Single—F actor Studies

In the last chapter, we presented a general introduction to the design of experimental and
observational studies. In this and the next two chapters, we shall focus on the design and
analysis of single-factor studies. This includes the development of single-factor analysis of
variance (ANOVA) model, the analysis and interpretation of factor level means, assessment
of model adequacy, and the use of remedial measures when necessary.

In this chapter, we briefly review the design of single-factor studies and the associated
linear models, then discuss the relation between regression and analysis of variance. In the
next few sections we introduce in detail the single-factor ANOVA model and the associated
F test for equality of factor level means. We then consider alternative formulations of the
ANOVA model, followed by a regression approach to the single-factor ANOVA model. In
the last few sections, we consider a nonparametric randomization test as an alternative to
the ANOVA test, and, finally, we present two methods for the planning of sample sizes in
single-factor studies.

16.1 Single-Factor Experimental and Observational Studies

Example 1

Single-factor experimental and observational studies are the most basic form of comparative
studies used in practice. In a single-factor experimental study, the treatments correspond to
the levels of the factor, and randomization is used to assign the treatments to the experimental
units. In the following we present three examples of single-factor studies. The first two
examples are experimental studies, and the third is a cross-sectional observational study.
We then briefly review the approach described in Chapter 15 for modeling a single-factor
study.

Ahospital research staff wished to determine the best dosage level for astandard type of drug
therapy to treat a medical condition. In order to compare the effectiveness of three dosage
levels, 30 patients with the medical problem were recruited to participate in a pilot study.
Each patient was randomly assigned to one of the three drug dosage levels. Randomization
was performed in such a way that an equal number of patients ended up being evaluated
for each drug dosage level, i.e., with exactly 10 patients studied in each drug dosage level
group. This is an example of completely randomized design, based on a single, three-level
quantitative factor. This particular design is said to be balanced, because each treatment is

replicated the same number of times. 677
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Example 2

Example 3

In an experiment to investigate absorptive properties of four different formulationg of 2
paper towel, five sheets of paper towel were randomly selected from each of the four types
(formulation 1, formulation 2, formulation 3, and formulation 4) of paper towel. Twen
6-ounce beakers of water were prepared, and the twenty paper towel sheets were randory]

assigned 1o the beakers. Paper towels were then fully submerged in the beaker wate, for
10 seconds, withdrawn, and the amount of water absorbed by each paper towel sheet wag
determined. This is an example of a completely randomized design, based on g single
four-tevel qualitative factor. ’

Four machines in a plant were studied with respect to the diameters of ball bearings they
produced. The purpose of the study was to determine whether substantial differences i
the diameters of ball bearings existed between the machines. If so0, the machines wouq
need to be calibrated. This is an example of an observational study, as no randomization of
treatments to experimental units occurred.

As we noted in Chapter 15, although the first two examples are experimental studies and
the third is an observational study, the methods used for statistical analysis are generally the
same. If the single factor has r levels, one approach to constructing a linear statistical mode}
employs r — 1 indicator variables as predictors. Then the response for the jth replicate of
the (th treatment or factor level is modeled:

ii=Bo+ b Xin+-+ B Xijr1 + &5

X 1 if treatment [
U710 otherwise

X — 1 if weaument 2
Y2710 otherwise

% _J1 if veatmentr — |
=17 10 otherwise

Recall that because all of the predictors are indicator variables, this model is somefimes
referred to as an analysis of variance model.

For the first example, we have an alternative. Because the factor—dosage level—is
quantitative with three levels, we could also model its effect using a second-order (or lower-
order) polynomial regression model, as described in Section 8.1. Specifically, two choices
for the first example are:

Yij = Bo+ BiXiji + BaXij2 + & ANOVA Model

X 1 if weatment 1
H'=70 otherwise

|1 iftreatment 2
2770 otherwise



Chapter 16  Single-Factor Studies 679
or, employing second-order polynomial model (8.1):
Yij =Bo+ Bixi; + ﬁ”xizj + &5 Regression Model
where:
x;; = centered dosage level amount for the ijth case

In the next section, we discuss the choice between the two types of models.

16.2 Relation between Regression and Analysis of Variance

llustrations

Regression analysis, as we have seen, is concerned with the statistical relation between
one or more predictor variables and a response variable. Both the predictor and response
variables in ordinary regression models are quantitative. The regression function describes
the nature of the statistical relation between the mean response and the levels of the predictor
variable(s).

We encountered the use of analysis of variance in our consideration of regression. It
was used there for a variety of tests concerning the regression coefficients, the fit of the
regression model, and the like. The analysis of variance is actually much more general than
its use with regression models indicated. Analysis of variance models are a basic type of
statistical model. They are concerned, like regression models, with the statistical relation
between one or more predictor variables and a response variable. Like regression models,
analysis of variance models are appropriate for both observational data and data based on
formal experiments. Further, as in the usual regression models, the response variable for
analysis of variance models is a quantitative variable. Analysis of variance models differ
from ordinary regression models in two key respects:

1. The explanatory or predictor variables in analysis of variance models may be qualitative
(gender, geographic location, plant shift, etc.).

2. If the predictor variables are quantitative, no assumption is made in analysis of variance
models about the nature of the statistical relation between them and the response variable.
Thus, the need to specify the nature of the regression function encountered in ordinary
regression analysis does not arise in analysis of variance models.

Figure 16.1 illustrates the essentjal differences between regression and analysis of variance
models for the case where the predictor variable is quantitative. Shown in Figure 16.1a is
the regression model for a pricing study involving three different price levels, X = $50,
$60, $70. Note that the XY plane has been rotated from its usual position so that the Y axis
faces the viewer. For each level of the predictor variable, there is a probability distribution
of sales volumes. The means of these probability distributions fall on the regression curve,
which describes the statistical relation between price and mean sales volume.

The analysis of variance model for the same study is illustrated in Figure 16.1b. The three
price levels are treated as separate populations, each leading to a probability distribution
of sales volumes. The quantitative differences in the three price levels and their stauistical
relation to expected sales volume are not considered by the analysis of variance model.
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FIGURE 16.1 Relation between Regression and Analysis of Variance Models.
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Figure 16.2 illustrates the analysis of variance model for a study of the effects of four
different types of incentive pay systems on employee productivity. Here, each type of
incentive pay system corresponds to a different population, and there is associated with
each a probability distribution of employee productivities (¥). Since typg of incentive pay
system is a qualitative variable, Figure 16.2 does not contain a corresponding regression
model representation.

Choice between Two Types of Models
As we have seen in Chapter 8, regression analysis can handle qualitative predictor variables
by means of indicator variables. When indicator variables are so used with regression
models, the regression results will be identical to those obtained with analysis of varianc®
models. The reason why analysis of variance exists as a distinct statistical methodology 18
that the structure of the predictor indicator variables permits computational simplifications
that are explicitly recognized in the statistical procedures for the analysis of variance.
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$ Hence, there is no fundamental choice between regression and analysis of variance models
when the predictor variables are qualitative.

On the other hand, there is a choice in modeling when the predictor variables are quan-
titative. One possibility is to recognize the quantitative nature of the predictor variables
explicitly; this can only be done by a regression model. The other possibility is to set up

3 classes for each quantitative variable and then employ either indicator variables in a regres-

: sion model or an analysis of variance model. As we mentioned in Chapter 8, the strategy of
setting up classes for quantitative variables is sometimes followed in large-scale studies as
ameans of obtaining a nonparametric regression fit when there is substantial doubt about
the nature of thestatistical relation. Here again, analysis of variance models and regression
models with indicator variables will lead to identical results.

3 Single-Factor ANOVA Model

- sic Ideas

The basic elements of the ANOVA model for a single-factor study are quite simple. Corre-
sponding to each factor level, there is a probability distribution of responses. For example,
in a study of the effects of four types of incentive pay on employee productivity, there is
a probability distribution of employee productivities for each type of incentive pay. The
ANOVA model assumes that:

1. Each probability distribution is normal.

2. Each probability distribution has the same variance.

3. The responses for each factor level are random selections from the corresponding prob-
ability distribution and are independent of the responses for any other factor level.

Figure 16.2illustrates these conditions. Note the normality of the probability distributions
and the constant variability. The probability distributions differ only with respect to their
means. Differences in the means therefore reflect the essential factor level effects, and it is
for this reason that the analysis of variance focuses on the mean responses for the different
factor levels.

The analysis of the sample data from the factor level probability distributions usually
proceeds in two steps:

1. Determine whether or not the factor level means are the same.
2. If the factor level means differ, examine how they differ and what the implications of
the differences are.

In this chapter, we consider step 1, the testing procedure for determining whether or not the
factor level means are the same. In the next chapter, we take up the analysis of the factor
level means when the means differ.

Cell Means Model

Before stating the ANOVA model for single-factor studies, we need to develop some nota-
tion. We shall denote by r the number of levels of the factor under study (e.g., r = 4 types
of incentive pay), and we shall denote any one of these levels by theindex i (( =1, ..., 7).

The number of cases for the ith factor level is denoted by #;, and the total number of cases
.
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in the study is denoted by n7, where:

r

nr = Zl'[,’ (16.1)

i=I
This notation differs from that used earlier for regression models, where the Subscript ;
identifies the case or trial.

For analysis of variance models we shall always use the last subscript to represent the
case or trial for a given factor level or treatment. Here, the index j will be used o identj
the given case or trial for a particular factor level. We shall let Y;; denote the value of the
response variable in the jth trial for the /th factor level. For instance, Y;; is the productiy
of the jth employee in the ith incentive plan, or the sales volume of the jth store featury
the Ith type of shelf display. Since the number of cases or trials for the ith factor level is
denoted by n;, wehave j = 1,..., n;.

The ANOVA model can now be stated as follows:

Yy = pi + & (16.2)

where:

Y, is the value of the response variable in the jth trial for the ith factor level or
treatment

[ are parameters

&;j are independent N (0, %)

(=1,....15j=1....m

This model is called the cell means model for reasons to be explained shortly. This mocdel

may be used for data from observational studies or for data from experimental studies based
on a completely randomized design.

Important Features of Model

1. The observed value of Y in the jth trial for the i th factor level or treatment is the sum
of two components: (a) a constant term zi; and (b) a random error term &;.
2. Since E{g;;} = 0, it follows that:

E{Yyl = w (16.3)
Thus, all responses or observations ¥;; for the ith factor level have the same expectation i,

and this parameter is the mean response for the /th factor level or treatment.
3. Since ; is a constant, it follows from (A.16a) that:

UZ{Yij}:Uz{Sij} = o’ (16.4)
Thus, all observations have the same variance, regardless of factor level.
4. Since each g;; is normaily distributed, so is each Y;;. This follows from (A.36) because
Y;; 1s a linear function of &;.
5. Theerror terms are assumed to be independent. Hence, the error term for the outcome
on any one trial has no effect on the error term for the outcome of any other trial for the
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2 same factor level or for a different factor level. Since the &;; are independent, so are the
responses Y;;.

. 6. In view of these features, ANOVA model (16.2) can be restated as follows:

Y;; are independent N (1;, o?) (16.5)

z Suppose that ANOVA model (16.2) is applicable to the earlier incentive pay study illustration
mple . _
- and that the parameters are as follows:

wm =170 My = 58 M3 =90 ns =84 =4

: Figure 16.2 contains a representation of this model. Note that employee productivities for
incentive pay type 1 according to this model are normally distributed with mean p; = 70
and standard deviation o = 4.
Suppose that in the jth trial of incentive pay type 1, the observed productivityis Y, ; = 78.
In that case, the error term value is £;; = 8, for we have:

x ‘81j:Y|j—[Ll:78—70:8

Figure 16.2 shows this observation Y;. Note that the deviation of Y,; from the mean 1,
represents the error term & ;. This figure also shows the observation Y,; = 51, for which
the error term value is &,; = —7.

the ANOVA Model Is a Linear Model
ANOVA model (16.2) is a linear model because it can be expressed in matrix terms in the
form (6.19), i.e., as Y = XB + €. We illustrate this for a study involving r = 3 treatments,
and for which n; = ny = n3 = 2. Y, X, B, and € are then defined as follows here:

FY” Fl 0 0 r&‘[l
le 1 00 iy €12
_ Y2| _ 010 _ _ €91
Y=y X=10 1 0 B= |us e= |2 (166)
Ygl 0 01 K3 €3
_Ygz _0 01 [ £32

Note the simple structure of the X matrix and that the B vector consists of the means ;.
To see that these matrices yield ANOVA model (16.2), recall from (6.20) that the vector
of expected values E{Y;} is given by E{Y} = Xp. We thus obtain:

E{Y} 1 00 M1
E{Y),} 1 00 M
E{Yy) 0 1 Of | 2 '
E{Y3} 0 01 M3
E{Ys,} 0 01 “3
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This indicates properly that £{Y;;) = u,. Hence, ANOVA model (16.2)—Y;,

) . . B . j = I‘Li +€ij\
in matrix form is given by Y = Xg + €:

Yy 231 &

le 1241 Ei2

Y M2 £

Y= =X €= +

Y22 B * 2 €2 (]6-8)

Y3 M3 £3i

Y3 J7 £

Since the error terms in the model have the same structure as those in general liney
regression model (6.19)—namely, independence and constant variance—the variance.
covariance matrix of the error terms in the ANOVA model is the same as in (6.19):

s 0 .. 0
) 0 o2 .. 0 .
o'fe}=| . : | =071 (16.9)
0O 0 ... g2

In addition, like for general linear regression model (6.19), the variance-covariance matrix
of the Y responses is the same as that of the error terms:

oY} ="l (16.10)

When ANOVA model (16.2) is expressed as a linear model, as in (16.8), it can be seen
why it is called the cell means model, because the B vector contains the means of the
“cells”—here factor levels. In Section 16.7 we discuss an equivalent ANOVA model called
the factor effects model, where the B vector contains components of the factor level means,

Interpretation of Factor Level Means

Observational Data. Inanobservational study, the factor level means y; correspondtothe
means for the different factor level populations. For instance, in a study of the productivity
of employees in each of three shifts operated in a plant, the populations consist of the
employee productivities for each of the three shifts. The population mean g, is the mean
productivity for employees in shift 1, and p5 and 5 are interpreted similarly. The variance
o? refers to the variability of employee procuctivities within a shift.

Experimental Data. In an experimental study, the factor level mean y; sténds for the
mean response that would be obtained if the ith treatment were applied to all units in
the population of experimental units about which inferences are to be drawn. Similarly,
the variance o refers to the variability of responses if any given experimental treatment
were applied to the entire population of experimental units. For instance, in a completely
randomized design to study the effects of three different training programs on employee
productivity, in which 90 employees participate, a third of these employees is assigned at
random to each of the three programs. The mean 1, here denotes the mean productivity if
training program 1 were given to each employee in the population of experimental units; the
means 11, and 3 are interpreted correspondingly. The variance o' denotes the variability
in productivities if any one training program were given to each employee in the population
of experimental units.
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mstmctlon between ANOVA Models | and I

We shall consider two single-factor analysis of variance models. For brevity, we shall refer
to these as ANOVA models I and . ANOVA model I, which was stated in (16.2), applies to
such cases as a comparison of five different advertisements or a comparison of four different
rust inhibitors, where the conclusions pertain to just those factor levels included in the study.
ANOVA model II, to bé discussed in Chapter 25, applies to a different type of situation,
namely, where the conclusions extend to a population of factor levels of which the levels in
the study are a sample. Consider, for instance, a company that owns several hundred retail
stores throughout the country. Seven of these stores are selected at random, and a sample
of employees from each store is then chosen and asked in a confidential interview for an
evaluation of the management of the store. The seven stores in the study constitute the seven
levels of the factor under study, namely, retail store. In this case, however, management is
not just interested in the seven stores included in the study but wishes to generalize the study
results to all of the retail stores it owns. Another example when ANOVA model Il is applica-
ble is when three machihes out of 75 in a plant are selected at random and their daily output
is studied for a period of 10 days. The three machines constitute the three factor levels in this
study, but interest is not just in the three machines in the study but in all machines in the plant.

Thus, the essential difference between situations where ANOVA models I and II are
applicable is that model I is relevant when the factor levels are chosen because of intrinsic
interest in them (e.g., five different advertisements) and they are not considered to be a
sample from a larger population. ANOVA model II is appropriate when the factor levels
constitute a sample from a larger population (e.g., three machines out of 75) and interest is
in this larger population. Thus, ANOVA model I is also referred as the fixed effects model,
and ANOVA model II is called the random effects model. In this and the next two chapters,
we focus on ANOVA model I. For brevity, we omit the word “fixed” or “model I’ and
simply refer to the model as the ANOVA model.

Comment

The ANOVA model (16.2) for single-factor studies, like any other statistical model, is not likely to
be met exactly by any real-world situation. However, it will be met approximately in many cases. As
we shall note later, the statistical procedures based on ANOVA model (16.2) are quite robust, so that
even if the actual conditions differ substantially from those of the model, the statistical analysis may
still be an appropriate approximation. ]

16.4 Fitting of ANOVA Model

The parameters of ANOVA model (16.2) are ordinarily unknown and must be estimated
from sample data. As with normal error regression models, the method of least squares and
the method of maximum likelihood lead to the same estimators of the model parameters
in normal error ANOVA model (16.2). Before turning to these estimators, we shall describe
an example to be used in this chapter and the next, and we shall develop needed additional
notation.

The Kenton Food Company wished to test four different package designs for a new break-
fast cereal. Twenty stores, with approximately equal sales volumes, were selected as the
experimental units. Each store was randomly assigned one of the package designs, With each
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TABLE 16.1
Number of
Cases Sold by
Stores for Each
of Four
Package
Designs—
Kenton Food
Company
Example.

FIGURE 16.3
JMP Scatter
Plot of Number
of Cases Sold
by Package
Design—
Kenton Food
Company
Example.

Notation

Store (§) :
Package Numberige:
Design 1 2 3 4 5 Total Mean Stores
i Ya Yo Yo Y Vi L3 Y. m
1 1M 17 16 14 15 73 14.6 5
2 12 10 15 19 11 67 13.4 5
3 23 20 18 17 78 19.5 4
4 27 33 22 26 28 136 27.2 5
All designs Y. =354 V.=18.63 19
351
o
30
- 25 g
g ° °
§ 20 o e}
8 g 8
15 o
woF  © g
5 | | | —
1 2 3 4

Package Design

package design assigned to five stores. A fire occurred in one store during the study period,
so this store had to be dropped from the study. Hence, one of the designs was tested in only
four stores. The stores were chosen to be comparable in location and sales volume. Other
relevant conditions that could affect sales, such as price, amount and location of shelf space,
and special promotional efforts, were kept the same for all of the stores in the experiment.
Sales. in number of cases, were observed for the study period, and the results are recorded
in Table 16.1. This study is a completely randomized design with package design as the
single, four-level factor. .

Figure 16.3 contains a JMP scatter plot of the number of cases sold versus package
design number. We readily see that designs 3 and 4 led to the largest sales, and that designs
1 and 2 led to smaller sales. We also see that the variability in store sales appears to be about
the same for the four designs, consistent with ANOVA model (16.2). To make more formal
inferences, we first need to develop some additional notation,

As explained earlier, Y;; represents the observation or response for the jth sample unit for
the ith factor level. For the Kenton Food Company example, Y;; denotes the number of
cases sold by the jth store assigned to the ith package design. For instance, Y, represents
the sales of the first store assigned package design 1. For our example, Y;; =11 cases.
Similarly, sales of the second store assigned package design 3 are Y3, = 20 cases.
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The total of the observations for the ith factor level is denoted by Y;.:

Y=Y ¥ (16.11)
: J=l
~= Note that the dot in Y;. indicates an aggregation over the j index; in our example, the

aggregation is over all stores assigned to the ith package design. For instance, the total
sales for all stores assigned package design 1 are, according to Table 16.1, Y. = 73 cases.
Similarly, total sales for all stores assigned package design 4 are Y,. = 136 cases.
The sample mean for the ith factor level is denofed by ¥,.:
1y
Y. = Lim Yy Y (16.12)
n; n;
In our example, the mean number of cases sold by stores assigned package design 1 is
Y,. = 73/5 = 14.6..Note that the dot in the subscript Y;. indicates that the averaging is
done over j (stores).
The total of all observations in the study is denoted by Y..:

Y. = ZZYJ (16.13)

i=1 j=t1

where the two dots indicate aggregation over both the j and i indexes (in our example, over
all stores for any one package design and then over all package designs). In our example,
the total sales for all stores for all designs are Y. = 354.
Finally, the overall mean for all responses is denoted by Y..:
— DI TN A
Y.= 22, Yy = (16.14)
nr nr

The two dots here indicate that the averaging is done over both i and j. For our example,
we have from Table 16.1 that Y.. = 354/19 = 18.63. Note that the overall mean (16.14)
can be written as a weighted average of the factor level means in (16.12):

r

e (16.14a)

nr

=~

i=1

Least Squares and Maximum Likefihood Estimators

According tothe least squares criterion, the sum of the squared deviations of the observations
around their expected values must be minimized with respect to the parameters. For ANOVA
model (16.2), we know from (16.3) that the expected value of observation Y;; is E{Y};} = -
Hence, the quantity to be minimized is:

0=> > (¥ —-mw)’ (16.15)
i
Now (16.15) can be written as follows:

0=~ + Y Wy — i)+ + Yy — ) (16.152)
i i 7
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Note that each of the parameters appears in only one of the component sums jp (16.15
Hence, Q can be minimized by minimizing each of the component sums Separatdy. Ita');
well known that the sample mean minimizes a sum of squared deviations. Hence, [he.le 8
squares estimator of ;. denoted by i, is: ast
Thus, the fitfed value for observation Y;;, denoted by fﬂ, for regression models, jg Simpl,
the corresponding factor level sample mean here: y

¥y =Y. (16.17)
The same estimators are obtained by the method of maximum likelihood. The likelihoog

function here corresponds to that in (1.26) for the normal error simple linear regressjo
model, except that the regression model expected value By + B X; is replaced here by u:

5 1 1 R
L{py, ..., e, © )=Wexp ‘QZZ(YU“M:) (16.18)
i
Maximizing this likelihood function with respect to the parameters p; is equivalent to
minimizing the sum Y > (Y;; — 4;)” in the exponent, which is the least squares criterion
in (16.15).

For the Kenton Food Company example, the least squares and maximum likelihood esti-
mates of the model parameters are as follows according to Table 16.1:

Parameter Estimate
u i =Y.=146
M2 fla = ):2- =134
M3 p3="Y. =195
Ha fla=VYy. =272

Thus, the mean sales per store with package design | are estimated to be 14.6 cases for
the population of stores under study, and the fitted value for each of the observations for
package design 1 is )Aﬁ_,- = Y,. = 14.6. Similarly, the mean sales for package design 2 are
estimated to be 13.4 cases per store, and the fitted values for each response forthis package
design is )A/g, = )72. = 134.

Comments

1. The least squares and maximum likelihood estimators in (16.16) have all of the desirable
properties mentioned in Chapter 1 for the regression estimators. For example, they arc minimum
variance unbiased estimators.

2. To derive the least squares estimator of y;, we need to minimize, with respect to pi;, the ith
component sum of squares in (16.15a):

O = Z(Yij - i)’ (16‘19)
i
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Differentiating with respect to y;, we obtain:

dQ;
ek _ —2(Y; —
d E, (Yy — ty)

When we set this derivative‘équal to zero and replace the parameter gy by the least squares estimator
{1, we obtain the result in (16.16):

n;

-2 (Hy—p) =0
j=1

Z Yy =nmiy
J

=1 |

Residuals are highly useful for examining the aptnéss of ANOVA models. The residual e;;
is again defined, as for regression models, as the difference between the observed and fitted
values:

ey =Yy — Y=Y, — Y. (16.20)

Thus, a residual here represents the deviation of an observation from its estimated factor
level mean.

