing function of x (differentiate).

• So, tables with larger x values than the one observed also have greater sample odds
ratios. Add P (n11 = x) over x to get tail probabilities.

• Range of x:

– x ≤ min(a, b)

– n22 = n− a− b+ x ≥ 0, so x ≥ a+ b− n.

– Thus, x ranges from max(0, a+ b− n) to min(a, b).

Example: Sinking of the the Titanic

> # help(Titanic)

> dimnames(Titanic)

$Class

[1] "1st" "2nd" "3rd" "Crew"

$Sex

[1] "Male" "Female"

$Age

[1] "Child" "Adult"

$Survived

[1] "No" "Yes"

> # Women in 1st class vs Women in crew

>

> ladies = Titanic[c(1,4),2,2,]

Just the ladies

> ladies

Survived

Class No Yes

1st 4 140

Crew 3 20

> 140/144 # Rich ladies

[1] 0.9722222

> 20/23 # Cleaning ladies

[1] 0.8695652

> X2 = chisq.test(ladies,correct=F); X2

Warning message:

In chisq.test(ladies, correct = F) :

Chi-squared approximation may be incorrect
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Pearson’s Chi-squared test

data: ladies

X-squared = 5.2043, df = 1, p-value = 0.02253

Check the expected frequencies

> X2$expected

Survived

Class No Yes

1st 6.0359281 137.96407

Crew 0.9640719 22.03593

>

> fisher.test(ladies)

Fisher’s Exact Test for Count Data

data: ladies

p-value = 0.05547

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.03027561 1.41705937

sample estimates:

odds ratio

0.1935113

Conclusion
Though a higher percentage of women in first class survived than female crew, it could

have been due to chance.

Fisher’s exact test makes sense even without the pretending we have a random
sample

You could say

• Assume that status on the ship for these women (First Class passenger vs. crew) is
fixed. It was what it was.

• Survival also was what it was.

• Given this, is the observed pairing of status and survival an unusual one?

• That is, for what fraction of the possible pairings is the status difference in survival as
great or greater than the one we have observed?

• A little over 5%? That’s a bit unusual, but perhaps not very unusual.

• There is not even any need to talk about probability.
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3 Tables of Higher Dimension

Tables of Higher Dimension: Conditional independence

• Suppose X and Y are related.

• Are X and Y related conditionally on the value of W?

• One sub-table for each value of W .

• X and Y can easily be related unconditionally, but still be conditionally independent.

• Example: Among adults 18 and older, X =Tattoos and Y =Grey hair.

• Need a 3-way table, showing the relationship of tattoos and grey hair separately for
each age group.

• Speak of the relationship between X and Y “controlling for” W , or “allowing for” W .

Was UC Berkeley discriminating against women?
Data from the 1970s

Data in a 3-dimensional array: Variables are

• Sex of the person applying for graduate study

• Department to which the person applied

• Whether or not the person was admitted

Berkeley data

> ##########################################################

> # More than one Explanatory Variable at once #

> # data() to list the nice data sets that come with R #

> # help(UCBAdmissions) #

> ##########################################################

> dim(UCBAdmissions)

[1] 2 2 6

> dimnames(UCBAdmissions)

$Admit

[1] "Admitted" "Rejected"

$Gender

[1] "Male" "Female"

$Dept

[1] "A" "B" "C" "D" "E" "F"

> # Look at gender by admit.

> # Apply sum to rows and columns, obtaining the marginal freqs.

> sexadmit = apply(UCBAdmissions,c(1,2),sum)
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Sex by Admission

> sexadmit

Gender

Admit Male Female

Admitted 1198 557

Rejected 1493 1278

> sexadmit = t(sexadmit); sexadmit

Admit

Gender Admitted Rejected

Male 1198 1493

Female 557 1278

> rowmarg = apply(sexadmit,1,sum); rowmarg

Male Female

2691 1835

> percentadmit = 100 * sexadmit[,1]/rowmarg ; percentadmit

Male Female

44.51877 30.35422

It certainly looks suspicious.

Test sex by admission

> chisq.test(sexadmit,correct=F)

Pearson’s Chi-squared test

data: sexadmit

X-squared = 92.2053, df = 1, p-value < 2.2e-16

> fisher.test(sexadmit) # Gives same p-value

Fisher’s Exact Test for Count Data

data: sexadmit

p-value < 2.2e-16

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

1.621356 2.091246

sample estimates:

odds ratio

1.840856

But look at the whole table

> UCBAdmissions

, , Dept = A

Gender
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Admit Male Female

Admitted 512 89

Rejected 313 19

, , Dept = B

Gender

Admit Male Female

Admitted 353 17

Rejected 207 8

Berkeley table continued

, , Dept = C

Gender

Admit Male Female

Admitted 120 202

Rejected 205 391

, , Dept = D

Gender

Admit Male Female

Admitted 138 131

Rejected 279 244

Berkeley table continued some more

, , Dept = E

Gender

Admit Male Female

Admitted 53 94

Rejected 138 299

, , Dept = F

Gender

Admit Male Female

Admitted 22 24

Rejected 351 317

Look at Department A

> # Just Department A

> JustA = t(UCBAdmissions[,,1]); JustA

Admit
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Gender Admitted Rejected

Male 512 313

Female 89 19

> JustA[1,1]/sum(JustA[1,]) # Men

[1] 0.6206061

> JustA[2,1]/sum(JustA[2,]) # Women

[1] 0.8240741

> chisq.test(UCBAdmissions[,,1],correct=F)

Pearson’s Chi-squared test

data: UCBAdmissions[, , 1]

X-squared = 17.248, df = 1, p-value = 3.28e-05

Women are more likely to be admitted.