An important property of the residuals for ANOVA model (16.2) is that they sum to zero
for each factor level i:

dey=0 i=1,...,r (16.21)

J
As for regression analysis, residuals for ANOVA models are useful for examining the
appropriateness of the ANOVA model. We shall discuss this use of residuals in Chapter 18.

Table 16.2 contains the residuals for the Kenton Food Company example. For instance,
from Table 16.1, we find:

€ = Y“ — Y]. =11-— 14.6 = —3.6
en =Yy —Y.=12—-134=—1.4

Note from Table 16.2 that the residuals sum to zero for each factor level, as expected.

Package Design i Store (/) - S
i 1 2 3 4 5 Total
1 —3.6 24 1.4 —.6 4 0
2 14 34 16 S6 -24 0
3 3., 5 18 -28 0
4 -2 58 -S2 -12 .8 0
Alll designs 0
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16.5 Analysis of Variance

Just as the analysis of variance for a regression model partitions the total sum of squares jng,
the regression sum of squares and the error sum of squares, so a corresponding Partitionjp,
exists for ANOVA model (16.2). &

Partitioning of $STO
The total variability of the ¥;; observations, not using any information about factor levels
is measured in terms of the total deviation of each observation, i.e., the deviation of Y,
1

around the overall mean Y..:

Yy — Y. (16.22)

When we utilize information about the factor levels, the deviations reflecting the uncertainty
remaining in the data are those of each observation ¥;; around its respective estimated factor
level mean Y,.:

Yij— Y. (16.23)

The difference between the deviations (16.22) and (16.23) reflects the difference between
the estimated factor level mean and the overall mean:

Yy —Y.)— (Y~ V) =Y. - Y. (16.24)
Note from (16.24) that we can decompose the total deviation ¥;; — Y. into two compo-
nents:
Yj~-Y. = Y.-Y. + Y;,-Y. (16.25)
S—— N——— N——
Total Deviation ol Deviation
deviation estimated around
lactor level estimited
mean around factor
overall mean level mean

Thus, the total deviation ¥;; — Y.. can be viewed as the sum of two components:

1. The deviation of the estimated tactor level mean around the overall mean.
2. The deviation of ¥;; around its estimated factor level mean, which is simply the residual
¢;; according to (16.20).

Figure 16.4 illustrates this decomposition for the Kenton Food Company example for two
of the observations, Y;; and Yys.

When we square both sides in (16.25) and then sum, the cross products on the right drop
out and we obtain:

Py —YY =) (e~ VY4 ) Y (¥ - 1Y (16.26)
1 J i i i

The term on the left measures the total variability of the ¥;; observations and is denoted, 8
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¢ RE16.4 Illustration of Partitioning of Total Deviations ¥;; — Y..—Kenton Food Company Example (not

siited to scale; only observations Yy;
ente

(3} Total Deviations ¥; — V..

and Y5 are shown).

." (b) Deviations ¥; — V,.

(c) Deviations ¥, — V..

Y Y
y45 y45\ _
""""""""""""""""""" _ _ Y.
----------------------------- — 77 R
v 4: 4
/Y‘\ ___________________________________ V.. /Y,\
""""""""""""""" J '_T_Vl""""""'"" n.-t- 71.
T St
0 0
for regression, by SSTO for fotal sum of squares:
(16.27)

SSTO =Y "> (¥; - Y1)’
i J

The first term on the right in (16.26) will be denoted by SSTR, standing for treatment
sum of squares:

SSTR =Y n;(¥:. — ¥.)? (16.28)
1

The second term on the right in (16.26) will be denoted by SSE, standing for error sum of

squares:
SSE=Y Y (¥ —-¥)2 =YY €, (16.29)
i i i i
Thus, (16.26) can be written equivalently:
SSTO = SSTR + SSE (16.30)

The correspondence to the regression decomposition in (2.50) is readily apparent.
The total sum of squares for the analysis of variance model is therefore made up of these
two components:

1. SSE: A measure of the random variation of the observations around the respective
estimated factor level means. The less variation among the observations for each factor
level, the smaller is SSE. If SSE = 0, the observations for any given factor level are all the
same, and this holds for all factor levels. The more the observations for each factor level
differ among themselves, the larger will be SSE.

2. SSTR: A measure of the extent of differences between the estimated factor level means,
based on the deviations of the estimated factor level means ¥;. around the overall mean ¥...
If all estimated factor level means ¥;. are the same, then SSTR = 0. The more the estimated
factor level means differ, the larger will be SSTR. .
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Example The analysis of variance breakdown of the total sum of squares for the Kenton oy
—————— pany example in Table 16.1 is obtained as follows, using (16.27), (16.28), and (16.29)-

SSTO = (11 — 18.63)* + (17 — 18.63)* + (16 — 18.63) + -+ - + (28 — 18 632

= 746.42
SSTR = 5(14.6 — 18.63) 4 5(13.4 — 18.63)? + 4(19.5 — 18.63)* +5(27.2 — 18.63y2
= 588.22
SSE = (11 — 14.6)> + (17 — 14.6)* + (16 — 14.6)” 4 - - - + (28 — 27.2)?
= 158.20

Thus, the decomposition of SS70 is:
746.42 = 588.22 4 158.20
SSTO = SSTR + SSE

Note that much of the total variation in the observations is associated with variation betweeq
the estimated factor level means.

Comments
I. To prove (16.26), we begin by considering (16.25):
Vy~Y.= ¥~ V) + (¥~ 1)
Squaring both sides we obtain:
(Y = Y.)2 = (i = V)P + (Vi = X2 4+ 2% ~ Y)Yy = ¥p)

When we sum over all sample observations in the study (i.e., over both i and j), we obtain:

DD W=V =3 N %Y+ Y Y ¥V Y Y 2%~ Yy -k
Y t t b (16.31)
The first term on the right in (16.31) equals:
) ZZ(;’, —Y.)l = lei()_’,. - Y.)? (16.32)
i i

since (}—’,». ~ Y..)? is constant when summed over j; hence, 1; such terms are picked up for the
summation over j. *
The third term on the right in (16.31) equals zero:

NN 2~ X -y =2) H-Y)Y (¥-K)=0  (1633)
i i i

i

This follows because )7, — Y. is constant for the summation over J+ hence, it can be brought in front
of the summation sign over j. Furthey, > Yoy — Y;.) = O for all £, since the sum of the deviations
around the arithmetic mean is always zero.

Thus, (16.31) reduces to (16.26).
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2. The squared estimated factor level mean deviations ( )_’, — )_’..)2 in SSTR in (16.28) are weighted
by the number of cases r; for that factor level. The reason is that for each observation Y;; at factor

level i, the deviation component ;l ~ Y. is the same. |

f?down of Degrees of Freedom

Corresponding to the decomposition of the total sum of squares, we can also obtain a
breakdown of the associated degrees of freedom.

SSTO has nt — 1 degrees of freedom associated with it. There are altogether ny deviations
Y, — Y.., but one degree of freedom is lost because the deviations are not independent in
that they must sum to zero; i.e., > > (¥; — ¥..) = 0.

SSTR has r — 1 degrees of freedom associated with it. There are r estimated factor level
mean deviations i’_, —Y.., but one degree of freedom is lost because the deviations are not
independent in that the weighted sum must equal zero; i.e., Y n; ;. — )—’..) =0.

SSE has nt — r degrees of freedom associated with it. This can be readily seen by
considering the component of SSE for the ith factor level:

Z( ~Y,.)? (16.34)

The expression in (16.34) is the equivalent of a total sum of squares considering only the
ith factor level. Hence, there are n; — 1 degrees of freedom associated with this sum of
squares. Since SSE is a sum of component sums of squares such as the one in (16.34), the
degrees of freedom associated with SSE are the sum of the component degrees of freedom:

=D+ Ga—1D)++p—1)=nr—r (16.35)

For the Kenton Food Company example, for which nr =19 and r =4, the degrees of
freedom associated with the three sums of squares are as follows:

ss df
A\Y[O) 19-1=18
SSTR 4-1=
SSE 19 — 15

Note that degrees of freedom, like sums of squares, are additive:

18=3415

Mean Squares

The mean squares, as usual, are obtained by dividing each sum of squares by its associated
degrees of freedom. We therefore have:

SSTR
r —

SSE

ny —r

MSTR =

(16.36a)

MSE = (16.36b)
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Here, MSTR stands for treatment mean square and MSE, as before, stands for error m
an

square.
Example For the Kenton Food Company example, we obtain from earlier results:
588.22
MSTR = = 196.07
158.20
MSE = 5 = 10.55

Note that the two mean squares do not add to SSTO/(ny — 1) =746.42/18 =4147
Thus, the mean squares here, as in regression, are not additive, ’

Analysis of Variance Table

The breakdowns of the total sum of squares and degrees of treedom, together with the
resulting mean squares, are presented in an ANOVA table such as Table 16.3. The ANOVA
table for the Kenton Food Company example is presented in Figure 16.5 which contains the
JMP output for single-factor analysis of variance. Note that the output contains the overz]|
mean response (Y = 18.63158), the number of observations, the ANOVA table, and the
estimated factor level means )_’,~ .- Inthis table, the line for the treatments source of variation i
labeled “Package Design.” The results in the JMP output are shown to more decimal places
than we have shown, but are consistent with our calculations. Note also that the JMP ANOVA
table shows the degrees of freedom column before the sum of squares column. The columns
labeled “Std Error,” “Lower 95%.” and “Upper 95%" will be discussed in Chapter 17.

Expected Mean Squares

The expected values of MSE and MSTK can be shown to be as follows:

E{MSE} = ¢* (16.37a)
E{MSTR} = o> + Z”(“—T“) (16.37b)
-
where;
p = ik (16.37)

nr
is referred to as the weighted mean. These expected values are shown in the E{MS} column
of Table 16.3.

TABLE 16.3 ANOVA Table for Single-Factor Study.

Source of
Variation 5 df Ms E{MS}
v v ni(fi — )

Between SSTR=5 " mi(Ye. — Y..)? r—1 MSTR = SSTR o+ —Z—Q—L—{"

treatments r—1 r=

= E

Error (within SE=Y S (i— )2 m—r  MSE= > o2

treatments) fr =7

Total SSTO = 5" 5 °(Yy — ¥..)? ny —1
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Oneway Anova

Summary of Fit
Rsquare 0.788055
Adj Rsquare 0.745666
Root Mean S(iuare Error 3.247563
Mean of Response 18.63158
Observations (or Sum Wgts) 19

Analysis of Variance

Source DF Sum of Squares Mean Square FRatio Prob>F
Package Design 3 588.22105 196.074 18.5911 <.0001
Error 15 158.20000 10.547

C. Total 18 746.42105

Means for Oneway Anova

Level  Number Mean  Std Error Lower 95%  Upper 95%
1 5 14.6000 1.4524 11.504 17.696
2 5 13.4000 1.4524 10.304 16.496
3 4 19.5000 1.6238 16.039 22.961
4 5 27.2000 1.4524 24.104 30.296

Std Error uses a pooled estimate of error variance

@ 1y = p2 = B3 = g = B¢ (b) p; Not Equal

/\ M
e M2 Ly M3

Two important features of the expected mean squares deserve attention:

1. MSE is an unbiased estimator of o2, the variance of the error terms &; 7» whether or
not the factor level means p; are equal. This is intuitively reasonable since the variability of
the observations within each factor level is not affected by the magnitudes of the estimated
factor level means for normal populations.

2. When all factor level means y; are equal and hence equal to the weighted mean ., then
E{MSTR} = o? since the second term on the right in (16.37b) becomes zero. Hence, MSTR
and MSE both estimate the error variance o when all factor level means y; are equal. When,
however, the factor level means are not equal, MSTR tends on the average to be larger than
MSE, since the second term in (16.37b) will then be positive. This is intuitively reasonable,
as illustrated in Figure 16.6 for four treatments. The situation portrayed there assumes
that all sample sizes are equal, i.e., n; =n. When all w; are equal, then all I—’, follow the
same sampling distribution, with common mean g, and variance 0¥/ n; this is pertrayed in
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Figure 16.6a. When the y; are not equal, on the other hand, the ;. follow different samplp,
distributions, each with the same variability o/n but centered on difterent means Hi. One
such possibility is shown in Figure 16.6b. Hence, the Y;. will tend to differ more frop ¢
other when the y; differ than when the y; are equal, and consequenty MSTR Wil teng
to be larger when the factor level means are not the same than when they are equal, Thig
property of MSTR is utilized in constructing the statistical test discussed in the next Section
to determine whether or not the factor level means y; are the same. If MSTR and MSE
are of the same order of magnitude, this is taken to suggest that the factor leve] means y;,
are equal. If MSTR is substantially larger than MSE, this is taken to suggest that the 14 are
not equal.

Comments

1. To find the expected value of MSE. we firsi note that MSE can be expressed as follows:

MSE = — '_ ; ZZ(YU A%
J

i

I (Y, —Y.)?
- Z[(n,.—l)—z-’ 7z J (16.38)

ny —r -
Now let us denote the ordinary sample variance of the observations for the ith factor level by s,.z:

2 _ Z,(Y’I - }_11)2

55 - (16.39)
Hence, (16.38) can be expressed as follows:
I >
MSE = i — s 16.40
i g (ni = s; (16.40)

Since it 1s well known that the sample variance (16.39) is an unbinsed estimator of the population
variance. which in our case is o2 for all factor levels, we obtain:

E{MSE) ! > - DE{s?}

Il

nr —r —
I
1 Z 2
= (ll,'— |)O"
iy —r L)
i
2
= g

2. We shall derive the expected value of MSTR for the special case when all sample sizes 1; ar€
the same. namely. when n, = 1. The general result in (16.37b) becomes for this special case:
ny (u — )

E{MSTR} = o> + —= T whenm =n (16.47)
F—

Further, when all factor level sample sizes are n. MSTR as defined in (16.28) and (16.30a) becomes:

n Z()—’, - )_’..)2

r—1

MSTR = when r; = n (16'42)
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To derive (16.41), consider the model formulation for ¥}, in (16.2):
Yy=p +g
t
Averaging the'Y;; for the ith factor level, we obtain:
Y. = i + &
where g,. is the average of the g;; for the ith factor level:

= Z]si}
T oon

&.
Averaging the Y;; over all factor levels, we obtain:
Y. = W +e€.
where ., which is deﬁwned in (16.37c), becomes for n; = n:

o "ZM _ le«t
r

= whenn; =n
nr

and £.. is the average of all &y

s 22t

nr
Since the sample sizes are equal, we also have:

Y. = rr g = 2
r

T or

Using (16.43) and (16.45), we obtain:

Y — Yo = (i + &) — (1 +8.) = (i — p) + G — 5.

When we square l_’, — Y.. and sum over the factor levels, we obtain:

D KXY =) =)+ Y G —E)H2Y (u— p)En— E)

(16.43)

(16.44)

(16.4S)

(16.46)

(16.47)

(16.48)

(16.49)

(16.50)

We now wish to find E{} (¥, — ¥..)2}, and therefore need to find the expected value of each term

on the right in (16.50):
a. Since Y (u; — 1.)? is a constant, its expectation is:

E{Z(Ih‘ - Il«-)z} = Z(Il«i —u)?

(16.51)

b. Before finding the expectation of the secand term on the right, consider first the expression:

S (E. —&.)?

r—1

This is an ordinary sample variance, since £.. is the sample mean of the r terms &;. per (16.48).
We further know that the sample variance is an unbiased estimator of the variance of the
variable, in this case the variable being ;.. But £;. is just the mean of » independent error terms

&;; by (16.44). Hence:

_ o?{ey) _ gj

i} =

oz,
n
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o

Therefore:

n

E{ > (& —IE..)Z} _ o?
F—

so that:

o r —1)o?
E{Z(E" - E"r} = IFTL (165

c. Since both &;. and &.. are means of ;; terms. all of which have expectation Q, j follows that:
E{g.} =0  Elg.} =0

Hence:

E{Z Z(ui - (& — E..)} = ZZ(#’ - u)E{g. —8.)=0 (16.53),
We have thus shown. by (16.51), (16.52), and (16.53), that:

E{Z(Z. — )7..)2} = Z([i,’ — ,u.)l + (L_”Ji

But then (16.41) follows at once:

E{MSTR} = E{”Z(Yi' - Y")'} - rf | [Z(m oy b

r—1 n

ny (up — )’

,
=0+ =—- whennm; =n
r—1 R

16.6 F Test for Equality of Factor Level Means

It is customary to begin the analysis of a single-factor study by determining whether or not
the factor level means y; are equal. If, for instance, the four package designs in the Kenton
Food Company example lead to the same mean sales volumes, there is no need for further
. analysis, such as to determine which design is best or how two particular designs compare
in stimulating sales.
Thus, the alternative conclusions we wish to consider are:

Hy: = Uy == U,
0 M1 = M2 K (16.54)
H,: not all u; are equal
Test Statistic
The test statistic to be used for choosing between the alternatives in (16.54) is:
. _ MSTR (16.55)
MSE

Note that MSTR here plays the role corresponding to MSR for a regression model.

Large values of F* support H,,, since MSTR will tend to exceed MSE when H, holds, 8
we saw from (16.37). Values of F* near 1 support Hy, since both MSTR and MSE have the
same expected value when Hj, holds. Hence, the appropriate test is an upper-tail one.



Chapter 16  Single-Factor Studies 699

of F*

When all treatment means p; are equal, each response Y;; has the same expected value. In
view of the additivity.of sums of squares and degrees of freedom, Cochran’s theorem (2.61)
then implies:

SSE SSTR .
When Hy holds, —- and —— are independent x? variables
o o

It follows in the same fashion as for regression:
When Hp holds, F* is distributed as F(r — 1, ny — r)

When H, holds, that is, when the y; are not all equal, F* does not follow the F distri-
bution. Rather, it follows a complex distribution called the noncentral F distribution. We
shall make use of the noncentral F distribution when we discuss the power of the F test in
Section 16.10.

Comment

SSTR and SSE are independent even if all y; are notequal. SSTR is solely based on the estimated factor
level means ;.. On the other hand, SSE reflects the variability within the factor level samples, and
this within-sample variability is not affected by the magnitudes of the estimated factor level means
when the error terms are normally distributed. ]

“siistruction of Decision Rule

Usually, the risk of making a Type I error is controlled in constructing the decision rule.
This provides protection against making further, more detailed, analyses of the factor effects
when in fact there are no differences in the factor level means. The Type II etror can also
be controlled, as we shall see later in Section 16.10, through sample size determination.

Since we know that F* is distributed as F(r — 1, ny — r) when Hp holds and that large
values of F* lead to conclusion H,, the appropriate decision rule to control the level of
significance at « is:

If F* < F(1 —a;r — 1, ny — r), conclude Hy

(16.56)
If F*> F(1 —a;r —1,n7 —r), conclude H,
where F(1 —a;r — 1, ny —r) is the (1 — &) 100 percentile of the appropriate F distribution.

For the Kenton Food Company example, we wish to test whether or not mean sales are the
same for the four package designs:
Hp: iy = g = p3 = s
H,: not all u; are equal
Management wishes to control the risk of making a Type I error at @ = .05. We therefore
require F(.95; 3, 15), where the degrees of freedom are those shown in Figure 16.5. From
Table B.4 in Appendix B, we find F(.95; 3, 15) = 3.29. Hence, the decision rule is:
If F* < 3.29, conclude Hp
If F* > 3.29, conclude H,
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Using the data in the ANOVA table in Figure 16.5, we obtain the test statistic:

_ MSTR _ 196.07
T MSE ~ 10.55

*

= 18.6

Since £* = 18.6 > 3.29, we conclude H,, that the tactor level means w; are not equal, o
that the four different package designs do not lead to the same mean sales volume, Ths,
we conclude that there is a relation between package design and sales volume,

The P-value for the test statistic is the probability P{F (3, 15) > F* = 18.6}, which i
.00003. This P-value again indicates that the data from the experiment are not consisteny
with all designs having the same effect on sales volume.

The conclusion of a relation between package design and sales volume did not SUrprise
the sales manager of the Kenton Food Company. The study was conducted in the first place
because the sales manager expected the four package designs to have different effects oq
sales volume and was interested in finding out the nature of these differences, In the next
chapter, we discuss the second stage of the analysis, namely, how to study the nature of the
factor level means when differences exist.

Comments

1. If there are only two factor levels so that r = 2. it can easily be shown that the test employing
F*in (16.55) is the equivalent of the two-population, two-sided 7 test in Table A.2a. The F test here
has (1. ny — 2) degrees of freedom. and the 7 test has iy + 1> — 2 or ny — 2 degrees of freedom; thus
both tests lead to equivalent critical regions. For comparing two population means. the 7 test generally
is to be preferred since it can be used to conduct both two-sided and one-sided tests (Table A.2); the
F test can be used only tor two-sided tests.

2. Since the F test for testing the alternatives (16.54) is a test of a linear statistical model, it can
be obtained by the general linear test approach explained in Section 2.8:

a. The full model is ANOVA model (16.2):
Yii =i +&; Full model (16.57)

Fitting the tull model by either the method of least squares or the method of maximum likelihood
leads to the fitted values )A’,-,» =Y., per (16.17). and to the resulting error sum of squares:

ssER =SS a0 =N, - s
SSE(F) has dfy- =nr — r degrees o freedom associated with it because r parameter values
(fy- e 4. ) have 10 be estimated.

b. The reduced model under Hy is:

Yii=pte& Reduced model (16.58)

where pt, is the common mean for all factor levels. Fitting the reduced model leads to the
estimator j1. = Y.. so that all fitted values are }A’,',- = Y... and the resulting error sum of squares

is:
SSE(RY=3 "% (W —Fip= ) Y (¥;— V)?

I



Chapter 16  Single-Factor Studies 701

The degrees of freedom associated with SSE(R) are dfy = ny — 1 because one parameter (i)
£ had to be estimated.
) c. Since, according to (16.27) and (16.29), respectively:

SSE(R) = SSTO
SSE(F) = SSE
and since by (16.30) SSTO — SSE = SSTR, the general linear test statistic (2.70) becomes here:
SSE(R) — SSE(F) | SSE(F)

‘ F* = :
) dfsy — dfy dfy
_ SSTO—SSE___ SSE _ SSIR _ SSE__ MSIR

T mr—)—@r—n nr—r r—1 nr—r MSE n

6.7 Alternative Formulation of Model

H
actor Effects Model
) At times, an alternative but completely equivalent formulation of the single-factor ANOVA
model in (16.2) is used. This alternative formulation is called the factor effects model. With
this alternative formulation, the treatment means p; are expressed in an equivalent fashion
by means of the identity:

i = p + (1 — ) (16.59)

where p. is a constant that can be defined to fit the purpose of the study. We shall denote
the difference p; — u. by 7;:

T = i — M (16.60)
so that (16.59) can be expressed in equivalent fashion as:
M=o+ T (16.61)

The difference 7; = u; — . is called the ith factor level effect or the ith treatment effect.
The ANOVA model in (16.2) can now be stated equivalently as follows:

Y,'j =M.+ T+ &5 (16.62)
where:

[ is a constant component commeon to all observations
7; is the effect of the ith factor level (a constant for each factor level)
&;; are independent N (0, o'?)
i=1....,nj=1,...,n
ANOVA model (16.62) is called a factor effects model because it is expressed in terms of

the factor effects 7;, in distinction to the cell means model (16.2), which is expressed in
terms of the cell (treatment) means ;.
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Factor effects model (16.62) is a linear model, like the equivalent cell means mode| a6 2
We shall demonstrate this in the next section. g

Definition of p.

Example

The splitting up of the factor level mean p; into two components, an overall constant . and
a factor level or treatment effect 7;, depends on the definition of p., which can be defineq
in many ways. We now explain two basic ways to define p ..

Unweighted Mean. Often, a definition of 4. as the unweighted average of all factor level
means 1t; is found to be useful:

_ Z:'-:(l“
po= = (16.63)

This definition implies that:

> =0 (16.64)
=1
because by (16.60) we have:

Zr; = Z(Hi — )= Zu.— —r.

and by (16.63) we have:

Zlh‘:rﬂ-

Thus, the definition of the overall constant 1. in (16.63) implies a restriction on the 7, in
this case that their sum must be zero.