Summarize analyses of sub-tables
Just the code, for reference

# Summarize analyses of sub-tables: Loop over departments

# Sum of chi-squared values in X2

ndepts = dim(UCBAdmissions)[3]

gradschool=NULL; X2=0

for(j in 1:ndepts)

{

dept = dimnames(UCBAdmissions)$Dept[j] # A B C etc.

tabl = t(UCBAdmissions[,,j]) # All rows, all cols, level j

Rowmarg = apply(tabl,1,sum)

Percentadmit = round( 100*tabl[,1]/Rowmarg ,1)

per = round(Percentadmit,2)

Test = chisq.test(tabl,correct=F)

tstat = round(Test$statistic,2); pval = round(Test$p.value,5)

gradschool = rbind(gradschool,c(dept,Percentadmit,tstat,pval))

X2 = X2+Test$statistic

} # Next Department

colnames(gradschool) = c("Dept","%MaleAcc","%FemAcc","Chisq","p-value")

noquote(gradschool) # Print character strings without quote marks

Simpson’s paradox

> noquote(gradschool) # Print character strings without quote marks

Dept %MaleAcc %FemAcc Chisq p-value

[1,] A 62.1 82.4 17.25 3e-05

[2,] B 63 68 0.25 0.61447

[3,] C 36.9 34.1 0.75 0.38536

[4,] D 33.1 34.9 0.3 0.58515

[5,] E 27.7 23.9 1 0.31705

[6,] F 5.9 7 0.38 0.53542
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Overall test of conditional independence
Add the chi-squared values and add the degrees of freedom.

> # Overall test of conditional independence

> names(X2) = "Pooled Chi-square"

> df = ndepts ; names(df)="df"

> pval=1-pchisq(X2,df)

> names(pval) = "P-value"

> print(c(X2,df,pval))

Pooled Chi-square df P-value

19.938413378 6.000000000 0.002840164

Conclusion: Gender and admission are not conditionally independent. From the pre-
ceding slide, we see it comes from Department A’s being more likely to admit women than
men.

Track it down
Make a table showing Department, Number of applicants, Percent female applicants and

Percent of applicants admitted.

> # What’s happening?

> whoapplies = NULL

> for(j in 1:ndepts)

+ {

+ dept = dimnames(UCBAdmissions)$Dept[j]; names(dept) = "Dept"

+ tabl = t(UCBAdmissions[,,j]) # All rows, all cols, level j

+ nj = sum(tabl); names(nj)=" n "

+ mf = apply(tabl,1,sum); femapp = round(100*mf[2]/nj,2)

+ succ = apply(tabl,2,sum); getin = round(100*succ[1]/nj,2)

+ whoapplies = rbind(whoapplies,c(dept,nj,femapp,getin))

+ } # Next Department

>

Now it’s in a table called whoapplies.

The explanation

> noquote(whoapplies)

Dept n Female Admitted

[1,] A 933 11.58 64.42

[2,] B 585 4.27 63.25

[3,] C 918 64.6 35.08

[4,] D 792 47.35 33.96

[5,] E 584 67.29 25.17

[6,] F 714 47.76 6.44

Departments with a higher acceptance rate have a higher percentage of male applicants.
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Does this mean that the University of California at Berkeley was not discrimi-
nating against women?

• By no means. Why does a department admit very few applicants relative to the number
who apply?

• Because they do not have enough professors and other resources to offer more classes.

• This implies that the departments popular with men were getting more resources,
relative to the level of interest measured by number of applicants.

• Why? Maybe because men were running the show.

• The “show,” definitely includes the U. S. military, which funds a lot of engineering and
similar stuff at big American universities.

Some uncomfortable truths

• Especially for non-experimental studies, statistical analyses involving just one explana-
tory variable at a time can be very misleading.

• When you include a new variable in an analysis, the results could get weaker, they could
get stronger, or they could reverse direction — all depending upon the inter-relations
of the explanatory variables and the response variable.

• Failing to include important explanatory variables in observational studies is a common
source of bias.

• Ask: “Did you control for . . . ”

At least it’s a start

• We have seen one way to “control” for potentially misleading variables (sometimes
called “confounding variables”).

• It’s control by sub-division, in which you examine the relationship in question separately
for each value of a control variable or variables.

• We have a good way of pooling the tests within each level of the control variable, to
obtain a test of conditional independence.

• There’s also model-based control, which is coming next.

Copyright Information
This document was prepared by Jerry Brunner, Department of Statistics, University of

Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported Li-
cense. Use any part of it as you like and share the result freely. The LATEX source code is avail-
able from the course website: http://www.utstat.toronto.edu/brunner/oldclass/312f22
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