For the earlier incentive pay example in Figure 16.2, we have pi( = 70, uz = 58, uz =90,
and 1s = 84. When . is defined according to (16.63), we obtain:

H-:7O+58:90+84:75-5 .
Hence:
7 =70—-755= -55
7 =58—-755=—175
3 =90—-755= 145
7, =84-755= 85
The first weatment effect 7, = —5.5, for instance, indicates that the mean employee Pro-

ductivity for incentive pay type 1 is 5.5 units less than the average productivity for all fouf
types of incentive pay. Figure 16.7 provides an illustration of these treatment effects.
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Y

L 1
B2 =58 =70 g =84 1™\ p3=90 Y
1 E<——> b E
: 7 = —5.5 : !
: 74=85 "' :
! T2 = —-17.5 E
T3 = 14.5 !
w. =755

Weighted Mean The constant u. can also be defined as some weighted average of the
factor level means w;:

= }: w; i where }:w,- =1 (16.65)
i=1 i=1

Note that the w; are weights defined so that their sum is 1. The restriction on the 7; implied
by definition (16.65) is:

Z wit; =0 (16.66)
i=1

This follows in the same fashion as (16.64).

The choice of weights w; should depend on the meaningfulness of the resulting over-
all mean p.. We present now two examples where different weightings are appropriate:
(1) weighting according to a known measure of importance and (2) weighting according to
sample size.

A car rental firm wanted to estimate the average fuel consumption (in miles per gallon)
for its large fleet of cars, which consists of 50 percent compacts, 30 percent sedans, and
20 percent station wagons. Here, a meaningful measure of (. might be in terms of overall
mean fuel consumption:

Moo=y + 32 + 2us3 (16.67)

where 11, (4,2, and 3 are the mean fuel consumptions for the three types of cars in the fieet.
An estimate of pt. here is:

When exact weights are unknown, the subgroup sample sizes may be useful as weights of
relative importance. For instance, the proportions of households in a city with no children,
one child, and more than one child are not known. A random sample of nr heouseholds was
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selected, which contained n; households with no child, 1> households with one child, andp,
households with more than one child. For testing whether mean entertainment expendifyeg
are the same for the three types of households, use of the proportions 1 /ny, p, /17, ang
n3/ny as weights might be meaningful. The resulting definition of the overall entertainmen
expenditures constant u. would then be:

I Ha 3

H. = EM + ;Mz + —u3 (16.69)

ny

This quantity would be estimated by Y..:

. 1 )—/ + > )—/ + i3 )7 ’—/
L. — — . — 1. - .= TI..
! nr I T ! (16]0)
When all sample sizes are equal, . as defined in (16.69) reduces to the unweighted
mean (16.63).

Test for Equality of Factor Level Means

Since the factor effects model (16.62) is equivalent to the cell means model (16.2), the tegt
for equality of factor level means uses the same test statistic £ in (16.55). The only dif-
ferenceis in the statement of the alternatives. For the cell means model (16.2), the alternatives
are as specified in (16.54):

Hypy=pa=---=p,
H,: not all y; are equal

For the factor effects model (16.62), these same alternatives in terms of the factor effects
are:
Hytn=n=---=17=0

(16.71)

H,: not all 7; equal zero

The equivalence of the two forms can be readily established. The equality of the factor
level means @) = pa = --- = pu, implies that all 7; are equal. The equalities of the 7
follow from (16.61) since the constant term £. is common to all factor level effects ;. The
equality of the factor level means in turn implies that all t; = 0, whether the restriction on
the 7; is of the form in (16.64) or (16.66). In either case, the restriction can be satisfied in
only one way given the equality of the 7;. namely, that 7; = 0. Thus, it js equivalent to state
that all factor level means y; are equal or that all factor level effects t; equal zero.

16.8 Regression Approach to Single-Factor Analysis ol Variance

We noted earlier that cell means model (16.2) is a linear model, and that we can obtain test
statistic F* for testing the equality of the factor level means p; by means of the geveral
linear test (2.70). We shall now explain the regression approach to single-factor analysis of
variance for three alternative models: (1) the factor effects model with unweighted mear,
(2) the factor effects model with weighted mean, and (3) the cell means model. Itis important
to emphasize that the choice of model affects the definition of the model parameters, an
not the outcome of the test for equality of factor level means.
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;Factol' Effects Model with Unweighted Mean

To state ANOVA model (16.62):
iy =p. + 0 +¢&;

as a regression model, we need to represent the parameters ., 7y, ..., 7, in the model.
However, constraint (16.64) for the case of equal weightings:

'Z-Ti =0
i=l1

implies that one of the r parameters 7; is not needed since it can be expressed in terms of
the other r — 1 parameters. We shall drop the parameter z,., which according to constraint
(16.64) can be expressed in terms of the other r — 1 parameters 7; as follows:

=T —Tg— "+ — Tyl (16.72)

Thus, we shall use only the parameters p., 7y, ..., T,—; for the linear model.

To illustrate how a linear model is developed with this approach, consider a single-factor
study with r = 3 factor levels when n; = ny, = n3 = 2. The Y, X, B, and & matrices for
this case are as follows:

’—Y”- rl 1 0- ’—8”-
Yo 1 1 0 " £n2
_ Y2| _ 1 0 1 _ ) _ €9
Y= X=(, o 1| B=|n| e=| (16.73)
72
Y3l 1 -1 -1 €31
Y32J _1 -1 —-IJ _832J

Note that the vector of expected values, E{Y} = X, yields the following:

[E{Y)) ] 1 1 0] [+
E{Y)2} 1 1 0 " JUREE 4
_|E2a} | _ |1 0O 1 NIV
E{Y} = E{Yn) | XB = ) 0 ) ? =l + 1 (16.74)
E{Y3} 1 -1 —1 2 =T —T
| E{Y3,} | |1 -1 -1} | L. =T — 7 |

Since 73 = —1; — 7 according to (16.72), we see that E{Y3} = E{Y3} = w. +13. Thus, the
above X matrix and B vector representation provides in all cases the appropriate expected
values:

E{Yy}=n +u

The illustration in (16.73) indicates how we need to define in general the multiple
regression model so that it is the equivalent of the single-factor ANOVA model (16.62).
Note that we require indicator variables that take on values 0, 1, or —1. Thjs,coding was
discussed in Section 8.1. While this coding is not as simple as a 0, 1 coding, it is desirable
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here because it leads to regression coefficients in the f vector that are the parameters ip ..
factor effects ANOVA model. i.e.. p., 7y...,T,—1. e
We shall let Xj;, denote the value of indicator variable X, for the jth case from the jth:
factor level, X the value of indicator variable X, for this same case, and 5o on, usiy
altogether » — | indicator variables in the model. The multiple regression mode] then ig agsi ’
follows: ;.

Yij = . + TlXijl + T’_)X,'jz +--- 4+ Tr—y Xi_/,l'—l + gi_/ Full model (]6.75) i
where:

1 if case from factor level |
Xi;1 = < — 1 if case from factor level r
0 otherwise

I if case from factor level » — 1
Xijr—1 = ¢ — 1 if case from factor level r
0 otherwise

Note how the ANOVA model parameters play the role of regression function parameters
in (16.75); the intercept term is j1., and the regression coefficients are 7;, 7o, ..., 7,_.
The least squares estimator of p. is the average of the cell sample means:

-
~ Zi:l Yi-
fr.=="— (16.75a)
Note that this quantity is generally not the same as the overall mean ¥.. anless the cell
sample sizes are equal. Also, the least squares estimator of the ith factor effect is:

=Y. — L (16.75b)

‘To test the equality of the treatment means y; by means of the regression approach, we
state the alternatives in the equivalent formulation (16.71), noting that 7, must equal zero
whenty =1 =+ = 1,_, = 0 according to (16.72):

Hytn=t=---=17_,=0

(16.76)
H,: not all 7, equal zero .

Note that Hj, states that all regression coefficients in regression model (16.75) are zero, and
the reduced model is therefore:

Yij = p. + & Reduced model (16.77)
Thus, we employ the usual test statistic (6.39b) for testing whether or not there is a regression
relation:
pr = MR (16.78)
MSE

To test the equality of mean sales for the four cereal package designs in the Kenton Food

Example . . ion
——————— Company example by means of the regression approach, we shall employ the regresst
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model:
Y, = p. + 01X + X + 1 Xipz + & (16.79)
where:

if case from factor level 1
X;j1 = { —1 if case from factor level 4
0 otherwise

1 if case from factor level 2
Xij2 =< —1 if case from factor level 4
0 otherwise

if case from factor level 3
X;i3 =< —1 if case from factor level 4
0 otherwise

A portion of the data in Table 16.1 is repeated in Table 16.4a, together with the coding of
the indicator variables X, X, and X3. For observation Y;;, for instance, note that X; =1,
X, =0, and X3 = 0; hence, we obtain from (16.79):

E{Yy}=u+7

i j v
1 1 11 ] 0-
1 2 17 0 0
1 4 14 0 0
T 5 15 0 0:
2 1 12 A, o
4 5 28 - 1

(b)Fitted' Regressmn Functlon
V= 18,675 — 4078 X1~ 527X, ¥ 825X5
() Regression Analysis of Vakiance Table:™

Sourceof
Variation 55, df
Regression SSR:=:588:22 3
Error SSE.= 158.20 15.

. Total . SSTO= 74642 18
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Similarly, for observation Y5 we have X, = —1, X, = —Il,and X3 = —1; hence:
EYisl=p.—ni—D—m=n+1n

since gy = —17, — T — Tz.
Note that we employ the lollowing codings in the indicator variables {or cases from eachy
of the four factor levels:

Coding
Factor Level Xy X, X3
1 1 0 0
2 0 1
3 0 0
4 -1 -1 -

A computer run of the multiple regression of ¥ on X, X», and Xs yielded the fitteq
regression function and analysis of variance table presented in Tables 16.4b and 16 4c. Test
statistic (16.78) therefore is:

MSR  196.07
FFr=——= = 18.6
MSE 10.55
This is the same test statistic obtained earlier based on the analysis of variance calculations.
Indeed, the analysis of variance table in Table 16.4c obtained with the regression approach
is the same as the one in Figure 16.5 obtained with the analysis of variance approach
except that the treatment sum of squares and mean square are called the regression sum of
squares and mean square in Table 16.4c. From this point on, the test procedure based on
the regression approach parallels the analysis of variance test procedure explained earlier
Note that in the fitted regression function in Table 16.4b, the intercept term £. = 18.675
is the unweighted average of the estimated factor level means Y ;.. not the overall mean
Y... because . was defined as the unweighted average of the factor level means y;. The
regression coefficient by = 7, = )_’,. — . = 14.6 — 18.675 = —4.075 is simply the
difference between the estimated mean in the first cell and the unweighted overall mean. by
and by represent similar differences between the estimated factor level mean and the overall
unweighted mean. .

Comment

The regression approach is not utilized generally for ordinary analysis of variance problems. The
reason is that the X matrix for analysis of variance problems usually is of a very simple .structure: as
we have seen earlier. This simple structure permits computational simplifications that are expliClﬂY
recognized in the statistical procedures for analysis of variance. We take up the regression appmaclhlo
analysis of variance here, and in later chapters, for two principal reasons. First, we see that analy51§ of
variance models are encompassed by the general linear statistical model (6.19). Second. the l'egICSSIQH
approach is very useful for analyzing some multifactor studies when the structure of the X matri 15
not simple.
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actor Effects Model with Weighted Mean

When the factor effects model (16.62) is used with a weighted mean, a modification of
the coding scheme in (16.75) is required. The new coding scheme leads to changes in the
definitions of the regression coefficients. We describe the new coding scheme and summarize
the changes in the context of the proportional sample size weights, w; = n;/nr.

When the constant .. is the weighted average of the factor level means using proportional
sample size weights, we have, from (16.65):

M. = Zwlu, = Ml (16.80a)

i=1

From (16.66), the restﬁction on the 7; is:

Solving for z,, we find:

1 (16.80b)

This leads to the weighted model:

Yij=p. +uXij+0oXip+ - -+ 521 Xijro1 + 6 Full model (16.81)

where:

1 if case from factor level 1
n .

Xiji=4— L if case from factor level r
ny
0 otherwise
1 if case from factor level r — 1
Rr—1 .

Xijrg = ¢ —— if case from factor level r
ny

0 otherwise

Note that if all cell sample sizes are equal, the mean w. is the unweighted mean, and the
coding scheme above is the same as the unweighted coding scheme used in (16.75), since
—nij/n, =—1fori=1,..., r—1.

When the sample sizes are not all equal, as noted in (16.70), the least squares estimate
of the weighted .mean . is the overall mean Y., and the least squares estimate of the ith
factor effect 7; is Y;. — Y.

In the Kenton Food Company example, weighted mean model (16.81) is:

Y =M.+ TIXL_[I + TZXLJZ + T3Xt_[3 + &ij (16'82)

P
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where:

N

if case from factér level 1

Xijt =« if case from factor level 4

S wndh ~= D~ Ok —~

otherwise

7

N

if case from factor level 2

|

Xijp =« if case from factor level 4

otherwise

7

N

if case from factor level 3

Xijz = < if case from factor level 4

J

otherwise

7

The fitted regression function is:
Y = 18.63 —4.03X, — 5.23X, + 87X
and the following relations hold:

. =by=7Y.=18.63
tHh=b=Y.—Y.=14.6—18.63 = —4.03
f=by =Yy —Y..=13.4-18.63 = —5.23
f3=>b3=7Y3 —Y..=19.5— 18.63 = .87
g= Mg 25 s _gs6.

ng ng ng

A general linear test of the alternatives:
Hoi‘l,’l :‘152:1’320
H,:notallt, =0
is conducted using the full model in (16.82) and forming the reduced model by setting

7, = 7o = 13 = 0 in full model (16.82). The test statistic (16.78) for the presence of
regression relation again yields:

_ MSR _ 196.07
~ MSE 1055
As expected, the results are identical to those obtained earlier for the ANOVA F test.

23

=18.6

Cell Means Model

When the analysis of variance test is to be conducted by means of the regression approach
based on the cell means model (16.2):

Yij =i +&;
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the B vector can be defined to contain all 7 treatment means fi;:

M1
B=1 : (16.83)
Kor
and r indicator variables X, X, ..., X, are utilized, each defined as a 0, 1 variable as

illustrated in Chapter 8:

X — 1 if case from factor level 1
1710 otherwise

: (16.84)
1  if case from factor level r
X, = .
0 otherwise
The regression model therefore is:
YVii = i Xij1 + pmoXijp + - -+ e Xijr + 855 Full model (16.85)

with the u; playing the role of regression coefficients.

The X matrix with this approach contains only 0 and 1 entries. For example, for r = 3
factor levels with n; = n, = n3 = 2 cases, the X matrix (observations in order Y;;, Y2,
Y3, etc.) and B vector would be as follows:

1 0 0
1 0 0 ”
010 !
X=101 0 B= |
0 0 1 s
0 0 1

Note that regression model (16.85) has no intercept term. When a computer regression
package is to be employed for this case, it is important that a fit with no intercept term be
specified.

The ANOVA table obtained with regression model (16.85) is different from the one with
the single-factor ANOVA model in (16.2) because the regression model (16.85) has no
intercept term. Thus, the F test obtained with the regression model cannot be used to test
the equality of factor level means. The test of whether the factor level means are equal, i.e.,
MUy = M2 = --- = u,, asks only whether or not the regression coefficients in (16.83) are
equal, not whether or not they equal zero. Hence, we need to fit the full model and then the
reduced model to conduct this test. The reduced model when Hp: pt = --- = w, holds is:

Yy, = pe + & Reduced model (16.86)

where 1. is the common value of all y; under Hp. The X matrix here cons1sts simply
of a column of 1s. The X matrix and B vector for the reduced model in ouf exarnple
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would be:
1
]
]
|
I

After the full and reduced models are fitted and the error sums of squares are Obtaingg
for each fit, the usual general linear test statistic {2.70) is then calculated.

Example For the Kenton Food Company example, the regression fit for the cell means mode| i
——— (16.85)is:

V = 14.6X, +13.4X> +19.5X; +27.2X,

It can be readily seen that the coefficient of X; is equal to the estimated factor level megy

Yi.fori=1....,4.
A general linear test of the alternatives:

Hy: oy = po = p3 = g

H,: not all y; are equal
is conducted using the full and reduced models in (16.85) and (16.86). Here we again find
that SSE(R) = 746.42 and that SSE(F) = 158.2. From (2.70) we have:
_746.42—158.2 1582
B 41 194
This demonstrates that the test for equality of means using the regression approach is, as
expected, the same as that obtained earlier for the ANOVA F test.

£

= 18.6

16.9 Randomization Tests

Randomization can provide the basis for making inferences without requiring assumptions
about the distribution of the error terms g. Consider factor effects model (16.62) for a
single-factor study:

Y;I = M. + T; +8,, *

Rather than assume that the &;; are independent normal random variables with mean zer0
and constant variance o, we shall now consider each &ij to be a fixed effect associated
with the experimental unit. In this framework, we view the ny experimental units to be a
finite population, and associated with each unit is the unit-specific effect g;;. When rat-
domization assigns this experimental unit to treatment i, the observed response will be
Yij = . +7; + &;. The response ¥;; is still a random variable, but under the randomiza-
tion view the randomness arises because the treatment effect 7; is the result of a random
assignment of the experimental unit to treatment i.

If there are no treatment etfects, that is, if all 7; = 0, then the response Yi; = K- “"Ef'f
depends only on the experimental unit. Since with randomization the experimental unit 18
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equally likely to be assigned to any treatment, the observed response Y;;, if there are no
treatment effects, could with equal likelihood have been observed for any of the treatments.
Thus, when there are no treatment effects, randomization will lead to an assignment of the
finite population of nr observations Y;; to the treatments such that all treatment combina-
tions of observations are equally likely. This, in turn, leads to an exact sampling distribution
of the test statistic under Hy: 7, = 0, sometimes termed the randomization distribution of
the test statistic. Percentiles of the randomization distribution can then be used to test for
the presence of factor effects. This use of the randomization distribution provides the basis
of a nonparametric test for treatment effects.

To illustrate the concept of a randomization distribution, consider a single-factor experi-
ment consisting of two treatments and two replications. In this experiment, the alternatives
of interest are:

Hy:tt=1%=0

H,: not both 7; and 7, equal zero

Test statistic F* in (16.55) will be used to conduct the test. The sample results are:

Treatment 1 Treatment 2
Yqj Yz;
3 8
7 10

For these data, F* = 3.20.

Since the treatments are assigned to experimental units at random, it would have been
Just as likely, if there are no treatment effects, to have observed 3 and 8 for treatment 1 and
7 and 10 for treatment 2. In that event, the test statistic would have been F* = 1.06. In
fact, any division of the four observations into two groups of size two is equally likely with
randomization if there are no treatment effects. Because this experiment is small, we can
easily list all 4!/(2!12!) = 6 possible outcomes of the experiment, assuming no treatment
effects are present:

Randomization Treatment 1 Treatment 2 F* Probability
1 3,7 8,10 3.20 1/6
2 3,8 7,10 1.06 1/6
3 3,10 87 .08 1/6
4 8,7 3,10 .08 1/6
5 7,10 3,8 1.06 1/6
6 8 10 3,7 3.20 1/6

The last two columns give the randomization distribution of test statistic F* under Hp.
Randomization assures us that, when Hy is true, each possible value of the test statistic has
probability 1/6. From the randomization distribution, we see that the P-value for the test
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is the probability:
. 2
P{F*>3.20} = 6= .33
This P-value is somewhat different than the usual (normal theory) P-value:
P{F(l,2)>3.20} = .22

In this instance, because the sample sizes are very small, the F distribution does not pro-
vide a particularly good approximation to the exact sampling distribution of F* under H,.
However. both empirical and theoretical stdies have shown that the F distribution is g
good approximation to the exact randomization distribution when the sample sizes are not
small. Thus, randomization alone can justify the F test as a good approximate test, without
requiring any assumption of independent, normal error terms. We shall next demonstrate
the use of the randomization test in a more realistic setting.

Comments

1. Because of the discreteness of the randomization distribution, it is conservative to define the
P-value as the probability of equaling or exceeding the observed value of the test statistic when H,
holds. For continuous sampling distributions, it does not matter whether the P-value is defined as the
probability of exceeding the observed value of the test statistic or as the probability of equaling or
exceeding it. For instance, P{F (1, 2) > 3.20} = P{F (1. 2) > 3.20}. When more than one treatment
combination yields the value of the test statistic ', some authors suggest that the P-value be calculated
as P{F > F*}+ P{F = F*}/2. This leads to a less conservative P-value,

2. The randomization test is sometimes referred to as a permutation test, although permutation
tests are also applied to nonrandomized studies. Because of the conservativeness of permutation (or
randomization) tests for small samples, their virtues continue to be debated in the literature. See
Reference 16.1. [

A manufacturer of children’s plastic toys considered the introduction of statistical process
control (SPC) and engineering process control (EPC) in order to reduce the volume of scrap
and rework at each of its nine manufacturing plants. To assess the effects of these quality
practices, a single-factor experiment was conducted for a six-month period. The treatments
were:

Treatment
i Quality Practice
1 None (control group)
2 SPC
3 Both SPC and EPC

The three treatments were each randomly assigned to three of the nine available plants. TFIC
response of interest was the reduction in the defect rate at the end of the six-month tefal
period. The results are given in the first row (randomization 1) in Table 16.5. Management
wishes to test whether or not the mean reduction in the defect rate is the same for the the®
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TABLE 16.5 Randomization Samples and Test Statistics—Quality Control Example.

‘Treatment 'f'reat_ment Treatment Probability
t 1 a2 3 F*
i 1 1.1, .5 —2.1 42,637, 8 3.2, 28, 6.3 4.39 1/1,680
i 2 1.1, 5, 21 42,37, 32 8,28 63 374 1/1,680
i ‘3 1.1, .5, —-21 4.2, 3.7, 2.8 3.2, 8 63 3.67 171,680
32,28, 63 4.2; 3.7, .8 1.1, 5, =21 4.39 1/1,680
treatments:

iEIGLIRE 16.8
Randomization
Distribution of
F%and Cor-
§€SDOMmg F
Piﬁtribution—
Lonitrot
Example.

Ho'. 'L'1='52=T3=0
H,: not all 7; equal zero

The risk of a Type I error is to be controlled at a = .10. We shall now conduct this test by
obtaining the exact randomization distribution.

In this experimental study, there are 9!/(313131) = 1,680 possible combinations of as-
signing the nine experimental units to the three treatments. A computer program was utilized
to enumerate these 1,680 combinations and to calculate the F* statistic for each. A partial
listing of results is presented in Table 16.5.

Of the 1,680 possible values of the test statistic *, 120 were equal to or greater than
the observed value 4.39. Thus, from the randomization distribution we find:

120
1,680
Since .071 <@ = .10, we conclude that the mean reduction in the defect rate is not the
same for the three treatments.

Even though the sample sizes are not very large here, the exact randomization distribution
is well approximated by the F distribution. Figure 16.8 shows both the randomization

P-value = P{F* > 4.39} = = 071

1.0 -

0 2 4 6 8 10
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distribution in the form of a histogram and the density function for the correspongdiy,
distribution, (2, 6). Note how well the £ distribution approximates the randomj,,
distribution. The P-value according to the £ distribution is P{F(2, 6) > 4.39
This is very close to the randomization P-value of .071.

g F
atioy
= 067

16.10 Planning ol Sample Sizes with Power Approach

For analysis of variance studies, as for other statistical studies, it is important to plan the
sample sizes so that needed protection against both Type I and Type 11 errors can be obtaineq,
or so that the estimates of interest have sufficient precision to be useful. This p]dnmng is
necessary for both observational and experimental studies to ensure that the sample gizeg
are large enough to detect important differences with high probability. At the same time,
the sample sizes should not be so large that the cost of the study becomes excessive and thy
unimportant differences become statistically significant with high probability. Planning of
sample sizes is therefore an integral part of the design of a study.

We shall generally agsume in our discussion of planning sample sizes that all treatments
are to have equal sample sizes, reflecting that they are about equally important. Indeed,
when major interest lies in pairwise comparisons of all treatment means, it can be shown
that equal sample sizes maximize the precision of the comparisons. Another reason for
equal sample sizes is that certain departures from the assumed ANOVA model are less
troublesome if all factor levels have the same sample size, as noted earlier.

There will be times, however, when unequal sample sizes are appropriate. For instance,
when four experimental treatments are each to be compared to a control, it may be reasonable
to make the sample size for the control larger. We shall comment later on the planning of
sample sizes for such a case.

Planning of sample sizes can be approached in terms of (1) controlling the risks of
making Type I and Type II errors, (2) controlling the widths of desired confidence intervals,
or (3) a combination of these two. The procedures for planning sample sizes that we shall
discuss here are applicable to both observational studies and to experimental studies based
on a completely randomized single-factor design. In later chapters, we shall consider the
planning of sample sizes for other study designs. In this section, we consider planning of
sample sizes with the power approach, which permits controlling the risks of making Typel
and Type 1 errors. In Section 16.11 we discuss planning of sample sizes when the best
treatment is to be identified. Later, in Section 17.8, we take up planning of, sample sizes
to control the precision of estimates of important effects. We shall consider planning of
sample sizes for multifactor studies in Section 24.7.

Before we can discuss planning of sample sizes with the power approach, we need to
consider the power of the F test.

Power of F Test

By the power of the F test for a single-factor study, we refer to the probability that the
decision rule will lead to conclusion H,, that the treatment means differ, when in fact
H, holds. Specifically, the power is given by the following expression for the cell means
model (16.2):

Power = P{F” > F(l —a;r —1,nr — r)| ¢} (16.87)



Examples

Chapter 16 Single-Factor Studies 717

where ¢ is"the noncentrality parameter; that is, a measure of how unequal the treatment

means y; are:
A1, — 2
o= L [Lml—p) (16.873)
g r

. = 2l (16.87b)

nr
When all factor level samples are of equal size n, the parameter ¢ becomes:

1 /n
o= - /; Z(H’i — . )? whenrn; =n (16.88)

= 2t (16.88a)

and:

where:

Power probabilities are determined by utilizing the noncentral F distribution since this
is the sampling distribution of F* when H, holds. The resulting calculations are quite
complex. We present a series of tables in Appendix Table B.11 that can be used readily to
look up power probabilities directly. The proper table to use depends on the number of factor
levels and the level of significance employed in the decision rule. Specifically, Table B.11
is used as follows:

1. Each page refers to a different v, the number of degrees of freedom for the numerator
of F*. For ANOVA model (16.2), vi = r — 1, or the number of factor levels minus one.
Table B.11 contains power tables for v, = 2, 3, 4, 5, and 6, as shown at the top of each page.

2. Twolevels of significance, denoted by o, are presented in Table B.11, namely, o = .05
and o = .01. The upper table on each page refers to ¢ = .05 and the lower table to o = .01.

3. Within each table, the rows refer to different values of v, the degrees of freedom
for the denominator of F*. The columns refer to different values of ¢, the noncentrality
parameter defined in (16.87a). For ANOVA model (16.2), v, = nr — r.

1. Consider the case where v; = 2, v, = 10, ¢ = 3, and o = .05. We then find from
Table B.11 (p. 1337) that the poweris 1 — 8 = .98.

2. Suppose that for the Kenton Food Company example, the analyst wishes to determine
the power of the decision rule in the example on page 699 when there are substantial
differences between the factor level means. Specifically, the analyst wishes to consider the
case when p; = 12.5, up, = 13, s = 18, and py = 21. The weighted mean in (16.87b)
therefore is:

= 5(12.5) 4+ 5(13) +4(18) + 5(21)

=16.03
19

Thus, the specified value of ¢ is:
oo [5(—3.53)2 +5(—3.03)2 +4(1.97)% + 5(4.97)2] 2

o 4

— L6 .-
= :
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Note that we still need to know o, the standard deviation of the error termg & in the
. . . I
model. Suppose that from past experience it is known that o = 3.5 cases approximate}
Then we have: v

]
= —(7.86) =2.25
¢ 3 5( )
Further, we have for this example:
vy=r—1=3 vy =ny —r=15 o= .05

Table B.11 on page 1338 indicates that the poweris 1 — g = .91. In other words, there are
91 chances in 100 that the decision rule, based on the sample sizes employed, will leag o
the detection of differences in the mean sales volumes for the four package designs whep
the differences are the ones specified earlier.

Comments

1. Any given value of ¢ encompasses many different combinations of factor level means ;. Thus,
in the Kenton Food Company example, the means p, = 12.5, > = 13, p3 = 18, py = 21 and the
means p = 21, pa = 12.5, p3 = 18. py = 13 lead to the same value of ¢ = 2.25 and hence o the
same power.

2. The larger ¢p—that is, the larger the differences between the factor level means—the greater
the power and hence the smaller the probability of making a Type 11 error for a given risk o of making
a Type I error. Also, the smaller the specified o risk. the smaller is the power for any given ¢, and
hence the larger the risk of a Type 11 error.

3. Since many single-factor studies are undertaken because of the expectation that the factor level
means differ and it is desired to nvestigate these differences, the o risk used in constructing the
decision rule for determining whether or not the factor level means are equal is often set relatively
high (e.g., .05 or .10 instead of .01) so as to increase the power of the test.

4. The power table for v; =1 is not reproduced in Table B.11 since this case corresponds to the
comparison of two population means. As noted previously, the F test is the equivalent of the two-sided
t test for this case, and the power tables for the two-sided ¢ test presented in Table B.5 can then be
used, with noncentrality parameter:

5o T pal (16.89)
| |

oy —+—

o Mm

and degrees of freedom 1) + 1, — 2. u

Use of Table B.12 for Single-Factor Studies

The power approach in planning sample sizes can be implemented by use of the power
tables for F tests presented in Table B.11. A trial-and-error process is required, howeven
with these tables. Instead, we shall use other tables that furnish the appropriate sample
sizes directly. Table B.12 presents sample size determinations that are applicable when all
treatments are to have equal sample sizes and all effects are fixed. )
The planning of sample sizes for single-factor studies with fixed factor levels using
Table B.12 is done in terms of the noncentrality parameter (16.88) for equal sample sizes.
However, instead of requiring a direct specification of the levels of ; for whichitis imP_OT'
tant to control the risk of making a Type [l error, Table B.12 only requires a specificatiot
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of the minimum range of factor level means for which it is important to detect differences
between the u; with high probability. This minimum range is denoted by A:

A = max(u;) — min(g;) (16.90)
The following three specifications need to be made in using Table B.12:

1. The level « at which the risk of making a Type I error is to be controlled.

2. The magnitude of the minimum range A of the x; which is important to detect with
high probability. The magnitude of o, the standard deviation of the probability distributions
of Y, must also be specified since entry into Table B.12 is in terms of the ratio:

A (16.91)

o

3. The level B at which the risk of making a Type II error is to be controlled for the
specification given in 2. Entry into Table B.12 is in terms of the power 1 — 8.

When using Table B.12, four « levels are available at which the risk of making a Type I
error can be controlled (o = .2, .1, .05, .01). The Type II error risk can be controlled at one
of four B levels (8 = .3, .2,.1, .05) through the specification of the power 1 — 8. Table B.12
provides necessary sample sizes for studies consisting of r = 2, ..., 10 factor levels or
treatments.

A company owning a large fleet of trucks wishes to determine whether or not four different
brands of snow tires have the same mean tread life (in thousands of miles). It is important
to conclude that the four brands of snow tires have different mean tread lives when the
difference between the means of the best and worst brands is 3 (thousand miles) or more.
Thus, the minimum range specification is A = 3. It is known from past experience that the
standard deviation of the tread lives of these tires is o = 2 (thousand miles), approximately.
Management would like to control the risks of making incorrect decisions at the following
levels:

a = .05
B=.10 or Power=1— 8= .90

Entering Table B.12 for Ajo =3/2 =15, = .05,1 — 8 = .90, and r = 4, we find
n = 14. Hence, 14 snow tires of each brand need to be tested in order to control the risks
of making incorrect decisions at the desired levels.

Specification of A /o Directly. Table B.12 can also be used when the minimum range
is specified directly in units of the standard deviation o Let the specification of A in this
case be ko so that we have by (16.91):

A ko

_ =k
g g

Hence, Table B.12 is entered directly for the specified value k£ with this approach.

Suppose it is specified in the snow tires example that it is important to detect differehces
between the mean tread lives if the range of the mean tread lives is k = 2 standard deviations
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or more. Suppose also that the other specifications are:
a=.10
B=.05 or Power =1— 8= .95

From Table B.12, we find for k = 2 and r = 4 that n = 9 tires will need to be tested fop
each brand in order that the specified risk protection will be achieved.

Comment

While specifying A /o directly does not require an advance planning value of the standard deviation o
this is not of as much advantage as it might seem because a meaningful specification of A in upj oi
o will frequently require knowledge of the approximate magnitude of the standard deviation, n

Some Further Observations on Use of Table B.12

1. The exact specification of A /o has great effect on the sample sizes n when A /¢ is
small, but it has much less effect when A /o is large. For instance, when r = 3, o = (5,
and B = .10, we have from Table B.12:

Ao n
1.0 27
1.5 13
2.0 8

2.5 6

Thus, unless A /o is quite small, one need not be too concerned about some imprecision in
specifying A /o.

2. Reducing either the specified a or 8 risks or both increases the required sample sizes.
For instance, when r = 4, @ = .10, and A Jo = 1.25, we have:

B 1-8 n

.20 .80 13
10 90 16 N
.05 .95 20

3. A moderate error in the advance planning value of o can cause a substantial miscal-

culation of required sample sizes. For instance, when r = 5, = .05, § = .10,and A =3,
we have;

—
w
o
L
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In view of the usual approximate nature of the advance planning value of o, it is generally
desirable to investigate the needed sample sizes for a range of likely values of o before
deciding on the sample sizes to be employed.

4. Table B.12 is based on the noncentrality parameter ¢ in (16.88) even though no
specification is made of the individual factor level means w; for which it is important to
conclude that the factor level means differ. To see how Table B.12 utilizes the noncentrality

_ parameter ¢, consider again the snow tires example where r = 4 brands are to be tested
and a minimum range of A = 3 (thousand miles) of the four mean tread lives y; is to be
) detected with high probability. The following are some possible sets of values of the p;,

each of which has range A = 3:

Case i K2 B3 Pa (i — pe)?
1 24 27 25 26 5.00
< 2 25 25 26 23 4.75
3 25 25 25 28 6.75
. 4 25 25 26.5 235 4.50

The term " (u; — w.)? of the noncentrality parameter ¢ in (16.88) differs for each of these
four possibilities and hence the power differs, even though the range is the same in all cases.
Note that the term > (u; — .)? is the smallest for case 4, where two factor level means
are at p. and the other two are equally spaced around .. It can be shown that for a given
range A, the term " (u; — u.)? is minimized when all but two factor level means are at .
and the two remaining factor level means are equally spaced around .. Thus, we have:

r A 2 A 2 Az
. 2
i —0)T = = —— 0+---+0=— 16.92
nun'Z:l:(u ) (2>+( 2)4— +-+ 2 ( )
Since the power of the test varies directly with Y (u; — 1.)%, use of (16.92) in calculating

Table B.12 ensures that the power is at least 1 — 8 for any combination of y; values with
range A.

16.11 Planning of Sample Sizes to Find “Best” Treatment

There are occasions when the chief purpose of the study is to ascertain the treatment with
the highest or lowest mean. In the snow tires example, for instance, it may be desired to
determine which of the four brands has the longest mean tread life.

Table B.13, developed by Bechhofer, enables us to determine the necessary sample sizes
so that with probability 1 —a the highest (lowest) estimated treatment mean is from the
treatment with the highest (lowest) population mean. We need to specify the probability
1 — «, the standard deviation o, and the smallest difference A between the highest (lowest)
and second highest (second lowest) treatment means that it is important to recognize.
Table B.13 assumes that equal sample sizes are to be used for all r treatments.

W Suppose that in the snow tires example, the chief objective is to identify the brand with the
T longestmean tread life. There are r = 4 brands. We anticipate, as before, that o =2 (thousand
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miles). Further, we are informed that a difference A = 1 (thousand miles) between the highest
and second highest brand means is important to recognize, and that the probability i o be
I — a = .90 or greater that we identify correctly the brand with the highest mean tread Jife
when A > 1.

The entry in Table B.13 is Ay/n /0. For r = 4 and probability 1 —« = .90, we find from
Table B.13 that A/n1 /o = 2.4516. Hence, since the A specification is L = 1, we obtaip:

|
( )2*/’—’ — 24516

Jn=4.9032 or n =25

Thus, when the mean tread life for the best brand exceeds that of the second best by at leag
I (thousand miles) and when o = 2 (thousand miles), sample sizes of 25 tires for each
brand provide an assurance of at least .90 that the brand with the highest estimated megp
Y;. is the brand with the highest population mean.

Comment

If the planning value for the standard deviation is not accurate, the probability of identifying the
population with the highest (lowest) mean correctly is, of course, affected. This is no different from
the other approaches, where a misjudgment of the standard deviation affects the risks of making a
Type I error. n

Cited
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Problems

16.1. Refer to Figure 16.1a. Could you determine the mean sales level when the price level is $68 if
you knew the true regression function? Could you make this determination from Figure 16.1b
if you only knew the values of the parameters 11, (2, and g3 of ANOVA model (16.2)? What
distinction between regression models and ANOVA models is demonstrated by your answers?

16.2. A market researcher, having collected data on breakfast cereal expenditures by families with
1,2.3.4. and 5 children living at home, plans to use an ordinary regression model to estimate
the mean expenditures at each of these five family size levels. However, the researcher is
undecided between fitting a linear or a quadratic regression model, and the data do nct give
clear evidence in favor of one model or the other. A colleague suggests: “For your purposes
you might simply use an ANOVA model.” Is this a useful suggestion? Explain.

16.3. Inastudy of intentions to get flu-vaccine shots in an area threatened by an epidemic, 90 persons
were classified into three groups of 30 according to the degree of risk of getting flu. Each
group was together when the persons were asked about the likelihood of getting the shots, on
a probability scale ranging from O to 1.0. Unavoidably, most persons overheard the answers
of nearby respondents. An analyst wishes to test whether the mean intent scores are the same
for the three risk groups. Consider each assumption for ANOVA model (16.2) and explain
whether this assumption is likely to hold in the present situation.

16.4. A company, studying the relation between job satisfaction and length of service of employees,
classified employees into three length-of-service groups (less than 5 years, 510 years, more
than 10 years). Suppose g1 = 65, p> = 80, uz = 95, and ¢ = 3, and that ANOVA model
(16.2) is applicable.
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16.6.

*16.7.

16.8.
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a. Draw a representation of this model in the format of Figure 16.2.

b. Find E{MSTR} and E{MSE} if 25 employees from each group are selected at random for
intensive interviewing about job satisfaction. Is E{MSTR} substantially larger than E{MSE}
here? What is the implication of this?

In a study of length of hospital stay (in number of days) of persons in four income groups, the
parameters are as follows: p; = 5.1, gy = 6.3, u3 = 7.9, uy = 9.5, 0 = 2.8. Assume that
ANOVA model (16.2) is appropriate.

a. Draw a representation of this model in the format of Figure 16.2.

b. Suppose 100 persons from each income group are randomly selected for the study. Find
E{MSTR} and E{MSE}. Is E{MSTR) substantially larger than E{MSE} here? What is the
implication of this?

¢. If up = 5.6 and pu3 = 9.0, everything else remaining the same, what would E{MSTR} be?
Why is E{MSTR} substantially larger here than in part (b) even though the range of the
factor level means is the same?

A student asks: “Why is the F test for equality of factor level means not a two-tail test since
any differences among the factor level means can occur in either direction?” Explain, utilizing
the expressions for the expected mean squares in (16.37).

Productivity improvement. An economist compiled data on productivity improvements last
year for a sample of firms producing electronic computing equipment. The firms were clas-
sified according to the level of their average expenditures for research and development in
the past three years (low, moderate, high). The results of the study follow (productivity im-
provement is measured on a scale from 0 to 100). Assume that ANOVA model (16.2) is
appropriate.

i 1 2 3 4 5 6 7 8 9 0 11 12

T Low 76 82 68 58 69 66 63 7.7 6.0
2 Moderate 6.7 8.1 94 86 78 77 89 79 83 87 71 84
3  High 85 97 101 78 96 95

a. Prepare aligned dot plots of the data. Do the factor level means appear to differ? Does the
variability of the observations within each factor level appear to be approximately the same
for all factor levels?

. Obtain the fitted values.

. Obtain the residuals. Do they sum to zero in accord with (16.21)?

Obtain the analysis of variance table.

. Test whether or not the mean productivity improvement differs according to the level of
research and development expenditures. Control the « risk at .05. State the alternatives,
decision rule, and conclusion.

f. What is the P-value of the test in part (¢)? How does it support the conclusion reached in

part (e)?

g. What appears to be the nature of the relationship between research and development

expenditures and productivity improvement?

o on o

.
Questionnaire color. In an experiment to investigate the effect of color of paper (blue,
green, orange) on response rates for questionnaires distributed by the “windshield method”



724 Part Four Design and Analysis of Single-Factor Studies

16.9.

in supermarket parking lots, 15 representative supermarket parking lots were choseq
metropolitan arca and each color was assigned at random to five of the lots. The respopge
(in percent) tollow. Assume that ANOVA model (16.2) is appropriate.

ing
Tateg

i
i 1 2 3 4 5
1 Blue 28 26 31 27 35
2 Green 34 29 25 31 29
3 Orange 31 25 27 29 28

Prepare aligned dot plots of the data. Do the factor level means appear to differ? Does
the variability of the observations within each factor level appear to be approximately the
same for all factor levels?

Obtain the fitted values.
Obtain the residuals.

. Obtain the analysis of variance table.

Conduct a test to determine whether or not the mean response rates for the three colars
differ. Use level of significance o = . 10. State the alternatives, decision rule, and conclusion,
What is the P-value of the test?

When informed of the findings, an executive said: “See? I was right all along. We might as

well print the questionnaires on plain white paper, which is cheaper.” Does this conclusion
follow from the findings of the study? Discuss.

Rehabilitation therapy. A rehabilitation center researcher was interested in examining the
relationship between physical fitness prior to surgery of persons undergoing corrective knee
surgery and time required in physical therapy until successful rehabilitation. Patient records

in
to

the rehabilitation center were examined, and 24 male subjects ranging in age from 18
30 years who had undergone similar corrective knee surgery during the past year were

selected for the study. The number of days required for successful completion of physical
therapy and the prior physical fitness status (below average, average, above average) for each
patient follow.

i
i 1 2 3 4 5 6 7 8 9 10
1 Below Average 29 42 38 40 43 40 30 42
2 Average 30 35 39 28 31 31 29 35 29 33

3  Above Average 26 32 21 20 23 22

Assume that ANOVA model (16.2) is appropriate.

a.

Prepare aligned dot plots of the data. Do the factor level means appear to differ? Does the
variability of the observations within each factor level appear to be approximately the same
for all tactor levels?

Obtain the fitted values.
Obtain the residuals. Do they sum to zero in accord with (16.21)?

. Obtain the analysis of variance table.



*16.10.

*16.11.
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e. Test whether or not the mean number of days required for successful rehabilitation is the
same for the three fitness groups. Control the « risk at .01. State the alternatives, decision
rule, and conclusion.

f. Obtain the P-value for the test in part (e). Explain how the same conclusion reached in
part (e) can be obtained by knowing the P-value.

g. What appears to be the nature of the relationship between physical fitness status and duration
of required physical therapy?

Cash offers. A consumer organization studied the effect of age of automobile owner on size
of cash offer for a used car by utilizing 12 persons in each of three age groups (young, middle,
elderly) who acted as the owner of a used car. A medium price, six-year-old car was selected
for the experiment, and the “owners™ solicited cash offers for this car from 36 dealers selected
at random from the dealers in the region. Randomization was used in assigning the dealers to
the “owners.” The offers (in hundred dollars) follow. Assume that ANOVA model (16.2) is
applicable.

i

i 1 2 3 4 5 6 7 8 9 10 1M 12
1 Young 23 25 21 22 21 22 20 23 19 22 19 21
2 Middle 28 27 27 29 26 29 27 30 28 27 26 29
3 Elderly 23 20 25 21 22 23 21 20 19 20 22 21

a. Prepare aligned dot plots of the data. Do the factor level means appear to differ? Does
the variability of the observations within each factor level appear to be approximately the
same for all factor levels?

Obtain the fitted values.

Obtain the residuals.

Obtain the analysis of variance table.

. Conduct the F test for equality of factor level means; use a = .01. State the alternatives,
decision rule, and conclusion. What is the P-value of the test?

f. What appears to be the nature of the relationship between age of owner and mean cash
offer?

Filling machines. A company uses six filling machines of the same make and model to place
detergent into cartons that show a label weight of 32 ounces. The production manager has
complained that the six machines do not place the same amount of fill into the cartons. A
consultant requested that 20 filled cartons be selected randomly from each of the six machines
and the content of each carton carefully weighed. The observations (stated for convenience as
deviations from 32.00 ounces) follow. Assume that ANOVA model (16.2) is applicable.

o a0 T

i
i 1 2 3 18 19 20
1 —.14 .20 .07 .07 —.01 -.19
2 .46 a1 a2 .02 1 a2
3 21 .78 .32 .50 .20 .61
4 .49 .58 .52 42 45 .20
5 —.19 27 .06 14 .35 —.18
6 .05 —-.05 .28 .35 —.09 205
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16.12.

16.13.

16.14.

a. Prepare aligned box plots of the data. Do the fuactor level meuns appeur 10 dilfer? Does e
variability ol the observations within cach factor level appear 1o be approximately the same
for all lactor levels?

. Obiain the litted valucs.
. Obain the residuzls. Do they sum to zero in accord with (16.21)?

. Obtain the analysis ol variunce table.

o & o

. Test whether or not the mean lill differs among the six machines: control the o risk g 05
State the zlternatives. decision rule, and conclusion. Does your conclusion support thé
production manager’s complaint?

f. What is the P-vuluc of the test in part (e)? Is this value consistent with your conclusion i

part (e)? Explain,

Bused on the box plots obtained in part (a), does the variation between the mean fillg for

the six machines appear to be large relative to the variability in fills between cartons for

any given machine? Explain,

UL

Premium distribution. A soft-drink manufacturer uses five agents (1, 2, 3. 4, 5) to handle
premium distributions for its various products. The marketing director desired to study the
timeliness with which the premiums are distributed. Twenty transactions for each agent were
selected at rundom. and the time lapse (in days) for handling each transaction was determined,
The results follow. Assume that ANOVA model (16.2) is appropriate.

/
i 1 2 3 18 19 20
1 24 24 29 27 26 25
-2 18 20 20 . 26 22 21
3 10 11 8 9 11 12
4 15 13 18 17 14 16
5 33 22 28 26 30 29

a. Prepare aligned box plots of the data. Do the factor level means appear to differ? Does
the variability of the observations within each factor level appear to be approximately the
same ltor all tuctor levels?

Obtain the fitted values.
Obtain the residuals. Do they sum to zero in accord with (16.21)?

Obtain the analysis of variance table.

o /o0 T

Test whether or not the mean time lapse differs for the five agents: use o = .10. State the

alternatives. decision rule. and conclusion. .

{. What is the P-value of the test in part (e)? Explain how the same conclusion as in part (€)
can be reached by knowing the P-value.

. Bused on the box plots obtained in part (a). does there appear to be much variation in the
meun time lapse Tor the (ive agents? Is this variation necessarily the result of differences
in the efficicney of operations of the five agenis? Discuss.

Refcr to Questionnaire color Problem 16.8. Explain how you would niake the random assign-

ments of supermarket parking lots to colors in this single-factor study. Make all appropriate

randomizations.

Reler to Cash offers Problem 16.10. Explain how you would make the random assignments

of dealers to “owners™ in this single-factor study. Make all appropriate randomizztions.
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16.20.
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Refer to.Problem 16.4. What are the values of 7;, 72, and 73 if the ANOVA model is expressed
in the factor effects formulation (16.62), and w. is defined by (16.63)?

Refer to Problem 16.5. What are the values of 7; if the ANOVA model is expressed in the
factor effects formulation (16.62), and w. is defined by (16.63)?

Refer to Premium distribution Problem 16.12. Suppose that 25 percent of all premium
distributions are handled by agent 1, 20 percent by agent 2, 20 percent by agent 3, 20 percent
by agent 4, and 15 percent by agent 5.

a. Obtain a point estimate of . when the ANOVA model is expressed in the factor effects
formulation (16.62) and w. is defined by (16.65), with the weights being the proportions
of premium distribution handled by each agent.

b. State the alternatives for the test of equality of factor level means in terms of factor effects
model (16.62) for the present case. Would this statement be affected if ©. were defined
according to (16.63)? Explain.

Refer to Productivity improvement Problem 16.7. Regression model (16.75) is to be
employed for testing the equality of the factor level means.
a. Setup the Y, X, and B matrices.

b. Obtain XB. Develop equivalent expressions of the elements of this vector in terms of the
cell means ;.

c. Obtain the fitted regression function. What is estimated by the intercept term?

d. Obtain the regression analysis of variance table.

e. Conduct the test for equality of factor level means; use o = .05. State the alternatives,
decision rule, and conclusion.

Refer to Questionnaire color Problem 16.8. Regression model (16.75) is to be employed for

testing the equality of the factor level means.

a. Setup the Y, X, and B matrices.

b. Obtain XB. Develop equivalent expressions of the elements of this vector in terms of the
cell means p;.

c. Obtain the fitted regression function. What is estimated by the intercept term?

d. Obtain the regression analysis of variance table.

e. Conduct the test for equality of factor level means; use a = .10. State the alternatives,
decision rule, and conclusion.

Refer to Rehabilitation therapy Problem 16.9. Regression model (16.81) is to be employed

for testing the equality of the factor level means.

a. Setup the Y, X, and B matrices.

b. Obtain XB. Develop equivalent expressions of the elements of this vector in terms of the
cell means w;.

c. Obtain the fitted regression function. What is estimated by the intercept term?
d. Obtain the regression analysis of variance table.

e. Conduct the test for equality of factor level means; use & = .01. State the alternatives,
decision rule, and conclusion.

Refer to Cash offers Problem 16.10.
a. Fit regression model (16.75) to the data. What is estimated by the intercept term?

b. Obtain the regression analysis of variance table and test whether or not the factor level
means are equal; use o = .01. State the alternatives, decision rule, and conclusion.

B
L]



728 Part Four Design and Analysis of Single-Facior Studies

1

16.22.

16.23.

16.24.

#16.25.

16.26.

*#16.27.

16.28.

*16.29.

16.30.

16.31.

16.32.

Refer to Rehabilitation therapy Problem 16.9.

a. Fit th’e .full re;.;ression model (16.85) to the data. Why would a fitted regression Mode]
containing an intercept term not be proper here?

b. Fit the reduced model (16.86) to the data.

c. Use test statistic (2.70) for testing the equality of the factor level means; employ leve] of
significance o = .0l.

Refer to Example | on page 717. Find the power of the test if « = .0, everything elge

remaining unchanged. How does this power compare with that in Example 1?

Refer to Example 2 on page 717. The analyst is also interested in the power of the test whey

uy = > = 13 and p3 = py = 18, Assume that o = 3.5.

a. Obtain the power of the test if ¢ = .05.
b. What would be the power of the test it « = .01?7

Refer to Productivity improvement Problem 16.7. Obtain the power of the test in Prop.
lem 16.7¢ if 11y = 7.0, > = 8.0, and 3 = 9.0. Assume that = .9.

Refer to Rehabilitation therapy Problem 16.9. Obtain the power of the test in Problem 16.9¢
if iy = 37. ;> = 35. and p3 = 28. Assume that 0 = 4.5.

Refer to Cash offers Problem 16.10. Obtain the power of the test in Problem 16.10e if the
mean cash offers are p; = 22, ;> = 28, and 3 = 22. Assume that o = 1.6.

Why do you think that the approach to planning sample sizes to find the best treatment by
means of Table B.13 does not consider the risk of an incorrect identification when the best
two trealment means are the same or practically the same?

Consider a single-factor study where r =5, o = .01, 8= .05, and o = 10, and equal treatment
sample sizes are desired by means of the approach in Table B.12.

a. What are the required sample sizes it A = 10, 15, 20. 30? What generalization is suggested
by your results?

b. What are the required sample sizes for the same values of A as in part (a) if o = .05, all
other specifications remaining the same? How do these sample sizes compare with those
in part (a)?

Consider a single-factor study where r = 6. o =.05. 8 = .10, and A = 50, and equal treatment

sample sizes are desired by means of the approach in Table B.12.

a. What are the required sample sizes if o = 50,25, 20? What generalization is suggested
by your results?

b. What are the required sample sizes for the same values of o as in pagt (a) if r = 4, &l
other specifications remaining the same? How do these sample sizes compare with those
in part (a)?

Consider a single-factor study where r = 5, | —o = .95, and o = 20, and equal sample sizes

are desired by means of the approach in Table B.13.

a. What are the required sample sizes it A = 20. 10, 5 What generalization is suggested by
your results?

b. What are the required sample sizes for the same values of X as in part (a) if o = 30, all
other specifications remaining the same? How do these sample sizes compare with those
in part (a)?

Refer to Questionnaire color Problem 16.8. Suppose that the sample sizes have not yet been

determined but it has been decided to sample the same number of supermarket parking lofs

for each questionnaire color. A reasonable planning value for the error standard deviation IS

o =3.0.
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*16.34.

16.35.
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a. What would be the required sample sizes if: (1) differences in the response rates are to be
detected with probability .90 or more when the range of the treatment means is 4.5, and
(2) the « risk is to be controlled at .05?

b. If the sample sizes determined in part (a) were employed, what would be the minimum
power of the test for treatment mean differences (using a = .05) when the range of the
treatment means is 6.0?

c¢. Suppose the_chief objective is to identify the color with the highest mean response rate.
The probability should be at least .99 that the best color is recognized correctly when the
difference: between the response rates for the best and second best colors is 1.5 percent
points or more. What are the required sample sizes?

Refer to Rehabilitation therapy Problem 16.9. Suppose that the sample sizes have not yet

been determined but it has been decided to use the same number of patients for each physical

fitness group. Assume that a reasonable planning value for the error standard deviation is

o = 4.5 days.

a. What would be the required sample sizes if: (1) differences in the mean times for the three
physical fitness categories are to be detected with probability .80 or more when the range
of the treatment means is 5.63 days, and (2) the « risk is to be controlled at .01?

b. If the sample sizes determined in part (a) were employed, what would be the power of the
test for treatment mean differences when @) = 37, wy, = 32, and us; = 282

¢. Suppose the chief objective is to identify the physical fitness group with the smallest mean
required time for therapy. The probability should be at least .90 that the correct group is
identified when the mean required time for the second best group differs by 2.0 days or
more. What are the required sample sizes?

Refer to Filling machines Problem 16.11. Suppose that the sample sizes have not yet been
determined but it has been decided to sample the same number of cartons for each fill-
ing machine. Assume that a reasonable planning value for the error standard deviation is
o = .15 ounce.

a. What would be the required sample sizes if: (1) differences in the mean amount of fill for
the six filling machines are to be detected with probability .70 or more when the range of
the treatment means is .15 ounce, and (2) the « risk is to be controlled at .05?

b. For the sample sizes determined in part (a), what would be the power of the testif ; = .09,
Ha = .18, 3 = .30, ug = .20, 15 = .10, and pe = .20?

¢. Suppose the chief objective is to identify the filling machine with the smallest mean fill.
The probability should be at least .95 that the filling machine with the smallest mean fill is
recognized correctly when the filling machine with the next smallest mean fill differs by
.10 ounce or more. What are the required sample sizes?

Refer to Premium distribution Problem 16.12. Suppose that the sample sizes have not yet
been determined but it has been decided to sample the same number of premium distributions
for each agent. Assume that a reasonable planning value for the error standard deviation is
o = 3.0 days.

a. What would be the required sample sizes if: (1) differences in the mean time lapse for the
five agents are to be detected with probability .95 or more when the range of the treatment
means is 3.75 days, and (2) the « risk is to be controlled at .10?

b. Suppose the chief objective is to identify the best agent, i.e., the one with the smallest mean
time lapse. The probability should be at least .90 that the best agent is recognized correctly
when the mean time lapse for the second best agent differs by 1.0 day or thore. What are
the required sample sizes?
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Exercises

16.36.

16.37.

16.38.
16.39.

16.40.

16.41.

{Calculus needed.) State the likelihood function for ANOVA model (16.2) when r = 3 and

n; = 2 and obtain the maximum likelihood estimators.

Show thar when test statistic +™ in Table A.24a is squared. it is equivalent to the F* test statistc

(16.55) forr = 2.

Derivc the restriction in (16.66) when the constant . is defined according to (16.65).

a. Obrain the least squares estimators of the regression coetlicients in full regression mode]
(16.85). What is SSE(F) here?

b. Obtain the least squares estimator of j4, in reduced regression model (16.86). Whar i
SSE(R) here?

A completely randomized experiment is to be conducted involving » = 3 treatments, wigy

=2 cxperimental trials for each treatment. Because the normality of the error terms is

strongly in doubt, the test for treatment effects based on the F* test statistic in (16.55) is 1o

be carried out by means of the randomization distribution.

a. Determine the number of ways that the six experimental units can be divided into three
groups of size two. How many unique F™* statistics are possible?

b. Using the results in part (2). what is the smallest P-value that is possible with the random-
ization test? What does this suggest about the adequacy of the planned sample size?

(Calculus needed.) Given p; = 0. i3 = 1. and 0 < p> < 1, show that Z(u, — 12.)% is min-
imized when 145 =.5. where 4. = (u; + 112 + u3)/3.

Projects

16.42.

16.43.

16.44.

16.45.

16.46.

Refer to the SENIC data set in Appendix C.I. Test whether or not the mean infection risk
(variable 4) is the same in the four geographic regions (variable 9); use o = .05. Assume that
ANOVA model (16.2) is applicable. State the alternatives. decision rule, and conclusion.
Refer to the SENIC data set in Appendix C. 1. The effect of average age of patient (variable 3)
on mean infection risk (variable 4) is to be studied. For purposes of this ANOVA study, average
age is to be classified into four categories: Under 50.0, 50.0-54.9. 55.0-59.9. 60.0 and over.
Assume that ANOVA model (16.2) is applicable. Test whether or not the mean infection risk
differs for the four age groups. Control the o risk at .10. State the alternatives. decision rule,
and conclusion.

Refer to the CDI data set in Appendix C.2. The effect of geographic region (variable 17) on
the crime rate (variable 10 = variable 5) is to be studied. Assume that ANOVA model (16.2)
is applicable. Test whether or not the mean crime rates for the four geographjc regions differ;
use o = .05. State the alternatives, decision rule. and conclusion.

Refer to the Market share data set in Appendix C.3. Test whether or not the average monthly
market share (variable 2) is the same for the four factor-level combinations associated with the
two levels of cach factor for discount price (variable 5) and package promotion (variable 6);
use @ = .05. Assume that model (16.2) is applicable. State the alternatives, decision rule, and
conclusion.

Consider a test involving Hy: 1, = 143 = 3. Five observations are to be taken for each factor
level. and level of signiticance & = .05 is to be employed in the test.

a. Generate five random normal observations when 1) = 100 and o = 12 to represent the
observations for treatment |. Repeat this for the other two treatments when 42 =tz = 100
and o = 12. Finally. calculate F* test statistic (16.55).

b. Repeat part (a) 100 times.
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16.47.

16.48.

Chapter 16 Single-Factor Studies 731

¢. Calculate the mean of the 100 F* statistics.

d. Whatproportionofthe F* statistics lead to conclusion Ho?Is this consistent with theoretical
expectations?

e. Repeat parts (a) and (b) when p; = 80, 2 = 60, uz = 160, and o = 12. Calculate the
mean of the 100 F* statistics. How does this mean compare with the mean obtained
in part (¢) when p; = pa = us = 1007 Is this result consistent with the expectation
in (16.37b)?

f. What proportion of the 100 test statistics obtained in part (e) lead to conclusion H,? Does
it appear that the test has satisfactory power when p; = 80, 115 = 60, and us = 160?

A completely randomized experiment involving r = 2 treatments was carried out, based on

n = 3 experimental trials for each treatment. The test for equality of the treatment means is

to be carried out by means of the randomization distribution of the F* test statistic (16.55).

a. Determine the number of ways that the six experimental units can be divided into two
groups of size three each. How many unique F* statistics are possible?

b. For the sample results:

i 1 2 3
Vi 23 34 78
YZ)': 17 29 23

obtain the randomization distribution of the test statistic F* and the P-value of the ran-
domization test.

c¢. Obtain the P-value of the normal-theory F* statistic for the sample results in part (b). How
does this P-value compare with the one from the randomization test in part (b)? What does
this suggest about the appropriateness of the F distribution here if the error terms are far
from normally distributed?

A completely randomized psychological reinforcement experiment was conducted in which
a standard treatment and an experimental treatment were each applied to four subjects. The
sample results are:

i 1 2 3 4
¥y, (standard treatment): 16 14 18 16
Y2; (experimental treatment): 12 15 13 12

The test for equality of treatment means is to be carried out by means of the randomization
distribution of the F* test statistic (16.55), with o = .10.

a. Obtain the randomization distribution of the test statistic F* and carry out the indicated
test. State the alternatives, decision rule, and conclusion. What is the P-value of the ran-
domization test?

b. For the randomization distribution in part (a), determine the proportion of F* values that
exceed F(.90; 1, 6), the proportion of F* values that exceed F (.95; 1, 6), and the proportion
that exceed F(.99; 1, 6).

¢. How do the proportions obtained in part (b) compare with the probabilities for the normal
error model? Discuss. *



732 PartFour Design and Analysis of Single-Factor Studies

Case
Studies

16.49.

16.50.

16.51.

Refer to the Prostate cancer data set in Appendix C.5. Carry out a one-way analysig of
variance of this data set, where the response of interest is PSA level (variable 2) and the
single factor is Gleason score (variable 9). The analysis should consider transformationg o
the response variable. Document steps taken in your analysis, and justify your conclusiong,

Refer to the Real estate sales data set in Appendix C.7. Carry out a one-way analysig o
variance of this data set, where the response of interest is sales price (variable 2) and the single
factor is number of bedrooms (variable 4). Recode the number of bedrooms into four Cate-
gories: 0-2, 3, 4, and greater than or equal to 5. The analysis should consider transformationg
of the résponse variable. Document steps taken in your analysis, and justify your conclusion,

Refer toi_the Ischemic heart disease data set in Appendix C.9. Carry out a One-way analysis of
variance of this data set, where the response of interest is total cost (variable 2) and the single
factor is total number of interventions (variable 5). Recode the number of interventions into
six categories: 0, 1, 2, 3—4, 5-7, and greater than or equal to 8. The analysis should consiger
transformations of the response variable. Document steps taken in your analysis, and Justify
your conclusions.



Chapter

Analysis of Factor
Level Means

17.1 Introduction

In Chapter 16, we discussed the F test for determining whether or not the factor level means
1 differ. This is a preliminary test to establish whether detailed analysis of the factor level
means is warranted. When this test leads to the conclusion that the factor level means p;
are equal, and ANOVA model (16.2) is appropriate, no relation between the factor and the
response variable is present and usually no further analysis of factor means is therefore
indicated. On the other hand, when the F test leads to the conclusion that the factor level
means ; differ, a relation between the factor and the response variable is present. In this
latter case, a thorough analysis of the nature of the factor level means is usually undertaken.
This is done in two principal ways:

1. Analysis of the factor level means of interest using estimation techniques.
2. Statistical tests concerning the factor level means of interest.

Often, the analysis of factor level means combines the two approaches. For instance, a
two-sided confidence interval may be constructed initially for an effect of interest. A test
concerning this effect is then carried out either by determining whether or not the confidence
interval contains the hypothesized value or by constructing the appropriate test statistic.

When many related comparisons are to be made, testing often precedes estimation. This
occurs, for instance, when each factor level effect is compared with every other one and
the number of factor levels i$ not small. Here, statistical tests are often performed first to
determine the active or statistically significant set of comparisons. Estimation techniques
are then used to construct confidence intervals for the active comparisons.

Special simultaneous estimation and testing procedures, called multiple comparison
procedures, are required when a series of interval estimates or tests are performed. These
multiple comparison procedures preserve the overall confidence coefficient 1 — ¢, or the
overall significance level ¢, for the family of inferences.

We first discuss three simple graphical methods for displaying the factor, level means.
Much of the remainder of the chapter is devoted to a consideration of important multiple
comparison procedures. In Section 16.10 we introduced methods for determining sample

733
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TABLE 17.1
Summary of
Results—
Kenton Food
Company
Example.

Example

Package Design (i)

1 2 3 4 Total
n; 5 5 4 5 19
Y;. 73 - 67 78 136 354
Y. 14.6 13.4 19.5 27.2 18.63
Source of Variation ss df MS
Between designs 588.22 3 196.07
Error 158.20 15 10.55
Total 746.42 18
Package Design Characteristics
1 3 colors, with cartoons
2 3 colors, without cartoons
3 5 colors, with cartoons
4 5 colors, without cartoons

sizes in single-factor studies based on the power approach. This chapter concludes with a
discussion of the estimation approach to sample size planning.

Throughout this chapter, we continue to assume the usual single-factor ANOVA model.
The cell means version of this model was given in (16.2):

Yij = Mi + & (171)

where:

Y

J; are parameters
&;; are independent N (0, o?)

Our discussion of the analysis of factor means will be illustrated by two examples. The
first is the Kenton Food Company example. Data for this example are provided in Table 16.1
onpage 686, and the ANOVA table is displayed in Figure 16.5 on page 695. For convenience,
we repeat the main results in Table 17.1. The second example, the rust inhibitor example,
is described next.

In a study of the effectiveness of different rust inhibitors, four brands (A, B, C, D) were
tested. Altogether, 40 experimental units were randomly assigned to the four brands, with
10 units assigned to each brand. A portion of the results after exposing the experimental
units to severe weather conditions is given in coded form in Table 17.2a. The higher the
coded value, the more effective is the rust inhibitor. This study is a completely randomized
design, where the levels of the single factor correspond to the four rust inhibitor brands.
The analysis of variance is shown in Table 17.2b. For level of significance o =05
for testing whether or not the four rust inhibitors differ in effectiveness, we require
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i=1
43.9
39.0
46.7
8 389
9: 43:6
Yy 43.14 . _
Y. =6025"
(b):Analysis of Variance
“Variation K1y df ‘MS
Betweertbrands  15,953,47 3.
Error: 221.03: 36
Total - 1617450 39

F(.95; 3,36) = 2.87. Using the mean squares from Table 17.2b, we obtain the test statistic:

_ MSTR _ 5317.82
T MSE ~ 6.140

Since F* = 866.1 > 2.87, we conclude that the four rust inhibitors differ in effectiveness.
The P-value of the test is O+. We therefore wish to analyze the nature of the factor level
effects, particularly whether one rust inhibitor is substantially more effective than the others.

F* = 866.1

17.2  Plots of Estimated Factor Level Means

Line Plot

Example

Before undertaking formal analysis of the nature of the factor level effects, it is usually
helpful to examine these factor effects informally from a plot of the estimated factor level
means Y;,. We shall take up three types of plots: (1) a line plot, (2) a bar graph, and (3)
a main effects plot. All three plots are appropriate whether the sample sizes r; are equal
or not,

A line plot of the estimated factor level means simply shows the positions of the Y;. on a
line scale. It is a very simple, but effective, device for indicating when one or several factor
level means may differ substantially from the others.

In Figure 17.1 we present a line plot of the estimated factor level means Y. for the Kentorf
Food Company example. It is clear from Figure 17.1 that design 4 led by far to the highest
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FIGURE 17.1 Line Plot of Estimated Factor Level Means—Kenton Food Company
Example.

Design Design Design Design
2 1 3 4

& - P | 'y 1

20 30
Cases Sold

mean sales in the study, and that package designs | and 2 led to the smallest mean saleg
which did not differ much from each other. The purpose of the formal inference procedureg
to be taken up shortly is to determine whether the pattern noted here reflects underlying
differences in the factor level means p; or is simply the result of random variation,

Bar Graph and Main Effects Plot

Example

FIGURE 17.2
MINITAB Bar
Graph and
Main Effects
Plot of
Estimated
Factor Level
Means—
Kenton Food
Company
Example.

Bar graphs and main effects plots are frequently used to display the estimated factor leve]
means in two dimensions. Both can be used to compare the magnitudes of different factor
level means. In a bar graph, vertical bars are used to display the estimated factor leve]
means. In a main effects plot, a scatter plot of the estimated factor level means is provided,
and the plot symbols are connected by straight lines, to visibly highlight potential trends
in the cell means. Note that these trend lines are not particularly meaningful for qualitative
factors. For this reason, main effects plots are most appropriate for quantitative factors. In
some packages, the main effects plot also displays the overall mean using a horizontal line,
permitting visual comparisons of the factor-level means with the overall mean.

A bar graph and a main effects plot of the estimated factor level means for the Kenton Food
Company example are displayed in Figure 17.2. Because package design is a qualitative
factor, the bar graph in Figure [7.2a is the recommended graphic here. An advantage of
the main effects plot in Figure 17.2b is that it permits a visual comparison of the estimated
factor level means and the overall mean, Here it shows that designs 3 and 4 had higher mean
sales than the overall mean, while designs | and 2 both had smaller means sales than the
overall mean.

(a) Bar Graph (b) Main Effects Plot
30 30
]
- 20} - 201 _
[5) [5)
(%) (%)
& &
© ©
W) 10+ W) 10+
T T T T T T T
U 2 3 4 U 2 3 4

Design Design



Chapter 17  Analysis of Factor Level Means 737

Comments

1. In Section 16.7 we defined the difference of the factor level mean and the overall mean as the
factor level effect. In our discussion of multifactor studies in Chapter 19 and beyond, we shall refer
to factor level effects as main effects. For this reason, the plot in Figure 17.2b is frequently referred
to as a main effects plot.

2. None of the three plots provides information on the standard errors. Without such information,
we cannot easily tell whether differences between factor level means are statistically significant. Later
in this chapter, we shall enhance all three plots by including the information on the standard errors.

3. The normal probability plot introduced in Chapter 3 can also be used to compare the estimated
factor level means. A normal probability plot is appropriate when the sample sizes n; are equal and
the number of factors r is sufficiently large. We recommend that a normal probability plot of factor
level means be considered if r > 10. |

17.3 Estimation and Testing of Factor Level Means

Inferences for factor level means are generally concerned with one or more of the following:

1. A single factor level mean p;

2. A difference between two factor level means
3. A contrast among factor level means

4. A linear combination of factor level means

We discuss each of these types of inferences in turn.

Inferences for Single Factor Level Mean
Estimation. An unbiased point estimator of the factor level mean y; is given in (16.16):

=Y, (17.2)
This estimator has mean and variance:
E{Y.) = (17.3a)
— 0'2
oY) = — (17.3b)

t
The latter result follows because (16.43) indicates that Y;. = p; +£;., the sum of a constant
plus a mean of n; independent &;; error terms, each of which has variance o2. Further, Y;. is
normally distributed because the error terms &;; are independent normal random variables.
The estimated variance of Y;. is denoted by s2{Y;.} and is obtained as usual by replacing

o? in (17.3b) by the unbiased point estimator MSE:

MSE

sHY,} = (17.4)

{1

The estimated standard deviation s{Y;.} is the positive square root of (17.4).
It can be shown that: -
Y.~ :
2t~ M s distributed as £ (i — r) for ANOVA model (17.1)  (17.5)

S{Y,‘.}
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where the degrees of freedom are those as.sl)ciated with MSE. The result (17.5 follows
from the definition of 7 in (A.44) since: (1) Y. is normally distributed and (2) MSE /52 is
distributed independently of ;. as x (1 — )/ i1y —r) according to the following theorer:

For ANOVA model (17.1), SSE/o? is distributed as x> with ny —

degrees of freedom, and is independent of Yiewun., Y,.. (17'6)
It tollows directly from (17.5) that the 1 — « confidence limits for p; are:
Y. 10— af/2ny — sty (17_7)

Testing. The confidence interval based on the limits in (17.7) can be used to test 3 hy-
pothesis of the form:
Hy: i = ¢
Hy iy #c
where ¢ is an appropriate constant. We conclude Hy, at level of significance «, when ¢ jg

contained in the confidence interval, and we conclude H, when the confidence interval doeg
not contain ¢. Equivalently, one can compute the test statistic:

(17.8)

yi- —C
A { Y,’. }
Test statistic +* follows a ¢ distribution with 1y — r degrees of freedom when Hj is true,

according to (17.5). Consequently, we conclude Hy whenever |t¥| < (1 — a/2; ny —1);
otherwise. we conclude H,,.

= (17.9)

In the Kenton Food Company example, the sales manager wished to estimate mean sales for
package design [ with a 95 percent confidence interval. Using the results from Table 17.1,
we have:

Y.=146 =5  MSE=1055
We require £(.975: 15) = 2.131. Finally. we need s{)_q.}. We have:

1o MSE  10.55
.S'_{Y|.} = = —

=210

ny .

so that s{¥ .} = 1.453. Hence, we obtain the confidence limits 14.6 & 2.131(1.453) and
the 95 percent confidence interval is:

LS = py <177

Thus, we estimate with confidence coefficient .95 that the mean sales per store for package
design | are between 11.5 and 17.7 cases.

Graphical Displays. One way to enhance a bar graph or the main eftfects plot of factorlevel
means is to display the confidence limits in (17.7) for each factor level mean. Figure 17.3
provides two such plots. Figure 17.3a contains a bar-interval graph, in which the 95 percent
confidence limits are superimposed on a bar graph of the treatment means. Figure 17.3b
contains an interval plot, in which the 95 percent confidence limits for each factor level
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FIGURE 17.3 (2) Bar-Interval Graph (b) Interval Plot
Bar.mterval 30

har 30
Toterval
Plot—Kenton

Food Company 20
10

- | ﬁ FE‘
10—— DE l
1 2 3

Design Design

Cases Sold
Cases Sold

mean are displayed. Many investigators prefer to simply display limits that correspond to
plus-or-minus one standard error—that is, Y;. + s{Y.}.

.inferences for Difference between Two Factor Level Means

Estimation. Frequently two treatments or factor levels are to be compared by estimating
the difference D between the two factor level means, say, u; and gy

D= i — o (17.10)

Such a difference between two factor level means is called a pairwise comparison. A point
estimator of D in (17.10), denoted by D, is:

D=Y,-Y,. (17.11)
This point estimator is unbiased:
E{D} = py — pr (17.12)
Since Y;. and Y. are independent, the variance of D follows from (A.31b):
N — — 1 1
o D) =Y, .} + oY) =02 (n— + n—) (17.13)
{ i

The estimated variance of D, denoted by s?{D}, is given by:

s{D) = MSE (l + i) (17.14)

n,; Ry

Finally, D is normally distributed by (A.40) because D is a linear combination of indepen-
dent normal variables.
It follows from these characteristics, theorem (17.6), and the definition of ¢ in (A.44)
that:
D-D
s{D}

is distributed as t (ny — r) for ANOVA model (17.1) (17.15)
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Example

Hence. the 1 — o confidence limits for D are:

D+1t(l —a/2ny —r)s{D) (17.16)

Testing. There is often interest in testing whether two factor level means are he Same
The alternatives here are of the form: )

Ho: pi = e

Ha: i 7é i (]7.]7)

The altemnatives in (17.17) can be stated equivalently as follows:
Hy: py —py =0
H{I: Hi — M 7é 0

Conclusion H is reached at the o level of significance if zero is contained within the
confidence limits (17.16); otherwise, conclusion H,, is reached. An equivalent procedure js
based on the test statistic:

(17.172)

>

= ") (17.18)

Conclusion Hj is reached if [¢*| < (I — «/2; ny — r); otherwise, H, is concluded.

For the Kenton Food Company example, package designs 1 and 2 used 3-color printing
and designs 3 and 4 used 5-color printing, as shown in Table 17.1. We wish to estimate the
difference in mean sales for 5-color designs 3 and 4 using a 95 percent confidence interval,
That is, we wish to estimate D = pi3 — . From Table 17.1, we have:

Yi=195 =4  MSE=10.55

)74. =27.2 Hy = 5
Hence:

D=VY:.—Y,.=195-272=-77

The estimated variance of D is:

A ] ] ] 1

sHA{D}=MSE| — 4+ — | =10.55| - +—- | = 4.748
Hy N4 4 5

so that the estimated standard deviation of D is s{D} = 2.179. We require #(.975; 15) =

2.131. The confidence limits therefore are —7.7 £2.131(2.179), and the desired 95 percent

confidence interval is:

—123 < py3 — py < 3.1

Thus, we estimate with confidence coetficient .95 that the mean sales for package design 3
fall short of those for package design 4 by somewhere between 3.1 and 12.3 cases per sIore-

Note from Table 17.1 that the only difference between package designs 3 and 4 is the
presence of cartoons; both designs used 5-color printing. The sales manager may therefore
wish to test whether the addition of cartoons affects sales for 5S-color designs. The alternatives
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here are:

i i Hy: iz — pig =0
Ha:M3_M45éO

Since the hypothesized difference zero in Hy is not contained within the 95 percent confi-
dence limits —12.3 and —3.1, we conclude H,, that the presence of cartoons has an effect.
We could also obtain test statistic (17.18):

~

b -1
T s{by " 2.179

Since [t*] = 3.53 > £(.975; 15) = 2.131, we conclude H,. The two-sided P-value for this
test is .003.

t* =-—3.53

nferences for Contrast of Factor Level Means

A contrast is a comparison involving two or more factor level means and includes the
previous case of a pairwise difference between two factor level means in (17.10). A contrast
will be denoted by L, and is defined as a linear combination of the factor level means u;
where the coefficients ¢; sum to zero:

L= ic,-p,,- where ici =0 (17.19)
=1

i=1

Hlustrations of Contrasts. Inthe KentonFood Company example, package designs 1 and
2 used 3-color printing and designs 3 and 4 used 5-color printing, as shown in Table 17.1.
Also, package designs 1 and 3 utilized cartoons while no cartoons were utilized in designs
2 and 4. The following contrasts here may be of interest:

1. Comparison of the mean sales for the two 3-color designs:

L=yp—ps
Here,c, =1,00=—-1,c3=0,¢,=0,and ) ¢; = 0.
2. Comparison of the mean sales for the 3-color and 5-color designs:
pitpa pst
2 2
Here,cy =1/2, ¢ =1/2,¢c3=—~1/2, ¢, =—1/2,and Y ¢; = 0.
3. Comparison of the mean sales for designs with and without cartoons:

L=

_ Mt iy gt
o 2 2

Here,c, =1/2, ¢, =~1/2,¢3=1/2, ¢4, =—1/2,and Y ¢; = 0.
4. Comparison of the mean sales for design 1 with average sales for all four designs:

L

Mt et ps g
4 .
Here, c; =3/4, ¢, =~1/4,¢c3=—1/4, ¢4, =—1/4,and Y ¢; = 0.

L=y,
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Note that the first contrast is simply a pairwise comparison. In the second apq thirg
contrasts, averages of several factor level means are compared. The fourth contragt ig the
factor eftect 1, defined by (16.60) and (16.63).

The averages used here are unweighted averages of the means y;; these are ordinarily
the averages of interest. In special cases one might be interested in weighred averages of the
fi to describe the mean response for a group of several factor levels. For example, if by,
3-color and 5-color designs were to be employed, with 3-color printing used three timeg as
often as 5-color printing, the comparison of the effect of cartoons versus no cartoong might
be based on the contrast:

~ Bpa+ps _3#z+#4
4 4

Here,c, =3/4,c = -3/4, c3=1/4, ¢4, = —1/4,and > ¢; = 0.

L

Estimation. An unbiased estimator of a contrast L is;

r

Z: = ZC,’)_/,. (17-20)

=\

Since the Y. are independent, the variance of L according to (A.31) is:

r

oLy =) clo?{V.) :i:c,. (U—) :UZ‘— (17.21)
i=l i

=1 f i=1 n

=

An unbiased estimator of this variance is:
sS{Ly =MSEY -~ (17.22)

L is normally distributed by (A.40) because it is a linear combination of independent
normal random variables. It can be shown by theorem (17.6), the characteristics of L just
mentioned, and the definition of ¢ thar:

L-r .
ﬁ is distributed as  (ny — r) for ANOVA model (17.1) (17.23)

A
Ly

Consequently, the | — o« confidence limits for L are:
L+t —a/2inr —r)s{L} (17.24)

Testing. The confidence interval based on the limits in (17.24) can be used to test a

hypothesis of the form:
Hy L =0
0 (17.25)
Hy L #£0

H, is concluded at the o level of significance if zero is contained in the interval; otherwise
H, is concluded. An equivalent procedure is based on the test statistic:

[ — (17.26)

If|t*| < t(l —a/2; ny —r), Hy is concluded; otherwise, H, is concluded.
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In the Kenton Food Company example, the mean sales for the 3-color designs are to be
compared to the mean sales for the 5-color designs with a 95 percent confidence interval.
We wish to estimate:

e u3t g

2 2
The point estimate is (see data in Table 17.1):

L

Yi+Ys Y +Y, 146+134 195+27.2

L= =-9.35
2 2 2 2
Since ¢; = 1/2,¢; = 1/2, ¢3 = —1/2, and ¢, = —1/2, we obtain:
2 1/2)? 2)? —1/2)? —1/2)?
S 2 W L G2
n; 5 5 4 5

and:
2
L) = MSE S = 10.55(:2125) = 2.242
n;

so that s{L} = 1.50.

For a 95 percent confidence interval, we require ¢(.975; 15) = 2.131. The confidence
limits for L therefore are —9.35 &+ 2.131(1.50), and the desired 95 percent confidence
interval is:

—125<L <-6.2

Therefore, we conclude with confidence coefficient .95 that mean sales for the 3-color
designs fall below those for the 5-color designs by somewhere between 6.2 and 12.5 cases

per store.
To test the hypothesis of no difference in mean sales for the 3-color and 5-color designs:
Hy:L=0
Hi:L#0

at the @ = .05 level of significance, we simply note that the hypothesized value zero is
not contained in the 95 percent confidence interval. Hence, we conclude H,, that the mean
sales differ. To obtain a P-value of the test, test statistic (17.26) must be obtained. We find;

—9.35
=7 _ 62
150~ 623

and the corresponding two-sided P-value is 0+

*

Comment

Many single-factor analysis of variance programs permit the user to specify a contrast of interest and

then will furnish the #* test statistic or the equivalent F* test statistic. |
Inferences for Linear Combination of Factor Level Means T

Occasionally, we are interested in a linear combination of the factor level means that is not
a contrast. For example, suppose that the Kenton Food Company will use all four package
designs, one in each of its four major marketing regions, and that these marketing regions
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account for 35, 28, 12, and 25 percent of sales, respectively. In that case, there Might be
interest in the overall mean sales per store for all regions:

L =35p; +.28pa + 1203 + .25,

Note that this linear combination is of the form L = }  ¢; u; but that the coefficients ¢; sy
to 1.0, not to zero as they must for a contrast.
We define a linear combination of the factor level means p, as:

L=Y cp (17.27)
1=1

with no restrictions on the coefficients ¢;. Confidence limits and test statistics for a linear
combination L are obtained in exactly the same way as those for a contrast by meang
of (17.24) and (17.26), respectively. Point estimator (17.20) and estimated variance (17.22)
are still applicable when 3" ¢, # 0.

Single Degree of Freedom Tests. The alternatives tor tests concerning a factor level mean
in (17.8), a difference between two factor level means in (17.17a), and a contrast of factor
level means in (17.25) are all special cases of a test concerning a linear combination of

factor level means:
Hy: Zciu,- =c

Hat ) it #
where the ¢; and ¢ are appropriate constants. Test statistics (17.9), (17.18), and (17.26) can
each be converted to an equivalent F™* test statistic by means of the relation in (A.50a):
F¥ — (r*)Z

Test statistic F* follows the F (1, ny —r) distribution when H, holds. Note that the numerator
degrees of freedom are always one. Hence, these tests are often referred 1o as single-degree-
of-freedom tests. The t* version of the test statistic is more versatile because it can also be
used for one-sided tests while the F* version cannot.

17.4 Need for Simultaneous Inference Procedures

The procedures for estimating and testing factor level means discussed up to this point have
two important limitations:

1. The confidence coefficient | —« for the estimation procedures described is a statement
confidence coefficient and applies only to a particular estimate, not to a series of estimates.
Similarly, the specified Type I error rate, «, applies only to a particular test and not to 2
series of tests.

2. The confidence coefficient 1 — & and the specified significance level o are appropriaf®
only if the estimate or test was not suggested by the data.

The first limitation is familiar from regression analysis. It is particularly serious for
analysis of variance models because frequently many different comparisons are of interest
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here, and one needs to piece the different findings together. Consider the very simple
case where three different advertisements are being compared for their effectiveness in
stimulating sales. The following estimates of their comparative effectiveness have been
obtained, each with a 95 percent statement confidence coefficient:

59 < pp — <62
—2<uyzs—wm = 3
58 <y — s <64

It would be natural here to piece the different comparisons together and conclude that
advertisement 2 leads to highest mean sales, while advertisements 1 and 3 are substantially
less effective and do not differ much among themselves. One would therefore like a family
confidence doefficient for this family of statements, to provide known assurance that the set
of conclusions is correct.

The same concern for assurance of correct conclusions exists when the inferences involve
tests. An analysis of factor means by testing procedures usually involves several single-
degree-of-freedom tests to answer related questions. For instance, the sales manager of the
Kenton Food Company might wish to know both whether the number of colors has an effect
on mean sales and whether the use of cartoons has an effect. Whenever several tests are
conducted, both the level of significance and the power, insofar as the family of tests is
concerned, are affected. Consider, for example, three different ¢ tests, each conducted with
« = .05. The probability that each of the tests will lead to conclusion Hp when indeed Hy is
correct in each case, assuming independence of the tests, is (.95)* = .857. Thus, the level
of significance that at least one of the three tests leads to conclusion H, when Hy holds in
each case would be 1 — .857 = .143, not .05. We see then that the level of significance
and power for a family of tests is not the same as that for an individual test. Actually, the ¢*
statistics are dependent when they all are based on the same sample data and use the same
MSE value. It is often therefore more difficult to determine the actual level of significance
and power for a family of tests.

The second limitation of the procedures for estimating or testing factor level means
discussed so far, namely, that the estimate or test must not be suggested by the data, is an
important one in exploratory investigations where many new questions are often suggested
once the data are being analyzed. The process of studying effects suggested by the data is
sometimes called data snooping. One form of data snooping is fo investigate comparisons
where the effect appears to be large from the sample data, for example, testing whether
there is a difference between the two treatment means corresponding to the smallest and
largest estimated factor level means Y,;.. Choosing the test in this manner implies a larger
significance level than the nominal level used in constructing the decision rule. For example,
it can be shown for a study with six factor levels that if the analyst will always compare
the smallest and largest estimated factor level means by using the confidence limits (17.16)
with a 95 percent confidence coefficient, the interval estimate will not contain zero and
therefore suggest a real effect 40 percent of the time when indeed there is no difference
between any of the factor level means (Ref. 17.1). Hence, the « level for the test is .40, not
.05. With a larger number of factor levels, the likelihood of an erroneous indication of a real
effect, i.e., the actual « level, would be even greater. The reason for the higher actual level
of significance here is that a family of tests is being conducted implicitly since the analyst
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does not know in advance which estimated factor level means will be the extreme ones, The
situation here is analogous to that in Chapter 10 where the test to determine whether the
largest absolute residual is an outlier considers the family of tests for each of the n residualg,

One solution to this problem of making comparisons that are suggested by initial analysjg
of the data is to use a multiple comparison procedure where the family of inferences includeg
all the possible inferences that can be anticipated to be of potential interest after the day
are examined, For instance, in an investigation where five factor level means are being
studied, it is decided in advance that principal interest is in three pairwise comparisons,
However, it is also agreed that other pairwise comparisons that will appear interesting
should be studied as well. In this case, the family of all pairwise comparisons can be ugeq
as the basis for obtaining an appropriate family confidence coefficient or significance leve]
for the comparisons suggested by the data.

In the next three sections, we shall discuss three multiple comparison procedures for
analysis of variance models that permit the family confidence coefficient and the family
risk to be controlled. Two of these procedures, the Tukey and Scheffé procedures, allow
data snooping to be undertaken naturally without affecting the confidence coefficient or
significance level. The other procedure, the Bonferroni procedure, is applicable only when
the effects to be investigated are identified in advance of the stady.

17.5 Tukey Multiple Comparison Procedure

The Tukey multiple comparison procedure that we will consider here applies when:

The family of interest is the set of all pairwise comparisons of factor level means; in
other words, the family consists of estimates of all pairs D = y; — ;- or of all tests of
the form:

Hy: py —pp =0
Hy:py — pp # 0

When all sample sizes are equal, the family confidence coefficient for the Tukey method is
exactly 1 — e and the family significance level is exactly . When the sample sizes are not
equal, the family confidence coefficient is greater than | — & and the family significance
level is less than «. In other words, the Tukey procedure is conservative when %he sample
sizes are not equal.

Studentized Range Distribution

The Tukey procedure utilizes the stucentized range distribution. Suppose that we have ¥
independent observations Y/, ..., ¥, from a normal distribution with mean . and variance
o2. Let w be the range for this set of observations; thus:

w = max(¥;) — min(¥;) (17.28)

Suppose further that we have an estimate s? of the variance o2 which is based on v degress
of freedom and is independent of the ¥;. Then, the ratio w/s is called the studentized range-
It is denoted by:

gr, vy = iﬂ (17.29)
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where the arguments in parentheses remind us that the distribution of ¢ depends on r and v.
The distribution of g has been tabulated, and selected percentiles are presented in Table B.9.
This table is simple to use. Suppose that r = 5 and v = 10. The 95th percentile is then
q(.95; 5, 10) = 4.65, which means:
P{E —¢(5.10) < 4.65} = 95
s
Thus, with five normal Y observations, the probability is .95 that their range is not more

than 4.65 times as great as an independent sample standard deviation based on 10 degrees
of freedom.

simultaneous Estimation

The Tukey multiple comparison confidence limits for all pairwise comparisons D = p; — u»
with family confidence coefficient of at least 1 — « are as follows:

D £ Ts{D) (17.30)
where:
D=Y.-Yu (17.30a)
syD) = s{Yi.) + s*{Yu.} = MSE (ni + %) (17.30b)
i I
T= Lq(l —a;r,np—r) (17.30¢)

V2

Note that the point estimator D in (17.30a) and the estimated variance in (17.30b) are
the same as those in (17.11) and (17.14) for a single pairwise comparison. Thus, the only
difference between the Tukey confidence limits (17.30) for simultaneous comparisons and
those in (17.16) for a single comparison is the multiple of the estimated standard deviation.

The family confidence coefficient 1 — ¢ pertaining to the multiple pairwise comparisons
refers to the proportion of correct families, each consisting of all pairwise comparisons, when
repeated sets of samples are selected and all pairwise confidence intervals are calculated
each time. A family of pairwise comparisons is considered to be correct if every pairwise
comparison in the family is correct. Thus, a family confidence coefficient of 1 — ¢ indicates
that all pairwise comparisons in the family will be correct in (1 — a)100 percent of the
repetitions.

Simuftaneous Testing
When we wish to conduct a family of tests of the form:

Ho: py ~py =0
Hptpy —up #0

for all pairwise comparisons, the family of confidence intervals based on (17.30) may be
utilized for this purpose. We simply determine for each interval whether or not zero is
contained in the interval. If zero is contained, conclusion Hy is reached; otherwise, H, is
concluded. By following this procedure, the family level of significance will not exceed .

(17.31)
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FIGURE 17.4
Paired
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Equivalently, the pairwise tests can be conducted directly by calculating for each pairwise
comparison the test statistic:

* ’\/ED
q = (D] (17.32
where D and s2{D} are given in (17.30). Conclusion Hy in (17.31) is reached if lg*| <
q(1 — a; r; ny — r); otherwise, H, is concluded.

A paired comparison plot provides still another means of conducting all pairwise tests
with the Tukey procedure when all sample sizes are equal, i.e., when #; = n. This plot
provides a graphic means of making all pairwise comparisons. Around each estimated

treatment mean Y;. is plotted an interval whose limits are:
= 1 A
Y, & 3 Ts{D} (17.33)

When the intervals overlap on this plot, the formal test leads to the conclusion that the two
treatment means do not differ. When the intervals do not overlap, the formal test leads to
the conclusion that the two treatment means differ. In addition, the paired comparison plot
shows the direction of the difference.

Figure 17.4 provides an illustration of a paired comparison plot for the rust inhibitor
example. There is no overlap between the intervals for rust inhibitors B and C, indicating
that the mean performances differ for these two rust inhibitors. Figure 17.4 in addition
shows that rust inhibitor B is superior to C since its interval is considerably to the right of
that for C, thus providing directional information about the difference in mean performance
for the two rust inhibitors. We discuss this plot in greater detail on page 750.

Example 1—Equal Sample Sizes

In the rustinhibitor example in Table 17.2, it was desired to estimate all pairwise comparisons
by means of the Tukey procedure, using a family confidence coefficient of 95 percent. Since
r =4 and nr —r = 36, we find the required percentile of the studentized range distribution
from Table B.9 to be g(.95; 4, 36) = 3.814. Hence, by (17.30c), we obtain:

1
T=—7=(3814) =270

2
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TABLE 17.3 Simultaneous Confidence Intervals and Tests for Pairwise
Differences Using the Tukey Procedure—Rust Inhibitor Example.

b l-:f_.-"f iV Test

Confidence.Interval Ho H, q
43.3 < pp —pq < 49.3 H2 = M2 F# 58.99
21.8 < U3 h,_’“ < 27.8 U3 = H3 # H 31.61
—3<m ke = 5.7 M1 = g M1 # U 3.40
18.5 < p2 —~pu3 <245 2 = {3 M2 # U3 27.37
46,0 < U2 — pg < 52.0 U2 = g H2 # Ha 62.39
24.5 < u3 — pg < 30.5 U3 = g U3 # s 35.01

3
Further, we need s{D}. Using (17.30b), we find for any pairwise comparison since equal
sample sizes were employed:

. 1 1 1 1
2
Dy=MSE|—+— | =6140 —+ — | =123
s'D} (n,-+n,-,> 6 (10+10>
so that s{D} = 1.11. Hence, we obtain for each pairwise comparison:
Ts{D} = 2.70(1.11) = 3.0

To illustrate the calculation of the pairwise confidence limits, consider the estimation of
the difference between the treatment means for rust inhibitors A and B, po — piy:

D=Y, —Y,.=89.44—43.14 = 46.3
The confidence limits from (17.30) therefore are 46.3 & 3.0 and the confidence interval is:
433 < up — 1 <493

The complete family of pairwise confidence intervals is listed in the left column of
Table 17.3. The pairwise comparisons indicate that all but one of the differences (D and A)
are statistically significant (confidence interval does not cover zero).

We incorporate this information in a line plot of the estimated factor level means by
underlining nonsignificant comparisons.

D A C B

lo—eo I ° ] ®

le—e } ® 1 @
40 60 80

Performance Score

The line between D and A indicates that there is no clear evidence whether D or A is the
better rust inhibitor. The absence of a line signifies that a difference in performance has
been found and the location of the points indicates the direction of the difference. Thus,
the multiple comparison procedure permits us to infer with a 95 percent family confidence
coefficient for the chain of conclusions that B is the best inhibitor (better by somewhere
between 18.5 and 24.5 units than the second best), C is second best, and A and D follow
substantially behind with little or no difference between them.
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The same conclusions are obtained if we carry out all pairwise tests using the Simulg
neous testing procedure based on test statistic (17.32). For example, to test:

Hy: po —p1 =0
Hyiplg — 1y #0

we require the test statistic:

V2(89.44 — 43.14)
1.11

Because |g*| = 58.99 > ¢(.95; 4, 36) = 3.814, we conclude H,,, that the two treatmens
means differ. The test statistics g™ for the family of all pairwise tests are listed in the right
column of Table 17.3. The absolute values of all test statistics exceed 3.814 except for one,
so that all differences are found to be statistically significant except for that involving
and g4 (A and D). For this case, |¢*| = 3.40 does not exceed the critical value 3.814.

Figure 17.4 presents a paired comparison plot for the rust inhibitor example. Here are
plotted the estimated treatment means Yy 1~ with the comparison intervals based on (17.33).
For example, for rust inhibitor A, we have from earlier:

*

= 58.99

Y.=4314 T=270 s{Dy=1.11

so that the companson limits in (17.33) are:

]
43.14:I:§(2.70)(J.JJ) or 41.64 and 44.64

We readily see that only the intervals for A and D overlap, that rust inhibitor B is clearly best,
that rust inhibitor C is second best, and that rust inhibitors A and D are the least effective.

Example 2—Unequal Sample Sizes
In the Kenton Food Company example in Table 17.1, the sales manager was interested in the
comparative performance of the four package designs. The analyst developed all pairwise
comparisons by means of the Tukey procedure with a family confidence coefficient of at
least 90 percent. Since the sample sizes are not equal here, the estimated standard deviation
s{D} must be recalculated for each pairwise comparison. To compare designs 1 and 2, for
instance, we obtain:

—Y:2=146—-13.4=12
1
s*(D} = MSE = 10.55 +- | =422
n )17 55
s{D} = 2.05
For a 90 percent family confidence coefficient, we require ¢ (.90; 4, 15) = 3.54 so that we

obtain:

1
T =—(3.54)=2.50
ﬁ( )
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Hence, the confidence limits are 1.2 4= 2.50(2.05) and the confidence interval for 1o, — 5 is:
—39<p —u2 <63
In the same 'way, we obtain the other five confidence intervals:
—.6=(19.5—-14.6) — 2.50(2.18) < 3 — 1, < (19.5 — 14.6) +2.50(2.18) = 10.4
7.5=(27.2—-14.6) — 2.50(2.05) < 4 — 1 < (27.2 — 14.6) + 2.50(2.05) = 17.7
7 =(19.5—-134) —2.50(2.18) < 3 — 2 < (19.5—-13.4) + 2.50(2.18) = 11.6

8.7 = (27.2 — 13.4) — 2.50(2.05) < w4 — pa < (27.2 — 13.4) + 2.50(2.05) = 18.9
2.3 = (27.2 — 19.5) — 2.50(2.18) < 4 — w3 < (27.2— 19.5) + 2.50(2.18) = 13.2

We summarize the comparative performance by aline plot, indicating each nonsignificant
difference by a rule.

Design  Design Design Design
2 1 3 4
L VA 1
10 20 30
Cases Sold

We can conclude with at least 90 percent family confidence that design 4 1s clearly the
most effective design. However, the small-scale study does not permit a complete ordering
among the other three designs. Design 3 is more effective than design 2 but may not be
more effective than design 1, which in turn may not be more effective than design 2.

Often, the results of the family of pairwise tests are summarized by setting up groups of
factor levels whose means do not differ according to the single degree of freedom tests. For
the Kenton Food Company example, there are three such groups:

Group 1 Group 2 Group 3

Design 4 Y, =272 Design3 Y3.=19.5 Design1 Y;.=14.6
Design1  Y;.=14.6 Design2 Y, =13.4

Comments

1. When the Tukey procedure is used with unequal sample sizes, it is sometimes called the Tukey-
Kramer procedure.

2. When not all pairwise comparisons are of interest, the confidence coefficient for the family of
comparisons under consideration will be greater than the specification 1 — ¢ used in setting up the
Tukey intervals. Similarly, the family significance level for simultaneous testing will be less than o.

3. The Tukey procedure can be used for data snooping as long as the effects to be studied on the
basis of preliminary data analysis are pairwise comparisons.

4. The Tukey procedure can be modified to handle general contrasts of factor level means.,We do
not discuss this modification since the Scheffé method (to be discussed next) is to be preferred for
this situation.
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5. To derive the Tukey simultaneous confidence intervals for the case when all s

. . .. ample Sizes are
equal, i.c., when s1; = a1 so that ny = rn, consider the deviations:

(17.3)
and assume that ANOVA model (17.1) applies. The deviations in (17.34) are then independer; Vet
ables (because the error terms are independent), they are normally distributed (because the CIT0T teryg
are independent normal variables), they have the same expectation zero (because 4; is subtracteg from

3, . 2 - . -
Y;.), and they have the same variance o/n. Further. MSE/n is an estimator of o?/n thay jg inde-

pendent of the deviations ()7,. — ;) per theorem (17.6). Thus, it follows from the definitiop of the
studentized range ¢ in (17.29) that:

max(?,—. — Ui)— min()—’,'. — 1)
MSE

n

~q(r.nr —r) (17_35)

where i1y — r is the number of degrees of freedom associated with MSE, max(Y;. — i) is the larges;
deviation, and min(Y;. — ;) is the smallest deviation.
In view of (17.35), we can write the following probability statement:

max(?i. - i) — min(?,—. — i)

MSE
V n

Note now that the following inequality holds for a/f pairs of factor levels i and 7":

<g(l—asr.n; —r)p=1—a (17.36)

|(Ye. = i) = (Yo = )] < max(¥s. — ;) — min(¥;. — u;) (17.37)

The absolute value at the lett is needed since the factor levels i and /* are not ordered so that we may
be subtracting the larger deviation from the smaller. To put this another way, we are merely concerned
here with the difference between the two factor level deviations regardless of direction.

Since inequality (17.37) holds for all pairs of factor levels i and i”, it follows from (17.36) that the
probability:

Yii— ) = (Vi — i
pl|Femp = Femp)) b, (17.38)

|MSE
V o»
.

holds for all 7 (» — 1)/2 pairwise comparisons among the r factor levels. By rearranging the inequality
in (17.38), using the definitions of s2{D} in (17.30b) and of 7 in (17.30c), and noting that for the
equal sample size case s2{ D} becomes:

Y A | | 2MSE
sHUDY=MSE| —+—- | = whenn, =n
n

n n

we obtain the Tukey multiple comparison confidence limits in (17.30).

6. When the Tukey multiple comparison procedure is used for testing pairwise differences as
in (17.31), the tests are sometiraes called honestly significant difference tests.

7. The pairwise comparison plot can be used as an approximate plot when the sample sizes ztre
not equal, provided that the sample sizes do not differ greatly. For this case. the comparison 1imits
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should be obtained as follows:
_ 1 _
Y,'. + iq(l —a;r,nT—r)s{Y,-.} (1739)

The limits in (17.39) are identical to those in (17.33) when the sample sizes are equal. |

Scheffé Multiple Comparison Procedure

The Scheffé multiple comparison procedure was encountered previously for regression
models. Itis also applicable for analysis of variance models. It applies for analysis of
variance models when:

The family of interest is the set of all possible contrasts among the factor level means:

L= Z Cilbj where ZC,' =0 (1 7.40)

In other words, the family consists of estimates of all possible contrasts L or of tests
concerning all possible contrasts of the form:

H(): L=0
H:L#0
Thus, infinitely many statements belong to this family. The family confidence level for the

Scheffé procedure is exactly 1 — «, and the family significance level is exactly «, whether
the factor level sample sizes are equal or unequal.

Simultaneous Estimation
We noted earlier that an unbiased estimator of L is:

L= Z Y. (17.41)
for which the estimated variance is:
2
Ly =MSEY fT (17.42)
The Scheffé confidence intervals for the family of contrasts L are of the form:
L+ Ss{L} (17.43)
where:
2= —-DFQ—a;r—1,np —r) (17.43a)

and L and s{L} are given by (17.41) and (17.42), respectively. If we were to calculate the
confidence intervals in (17.43) for all conceivable contrasts, then in (1 — ) 100 percent of
repetitions of the experiment, the entire set of confidence intervals in the family would be
correct.

Note that the simultaneous confidence limits in (17.43) differ from those for a single
confidence limit in (17.24) only with respect to the multiple of the estimated standard
deviation. .
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Simultaneous Testing

Example

Tests involving contrasts of the form:

H()ZL:O

HyeL#£0 (17.44)

can be carried out by examination of the corresponding Scheffé confidence intervals bageq
on (17.43). H, is concluded at the o family level of significance if the confidence interva]
includes zero; otherwise H, is concluded. An equivalent direct testing procedure for the
alternatives in (17.44) uses the test statistic:

iz
Ffr=——
r — DL} (17.45)
Conclusion Hy in (17.44) is reached at the o« family significance level if F* <
F(1 —a;r — 1, ny — r); otherwise, H,, is concluded.

In the Kenton Food Company example, interest centered on estimating the following four
contrasts with family confidence coefficient .90:

Comparison of 3-color and 5-color designs:

_ M1t pe  ps s
2 2

Comparison of designs with and without cartoons:

L,

_ M1t us pe

L2 2 2
Comparison of the two 3-color designs:
L3=p— 2
Lomparison of the two 5-color designs:
Ly= p3— s

Consider first the estimation of L. Earlier, we found:

L, =-935
s{L,} =150

Since r — 1 = 3 and ny — r = 15 (Table 17.1), we have:
S2=(r—DF(1 —o;r—1,nr —r) = 3F(.90;3, 15) = 3(2.49) = 7.47

so that § = 2.73. Hence, the 90 percent confidence limits for L, by the Scheffé multiple
comparison procedure are —9.35 + 2.73(1.50) and the desired confidence interval is:

—134<L, <53
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t

In similar fashion, we obtain the other desired confidence intervals, and the entire set 1s:

. —134 <L, <-53
—73<L,< .8
—44<[3<6.8
—137<L,<-17

Note that the confidence interval for L, does not include zero. Hence, if we wished
to test Hy: L, = 0 versus H,: L, # 0, we would conclude H,, that the mean sales for
3-color and 5-color designs differ. The confidence interval provides additional information,
however; namely, that mean sales for 5-color designs exceed mean sales for 3-color designs,
by somewhere between 5.3 and 13.4 cases per store.

Any chain of conclusions derived from the set of confidence intervals has associated with
it family confidence coefficient .90. The principal conclusions drawn by the sales manager
were as follows: 5-color designs lead to higher mean sales than 3-color designs, the increase
being somewhere between 5 and 13 cases per store. No overall effect of cartoons in the
package design is indicated, although the use of a cartoon in 5-color designs leads to lower
mean sales than when no cartoon is used.

Comments

1. If in the Kenton Food Company example we had wished to estimate a single contrast with
statement confidence coefficient .90, the required ¢ value would have been £(.95; 15) = 1.753. This
t value is smaller than the Scheffé multiple S = 2.73, so that the single confidence interval would be
somewhat narrower. The increased width of the interval with the Scheffé procedure is the price paid
for a known confidence coefficient for a family of statements and a chain of conclusions drawn from
them, and for the possibility of making comparisons not specified in advance of the data analysis.

2. Since applications of the Scheffé procedure never involve all conceivable contrasts, the confi-
dence coefficient for the finite family of statements actually considered will be greater than 1 — « so
that 1 — o serves as a guaranteed lower bound. Similarly, the significance level for the finite family of
tests considered will be less than . For this reason, it has been suggested that lower confidence levels
and higher significance levels be used with the Scheffé procedure than would ordinarily be employed.
Confidence coefficients of 90 percent and 95 percent and significance levels of @ = .10 and a = .05
with the Scheffé procedure are frequently mentioned.

3. The Scheffé procedure can be used for a wide variety of data snooping since the family of
statements contains all possible contrasts. |

Comparison of Scheffé and Tukey Procedures

L. If only pairwise comparisons are to be made, the Tukey procedure gives narrower
confidence limits and is therefore the preferred method.

2. The Scheffé procedure has the property that if the F test of factor level equality
indicates that the factor level means y; are not equal, the corresponding Scheffé multiple
comparison procedure will find at least one contrast (out of all possible contrasts) that differs
significantly from zero (the confidence interval does not cover zero). It may be, though, that
this contrast is not one of those that has been estimated.
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17.7 Bonferroni Multiple Comparison Procedure

The Bonferroni multiple comparison procedure was encountered earlier for regressjon mod
els. It is also applicable for analysis of variance models when:

The family of interest is a particular set of pairwise comparisons, contrasts, or linear
combinations that is specified by the user in advance of the data analysis.

The Bonferroni procedure is applicable whether the factor level sample sizes are equal o
unequal and whether inferences center on pairwise comparisons, contrasts, linear compj.
nations, or a mixture of these.

Simultaneous Estimation

We shall denote the number of statements in the family by g and treat them all as linear
combinations since pairwise comparisons and contrasts are special cases of linear combing-
tions. The Bonferroni inequality (4.4) then implies that the confidence coefficient is at least
| — « that the following confidence limits for the g linear combinations L are all correct:

L + Bs{L) (17.46)
where:
B=t(1—a«a/2g;ny —r) (17.46a)

Simultaneous Testing
When we wish to conduct a series of tests of the form:
Ho: L=0
H:L#0

we can use either the confidence intervals based on (17.46) or the test statistics:

n

1 t* = L,\ (17.47)
s{L}

If |t*] < t(1 —a/2g; ny — r), we conclude Hy; otherwise, H, is concluded.

The sales manager of the Kenton Food Company is interested in estimating the following

Example
Txample two contrasts with family confidence coefficient .975:
Comparison of 3-color and 5-color designs:

_kitue uztug
2 2
Comparison of designs with and without cartoons:

L,

_ 1+ us _ w2+ s

L
2 2 2

Earlier we found:

Li=-935 s{L;}=1.50
L,=-325 s{l,})=1.50
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For a 97.5 percent family confidence coefficient with the Bonferroni method, we require:
" B = t[1 — .025/2(2); 15] = £(.99375; 15) — 2.84

We can now complete the confidence intervals for the two contrasts. For L, we have
confidence limits —9.35 4- 2.84(1.50), which lead to the confidence interval:

—-13.6<L; <-5.1
3 Similarly, we obtain the other confidence interval:
-75<L; 210

These confidence intervals have a guaranteed family confidence coefficient of 97.5 percent,
which means that in at least 97.5 percent of repetitions of the experiment, both intervals
will be correct.

Again, we would conclude from this family of estimates that mean sales for 5-color
designs are higher than those for 3-color designs (by somewhere between 5 and 14 cases
per store), and that no overall effect of cartoons in the package design is indicated.

The Scheffé multiple for a 97.5 percent family confidence coefficient in this case would
have been:

§2 = 3F(.975; 3, 15) = 3(4.15) = 12.45

or § = 3.53, as compared to the Bonferroni multiple B = 2.84. Thus, the Scheffé procedure
here would have led to wider confidence intervals than the Bonferroni procedure.

Comment
Itis not necessary that all comparisons be estimated with statement confidence coefficients 1 — /g for
the Bonferroni family confidence ceefficient to be 1 — «. Different statement confidence coefficients

may be used, depending upon the importance of each statement, provided thato; + 02+ -+ - + oy =0
|

Comparison of Bonferroni Procedure with Scheffé and Tukey Procedures

1. If all pairwise comparisons are of interest, the Tukey procedure is superior to the
Bonferroni procedure, leading to narrower confidence intervals. If not all pairwise compar-
isons are to be considered, the Bonferroni procedure may be the better one at times.

2. The Bonferroni procedure will be better than the Scheffé procedure when the number
of contrasts of interest is about the same as the number of factor levels, or less. Indeed, the
number of contrasts of interest must exceed the number of factor levels by a considerable
amount before the Scheffé procedure becomes better.

3. Allthree procedures are of the form “estimator + multiplier x SE.” The only difference
among the three procedures is the multiplier. In any given problem, one may compute the
Bonferroni multiple as well as the Scheffé multiple and, when appropriate, the Tukey
multiple, and select the one that is smallest. This choice is proper since it does not depend
on the observed data. .

4. The Bonferroni multiple comparison procedure does not lend itself to data snooping
unless one can specify in advance the family of inferences in which one may be interested
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and provided this family is not large. On the other hand. the Tukey and Schetté Procedyreg
involve lamilics of inferences that lend themselves naturally to data snooping.

5. Other specialized multiple comparison procedures have been developed. For example
Dunnett’s procedurc (Ref. 17.2) performs pairwise comparisons of each treatmeng 3gains;
a control reatment only whereas Hsu's procedure (Rel. 17.3) selects the “best” treatmepg
and identifies those treatments that are worse than the “best.”

Analysis of Means

Example

One use of the Bonferroni simultaneous testing procedure is in the analysis of megpg
(ANOM), introduced by Oti (Ref. 17.4). ANOM is an alternative (0 the standard F test for
the equality of treatment means, It is conducted by testing Hy: 7j = O versus H,: 1, # 0,
Hy: 72 = 0 versus H,: 72 # 0. and so on for all treatment effects 7;. The statistics employed
are the r estimated treatment effects defined in (16.75b):

i = Y,'. — H. f=1...., r (17_48)
where f1, is the least squares mean given in (16.75a):

7.

r

(17.48a)

The estimated variance of #; is obtained by (17.22) since #; is a contrast of the estimated
treatment means Y,.:

$2{5) > — (17.49)
re n#i n

11 r

) MSE (r—1\" MSE < |

-5
Simultaneous testing by the Bonferroni procedure can be carried out by setting up for each
treatment effect the confidence interval using (17.46) and noting whether or not the interval
contains zero. The results are sometimes summarized in an analvsis of means plot. |tis easy
to show thata contrast ; = Y;— 2. is inside (outside) one of the Bonferroni contrast intervals
whenever the cell mean Y;. is inside (outside) the limits it —a/2ruy — r)s{t})
In an analysis of meuns plot. the cell means are plotted along with the indicated limits
and the least squares mean ji. in (17.48a). If any of the cell means fall above (below)
these limits. the conclusion is drawn that the cell mean is larger (smaller) than the overall
mean.

ANOM is similar to ANOVA for detecting the diflerences between cell means* However,
an important difference between ANOVA and ANOM is that the former tests whether the
cell means are different [rom each other, whereas the latter tests whether the cell means are
different from the overall mean. Various enhancements for the analysis of means have been
provided, including those in References 17.5 and 17.6.

In Figure 17.5 we present a MINITAB ANOM plot for the Kenton Food Company example
using @ = .05. We conclude that the mean of sales for design 4 is greater than the overall
unweighted mean (16.63). while the mean of sales for both design I and design 2 are less
than the overall unweighted mean. Note that MINITAB bases its ANOM procedure on the
weighted mean ji. = Y. . rather than the least squares mean in (17.48a).
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EiGURE 17.5 ¥
Means 25+
jot—Kenton
#pod Company
gxample- ' L— 1 221562
§ 20
S 20k
! 18.6316
15 [ I e 15.1070
1 1 i |
1 2 3 4

Levels of Design

17.8 Planning of Sample Sizes with Estimation Approach

In Section 16.10 we considered the planning of sample sizes using the power approach. We
now take up another approach, the estimation approach to planning sample sizes, which
may be used either in conjunction with the control of Type I and Type II errors or by
itself. The essence of the approach is to specify the major comparisons of interest and to
determine the expected widths of the confidence intervals for various sample sizes, given
an advance planning value for the standard deviation o. The approach is iterative, starting
with an initial judgment of needed sample sizes. This initial judgment may be based on
the needed sample sizes to control the risks of Type I and Type II errors when these have
been obtained previously. If the anticipated widths of the confidence intervals based on
the initial sample sizes are satisfactory, the iteration process is terminated. If one or more
widths are too great, larger sample sizes need to be tried next. If the widths are narrower
than they need be, smaller sample sizes should be tried next. This process is continued until
those sample sizes are found that yield satisfactory anticipated widths for the important
confidence intervals. We proceed to illustrate the estimation approach to planning sample
sizes with two examples.

Example 1—Equal Sample Sizes

We are to plan sample sizes for the snow tires example discussed in Section 16.10 by means
of the estimation approach; the sample sizes for each tire brand are to be equal, that is,
n; = n. Management wishes three types of estimates:

1. A comparison of the mean tread lives for each pair of brands:

Wi = Wi
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2. A comparison of the mean tread lives for the two high-priced brands (I and 4y ang
the two low-priced brands (2 and 3):

Mty patpa

2 2

3. A comparison of the mean tread lives for the national brands (1. 2, and 4) and g,
local brand (3):

ity
3
Management further has indicated that it wishes a family confidence coefficient of .95 fg;
the entire set of comparisons.

We first need a planning value for the standard deviation of the tread lives of tires,
Suppose that from past experience we judge the standard deviation to be approximately
o = 2 (thousand miles). Next, we require an initial judgment of needed sample sizes and
shall consider n = 10 as a starting point.

We know from (17.21) that the variance of an estimated contrast I when n; = n is:

2 r O—» 2
o {L})= — Zc? when n; = n

Hence, given o =2 and n = 10, the anticipated values of the standard deviations of the
required estimators are:

Antlcipated
Standard
Contrast Anticipated Variance Deviation
. ¥ 2)?
P:grwnz: on %[(])2 +(=1)4=.80 .89
risons
High- and @? (1)1(1)1 A ARA N B 63
low-priced brands 10 2 2 2 2 ' ‘
2 2 2
National and @ 1 1 ! “DH?| = 73
Jocal brands 0 (\3) "3) T3 HEDT =53 '

We shall employ the Scheffé multiple comparison procedure and therefore require the
Scheffé multiple S in (17.43a) for r = 4. ny = 10(4) = 40, and | — ¢ = .95:

S*=(~OHF(l —~a:r—1.ny —r) =3F(.95;3.36) = 3(2.87) = 8.61
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or S = 2.93. Hence, the anticipated widths of the confidence intervals are:

Anticipated Width of
Contrast Confidence Interval = +So{L}
Pairwise comparisons +2.93(.89) = =+ 2.61 (thousand miles)
High- and low-priced brands ~ +2.93(.63) = + 1.85 (thousand miles)
National and local brands +2.93(.73) = + 2.14 (thousand miles)

Management was satisfied with these anticipated widths. However, it was decided to
increase the sample sizes from 10 to 15 in case the actual standard deviation of the tread
lives of tires is somewhat greater than the anticipated value o = 2 (thousand miles).

Example 2—Unequal Sample Sizes
In the snow tires example, suppose that tire brand 4 is the snow tire presently used and is to
serve as the basis of comparison for the other brands. The comparisons of interest therefore
are (41 — tha, th2 — tha, and p3 — 4. The sample size for brand 4 is to be twice as large as for
the other brands in order to improve the precision of the three pairwise comparisons. The
desired precision, with a family confidence coefficient of .90, is to be -1 (thousand miles).
The Bonferroni procedure will be used to provide assurance as to the family confidence level.
We know from (17.13) that the variance of an estimated difference L; = Y;. — ¥,. (the
difference is now denoted more generally by L) is fori = 1,2, 3:

az{ii} =o? (—1— + l)

n; [

We shall denote the sample sizes for brands 1, 2, and 3 by n and for brand 4 by 2n. Hence,
the variance of I; becomes:

a 1 1 30?2

2 2
cHly=0c* - +— | ==—
(L) (n 2n> 2n

Using again the planning value ¢ = 2 and an inifial sample size n = 10, we find
o{L;} = .60 and o{L;} =.77. For « = .10 and g = 3 comparisons, the Bonferroni multi-
pleis B = £(.9833; 46) =2.19. Note that ny = 3(10) +20 = 50 for the first iteration; hence
nr — r=50 — 4=46. The anticipated width of the confidence intervals therefore is
2.19(.77) = £1.69. This is larger than the specified width 31,0, so a larger sample size
needs to be tried next.

We shall try n = 30 next, We find that o {L;} = .45 now, and the Bonferroni multiple will
be B = 1(.9833; 146) = 2.15. Hence, the anticipated width of the confidence intervals for
n=30is2,15(.45) = £.97. This s slightly smaller than the specified width +1.0. However,
since the planning value for o may not be entirely accurate, management may decide to use
30 tires for each of the new brands and 60 tires for brand 4, the presently used snow tires.

Comment

Since one cannot be certain that the planning value for the standard deviation is correct, it is advisable
to study a range of values for the standard deviation before making a final decision on sample size. l
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17.9 Analysis of Factor Effects when Factor Is Quantitative

Example

TABLE 17.4
Data—
Piecework
Trainees
Example.

When the factor under investigation is quantitative, the analysis of factor effects cay, be
carried beyond the point of multiple comparisons to include a study of the nature of the
response function. Consider an experimental study andertaken to investigate the effect on
sales of the price of a product. Five different price levels are investigated (78 cents, 79 cents,
85 cents, 88 cents, and 89 cents), and the experimental unit is a store. After a prelimipg
test of whether mean sales differ for the five price levels studied, the analyst might yge
multiple comparisons to examine whether “odd pricing” at 79 cents actually leads to higher
sales than “even pricing” at 78 cents, as well as other questions of interest. In addition, the
analyst may wish to study whether mean sales are a specified function of price, in the range
of prices studied in the experiment. Further, once the relation has been established, the
analyst may wish to use it for estimating sales volumes at various price levels not studieqd.

The methods of regression analysis discussed earlier are, of course, appropriate for the
analysis of the response function. Since the single-factor studies discussed in this chapter
almost always involve replications at the different factor levels, the lack of fit of a specified
response function can be tested. For this purpose, the analysis of variance error sum of
squares in (16.29) serves as the pure error sum of squares in (3.16), the two being identica),
We illustrate this relation in the following example.

In a study to reduce raw material costs in a glassworks firm, an operations analyst collected
the experimental data in Table 17.4 on the number of acceptable units produced from equal
amounts of raw material by 28 entry-level piecework employees who had received special
training as part of the experiment. Four training levels were used (6, 8, 10, and 12 hours),
with seven of the employees being assigned at random to each level. The higher the number
of acceptable pieces, the more efficient is the employee in utilizing the raw material. This
study is a single-factor completely randomized design with four factor levels.

Preliminary Analysis. The analyst first tested whether or not the mean number of accept-
able pieces is the same for the four training levels. ANOVA model (17.1) was employed:

Yij =t + &) (17.50)
The alternative conclusions and appropriate test statistic are:

Hy: poy = pa = pla = [y
H,: not all p; are equal

. MSTR
"~ MSE
Treatment .
(hours of training) Employee (/)
i 1 2 3 4 S 6 7
1 6 hours 40 39 39 36 42 43 4
2 8 hours 53 48 49 50 51 50 48
3 10 hours 53 58 56 59 53 59 58
4 12 hours 63 62 59 61 62 62 61
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The SPSS* output for single-factor ANOVA is shown in Figure 17.6. Residual analysis
(to be discussed in Chapter 18) showed ANOVA model (17.50) to be apt. Therefore, the
analyst proceeded with the test, using @ = .05. The decision rule is;

If F* < F(.95; 3, 24) = 3.01, conclude H,
If F* > 3.01, conclude H,

ﬂ’ ’7’.
. l l STANDARD
; GROUP  COUNT MEAN DEVIATION
GRPO1 7 40.0000 2.3094
Treatment GRPO2 7 49.8571 1.7728
reatment = - pp03 7 56.5714 2.6367
GRPO4 7 61.4286 1.2724
TOTAL 28 51.9643 8.4129

ANALYSIS OF VARIANCE

SOURCE DF SUM OF SQUARES MEAN SQUARES
BETWEEN GROUPS 3 SSTR — 1808.6778 602.8926 <—— MSTR
WITHIN GROUPS 24 SSE—>  102.2856 4.2619 <— MSE
TOTAL 27 $5TO —= 1910.9634

F RATIO F PROB.
141.461 0.0000

T T

F* P-value

MULTIPLE RANGE TEST

TUKEY-HSD PROCEDURE
RANGES FOR THE 0.050 LEVEL -

3.90 — q(.95; 4, 24)

HOMOGENEOUS SUBSETS

SUBSET 1 SUBSET 3

GROUP GRPOT1 GROUP GRPO3

MEAN - 40.0000 MEAN 1 56.5714

SUBSET 2 SUBSET 4 ..
GROUP GRP0O2 GROUP GRPO4 '

MEAN 49.8571 MEAN 61.4286



764 .Part Four Design and Analysis of Single-Factor Studies

FIGURE 17.7
Scatter Plot
and Fitted
Quadratic
Response
Function—
Piecework
Trainees
Example.

From Figure 17.6, we have:

P MSTR  602.8926
T MSE 42619
Since F* = 141.5 > 3.01, the analyst concluded H,,, that training level effects differed and

that further analysis of them is warranted, The P-value for the test statistic is O+, ag shown
in Figure 17.6.

= 141.5

Investigation of Treatment Effects. The analyst’s interest next centered on multiple
comparisons of all pairs of treatment means. A Tukey multiple comparison option in the
SPSS* computer package was used. It gave the output shown in the lower portion of
Figure 17.6. This output presents the results of single-degree-of-freedom tests conducted
by means of the Tukey multiple comparison procedure for all pairwise comparisons. (The
confidence intervals for the pairwise comparisons are not shown in the output.) All factor
levels for which the test concludes that the pairwise means are equal are placed in the same
group. This form of summary of single-degree-of-freedom tests was illustrated earlier for
the Kenton Food Company example. When a group contains only one factor level, as is the
case for all groups in the output of Figure 17.6, the implication is that all single-degree-of-
freedom tests involving this factor level and each of the other factor levels lead to conclusion
H,, that the two factor level means being compared are not equal.

Two points should be noted in particular from the results in Figure 17.6: (1) All pair-
wise factor level differences are statistically significant. (2) There is some indication that
differences between the means for adjoining factor levels diminish as the number of hours
of training increases; that is, diminishing returns appear to set in as the length of trainingis
increased.

Estimation of Response Function. These findings were in accord with the analyst’s ex-
pectations that the treatment means u; would most likely follow a quadratic response func-
tion with respect to training level. The scatter plot in Figure 17.7 supports this expectation.
The analyst now wished to investigate this point further by fitting a quadratic regression
model. The model to be fitted and tested is:

Yij=Fo+ Bixi + Bux? + & (17.51)

(=)}
]
1

w
w
T

w
w
T

¥ = —3.73571 + 9.17500X — 0.31250%2

Number of Acceptable Units
o
W
T

| | L |
6 8 10 12
Hours of Training
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TABLE 17.6
Analyses of
Variance—
Piecework
Trainees
Example.
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where Y;; and g;; are defined as earlier, the 8s are regression parameters, and x; denotes
the number of hours of training in the ith training level (X;) centered around X = 9, i.c.,
X;i = X i 9.

A portion of the data for the regression analysis is given in Table 17.5. Regressing Y on

x and x? yielded the estimated regression function:
Y = 53.52679 + 3.55000x — .31250x? (17.52)

The analysis of variance for regression model (17.51) is shown in Table 17.6a. For com-
pleteness, we repeat in Table 17.6b the analysis of variance for ANOVA model (17.50).

Yij B X

2

i j X

1 1 40 6—9=-3 9

1 2 39 - 6—9=-3 9

2 1 53 8—9=—1 1

2 2 48 8§-9=-1 1

4 6 62 12-9=3 9

4 7 61 12-9= 3 9

(a) Regression Model (17:S1) -
Source of
Variation ss df MS
Regression 1,808.100 2 904.05
Error ~ 102.864 25 -4.11
Total 1,910.964 27
_(b) Analysis of Variance Model (17.50)
Source of
Variation ss. df MS.
Treatments 1,808.678. 3 602:89
Error 102.286 24 4:26
Total 1,910.964 27
(c) ANOVA for Lack of Fit Test

Source of )
Variation -55 df MS
Regression 1,808:100 2 904.08
Error 102.864 25 4.71

Lack of fit 578 1 58;

Pure error 102.286 24 426
Total 1,910.964 27
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Since the data contain replicates, the analyst could test regression model (17.5 1) for [ack
of fit, utilizing the fact that the ANOVA error sum of squarcs in (16.29) is identica] ¢ the
regression pure crror sum ol squares in (3.16). Both mcasure variation around the Mean of
the Y observations at any given level of X (i.e.. around the estimated treatment mean ¥,
Hence, the lack of fit sum of squarcs can be readily obtained from previous results: o

SSLF = o ISISII;T( — __.SS.PE = 102.864 — 102.286 = .578 (17‘53)
able 1 7.6a) (Table17.6b)

Since there are ¢ = r = 4 levels of X here and p = 3 parameters in the regression
model, SSLF has associated with it ¢ — p = 4 —3 = | degree of freedom. Hence, we obtain
MSLF = .578/1 = .578. Table 17.6c contains the analysis of variance for the regressiop
model, with the error sum of squares and degrees of freedom broken down into lack of fit
and pure error components.

The alternative conclusions (6.68a) for the test of lack of fit here are:

Hy: E{Y} = Bo + fix + Bix?
H,: E{Y} # fo+ Bix + Bix”
and test statistic (6.68b) is:

_ MSLF
~ MSPE

For o = .05. decision rule (6.68¢) becomes:

¥

If F* < F(.95;1,24) = 4.26, conclude H,
If F* > 4.26. conclude H,

We calculate the test statistic from Table 17.6¢:

. .58
FF=—=.136
4.26
Since F* =.136 < 4.26. the analyst concluded that the quadratic response function is a good
fit. Consequently. the fitted regression function in (17.52) was used in further evaluation
of the relation between mean number of acceptable pieces produced and level of training,
after expressing the fitted response function in the original predictor variable X (number of
hours of training):

¥ = —3.73571 +9.17500X — .31250X>

Figure 17.7 displays this fitted response function.
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; oblems

@

17.1. Referto Premium distribution Problem 16.12. A student, asked to give a class demonstration

17.2.

17.3.

of the use of a confidence interval for comparing two treatment means, proposed to construct a
99 percent confidence interval for the pairwise comparison D = pi5 — ti3. The student selected
this particular comparison because the estimated treatment means }_’5. and 2_’3. are the largest
and smallest, respectively, and stated: “This confidence interval is particularly useful. If it
does not straddle zero, it indicates, with significance level ¢ = .01, that the factor level means
are not equal.”

a. Explain why the student’s assertion is not correct.

b. How should the confidence interval be constructed so that the assertion can be made with
significance level @ = .01?

A trainee examined a set of experimental data to find comparisons that “look promising”

and calculated a family of Bonferroni confidence intervals for these comparisons with a

90 percent family confidence coefficient. Upon being informed that the Bonferroni procedure

is not applicable in this case because the comparisens had been suggested by the data, the

trainee stated: “This makes no difference. I would use the same formulas for the point estimates

and the estimated standard errors even if the comparisons were not suggested by the data.”

Respond.

Consider the following linear combinations of interest in a single-factor study involving four

factor levels:

@) p+3p2 —4us
()  pr+.Spe+dus+duy
(i) i+ l;z tus g

a. Which of the linear combinations are contrasts? State the coefficients for each of the
contrasts.

b. Give an unbiased estimator for each of the linear combinations. Also give the estimated
variance of each estimator assuming that n; = n.

17.4. A single-factor ANOVA study consists of ¥ = 6 treatments with sample sizes n; = 10.

17.5

a. Assuming that pairwise comparisons of the treatment means are to be made with a 90 percent
family confidence coefficient, find the T, S, and B multiples for the following numbers of
pairwise comparisons in the family: g = 2, 5, 15. What generalization is suggested by your
results?

b. Assuming that contrasts of the treatment means are to be estimated with a 90 percent family
confidence coefficient, find the S and B multiples for the following numbers of contrasts in
the family: g = 2, 5, 15. What generalization is suggested by your results?

. Consider a single-factor study with r = 5 treatments and sample sizes n; = 5.

a. Find the T, S, and B multiples if g = 2, 5, and 10 pairwise comparisons are to be made
with a 95 percent family confidence coefficient. What generalization is suggested by your
results?
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17.6.

17.7.

*|7.8.

17.9.

17.10.

*17.11.

.

b. What would be the 7', 8. and B multiples lor sample sizes it; = 207 Does the genepati:
obtained in part (a) still hold? erah::?
In making multiple comparisons, why is it appropriate to use the multiple COmparisop ¢ °
. . . . on p
dlure that Icads 10 the tightest confidence intervals for the sample data obtainedo Dis:u
? s

For a single-factor study with » = 2 tremments and sample sizes 11; = (0, find the T.g
B multiples for ¢ = | pairwise comparison with a 99 percent family confidence COe}ﬁ
Whaut generalization is suggested by your results? a

Refer to Productivity improvement Problem 16.7. H

a. Prepare aline plotof the estimated factor level means Y;.. What does this plot sy
ing the effect of the level of research and development expenditires on mean
improvcment?

ggestreg :;
product’i;1

b. Estimate the meuan productivity improvement for firms with high research and developné
expenditures levels: use a 95 percent confidence interval. A
¢. Obtain a 95 percent contidence interval for D = 4 — p;. Interpret your interval estimaf’
d. Obtain confidence intervals for all pairwise comparisons of the treatment means; use 't
Tukey procedure and a 90 percent family confidence coefficient. State your findings an
prepare a graphic summary by underlining nonsignificant comparisons in your ling plotin
part (a). i
e. Is the Tukey procedure employed in part (d) the most efficient one that could be used herg
Explain. K

Refer to Questionnaire color Problem 16.8.
a. Prepare a bar-interval graph of the estimated factor level meuns Y ;.. where the intervaf{
correspond to the confidence limits in (17.7) with o = .05. What does this plot sugges-
about the effect of color on the response rate? Is your conclusion in accord with the tesf
result in Problem 16.8¢?
b. Estimate the mean response rate for blue questionnaires; use a 90 percent confidence intej
¢. Testwhetherornot D = pz — > = O: use o = .10. State the alternatives. decision rule, an
conclusion. In light of the result for the ANOVA test in Problem 16.8e. is your conclusi
surprising? Explain.

Reter to Rehabilitation therapy Problem 16.9.

B

a. Prepare a line plot of the estimated factor level means Y:.. Whatdoes this plotmggestaboﬁft{

the effect of prior physical fitness on the mean time required in therapy?

b. Estimate with a 99 percent conlidence interval the mean humber of’ days required ift therapy
for persons of average physical fitness.

c. Obtain confidence intervals tor Dy = 5 — p3 and D, = ¢y — pto use the Bonferront
procedure with a 95 percent lamily conlidence coefficient. Interpret your results.

d. Would the Tukey procedure have been more efficient to use in part (¢)? Explain.

e. If the researcher also wished to estimate Dy = jt; — ps. still with a 95 percent fammity
conlidence cocfficient, would the B multiple in part (c) nced to be modified? Would this
also be the case il the Tukey procedure had been employed?

. Test for all pairs of factor level means whether or not they ditfer: use the Tukey procedure
with o = .05. Set up groups of factor levels whose means do not differ.

Refer to Cash offers Problem 16.10.

a. Prepare a main elfects plot of the estimated factor level means Y,.. What does this plot

suggest regarding the etlect of the owner’s age on the mean cash offer?

b. Estimate the mean cash otlter for young owners: usc a 99 percent confidence interval.
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Construct a 99 percent confidence interval for D = u3 — ;. Interpret your interval estimate,

. Test whether or not ftp — iy = {3 — Ha; contro] the « risk at .01. State the alternatives,

decision rule, and conclusion.

Obtain confidence intervals for all pairwise comparisons between the treatment means; use
the Tukey procedure and a 90 percent family confidence coefficient. Interpret your results
and provide a graphic summary by preparing a paired comparison plot. Are your conclusions
in accord with those in part (a)?

- 'Would the Bonferroni procedure have been more efficient to use in part (¢) than the Tukey

procedure? Explain.

x17.12. Refer to Filling machines Problem 16.11.

a.

Pr

o 0 o

Prepare a main effects plot of the estimated factor level means Y:.. What does this plot
suggest regarding the varjation in the mean fills for the six machines?

. Construct a 95 percent confidence interval for the mean fill for machine 1.
. Obtain a 95 percent confidence interval for D = i, — ;. Interpret your interval estimate.

Prepare a:paired comparison plot and interpret it.

. The consultant is particularly interested in comparing the mean fills for machines 1, 4,

and 5. Use the Bonferroni testing procedure for all pairwise comparisons among these
three treatment means with family level of significance o = .10. Interpret your results and
provide a graphic summary by preparing a line plot of the estimated factor level means with
nonsignificant differences underlined. Do your conclusions agree with those in part (a)?

. Would the Tukey testing procedure have been more efficient to use in part (e) than the

Bonferroni testing procedure? Explain.

17.13. Refer to Premium distribution Problem 16.12.

a. Prepare an interval plot of the estimated factor level means ?,-., where the intervals corre-

.

PPN

spond to the confidence limits in (17.7) with & = .10. What does this plot suggest about the
variation in the mean time lapses for the five agents?

. Test for all pairs of factor level means whether or not they differ; use the Tukey procedure with

a =.10. Set up groups of factor levels whose means do not differ. Use a paired comparison
plot to summarize the results.

. Construct a 90 percent confidence interval for the mean time lapse for agent 1.
. Obtain a 90 percent confidence interval for D = p, — p,. Interpret your interval estimate.

e. The marketing director wishes to compare the mean time lapses for agents 1, 3, and 5. Obtain

confidence intervals for all pairwise comparisons among these three treatment means; use
the Bonferroni procedure with a 90 percent family confidence coefficient. Interpret your
results and present a graphic summary by preparing a line plot of the estimated factor level
means with nonsignificant differences underlined. Do your conclusions agree with those in
part (a)?

. Would the Tukey procedure have been more efficient to use in part (e) than the Bonferroni

procedure? Explain.

%17.14. Refer to Productivity improvement Problem 16.7.

a.

FEstimate the difference in mean productivity improvement between firms with low or moder-
ateresearch and development expenditures and firms with high expenditures; use a 95 percent
confidence interval. Employ an unweighted mean for the low and moderate expenditures
groups. Interpret your interval estimate. .’

b. The sample sizes for the three factor levels are proportional to the population sizes. The

economist wishes to estimate the mean productivity gain last year for all firms in the
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population. Estimate this overall mean productivity improvement with 4 95 percent cong,
. nfi-
dencc interval.
¢. Using the Schetté procedure. obrain contidence intervals for the following comp

e - e 2riSons wiy
90 percent family contidence coctlicient:

Dy=pz— 2 Dy=106— 14
Ly + (>
D> = ps — 1y leil—;L

Interpret your results and describe your lindings.
17.15. Reter to Rehabilitation therapy Problem 16.9.
a. Estimate the contrast L = (43 — f2) — (112 — p3) with a 99 percent confidence interval
Interpret your interval estimate.
b. Estimate the following comparisons using the Bonlerroni procedure with 495 Percent family
contidence coetlicient:
Dy = — 1 Dy = p2 — s
D> = py — s Ly =Dy, — D;

Interpret your results and describe your hindings.
c. Would the Schetté procedure have been more eflicient to usc in part (b) than the Bonferroni
procedure? Explain.
*17.16. Reler to Cash offers Problcm [6.10.
a. Estimate the contrast L = (f43 — p2) — (12 — ) with a 99 percent confidence interval.
Interpret your interval estimate.
b. Estimatc the l'ollowing comparisons with a90 percent lumily conlidence coefficient; employ
the most efficient multiple comparison procedure:
Dy =02 - Ds = —
i)z = {{x — > L= l)] — D|

Interpret your results.
*17.17. Refer to Filling niachines Problem 16.11. Machines | and 2 were purchased new five years
ago. machines 3 and 4 were purchased in a reconditioned state live years ago. and machines
5 and 6 were purchased new last year.
a. Estimate the contrast:
s st

2 9

L

with a 95 pereent contidence interval. Interpret your interval estimate.
b. Estimate the following comparisons with a 90 percent tamily confidence coeflicient: use the
most etficient multiple comparison procedute:

ot ps o s
Dy =14 — 12 Li=———+ - ——

2 2
_ _a i s e
Dy =px — 114 L:—gz—“*z—
O+ o+ ps e 3+ [
D: = jes — 16 Ly= Ig'/‘lml’ﬂ — "_’)Q

ot st st i

L 4 2
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Interpret your results. What can the consultant learn from these results about the differences
between the six filling machines?
17.18. Refer to Premium distribution Problem 16.12. Agents 1 and 2 distribute merchandise only,
agents 3 and 4 distribute cash-value coupons only, and agent 5 distributes both merchandise
and coupons.

a. Estimate the contrast:

=N—1+,U«2_,U«3+Il«4

L
2 2

with a 90 percent confidence interval. Interpret your interval estimate.
b. Estimate the following comparisons with 90 percent family confidence coefficient; use the

Scheffé procedure:
My - s
Di=p—p2 L =TZ—.us
+ U
Dy=ps— 4 L2='I%—,U«5
L.— Mt 3t g
? 2 2
Interpret your results.

c. Of all premjum distributions, 25 percent are handled by agent 1, 20 percent by agent 2, 20
percent by agent 3, 20 percent by agent 4, and 15 percent by agent 5. Estimate the overall
mean time lapse for premium distributions with a 90 percent confidence interval.

%17.19. Refer to Filling machines Problem 16.11.

a. Use the analysis of means procedure to test for equality of treatment effects, with family
significance level .05. Which treatments have the strongest effects?

b. Using the results in part (a), obtain the analysis of means plot. What additional information
does this plot provide in comparison with the main effects plot in Problem 17.12a?

17.20. Refer to Premium distribution Problem 16.12.

a. Use the analysis of means procedure to test for equality of treatment effects, with family
significance level .10. Which treatments have the strongest effects?

b. Using the results in part (a), obtain the analysis of means plot. What additional information
does this plot provide in comparison with the interval plot in Problem 17.13a?

17.21. Refer to Solution concentration Problem 3.15. Suppose the chemist initially wishes to employ
ANOVA model (16.2) to determine whether or not the concentration of the solution is affected
by the amount of time that has elapsed since preparation.

a. State the analysis of variance model.

b. Prepare a main effects plot of the estimated factor level means Y;.. What does this plot
suggest about the relation between the solution concentration and time?

¢. Obtain the analysis of variance table.

d. Test whether or not the factor level means are equal; use o = .025. State the alternatives,
decision rule, and conclusion.

e. Make pairwise comparisons of factor level means between all adjacent lengths of time;
use the Bonferroni procedure with a 95 percent family confidence coefficient. Are your
conclusions in accord with those in part (b)? Do your results suggest that the rggression
relation is not linear ?
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x17.25.

17.26.

. A market reseurcher stated in a scminar: “The power approach to determining sample sig,
< es

for analysis ol variance problems is not meaninglul: only the estimation approach should pe
used. We never conduct a study whete all treatment means are expected to be equal, so We are
always interested in a variety ol estimates.” Discuss.

Refer to Questionnaire color Problem 16.8. Suppose cstimates of all pairwise COMparisogs
are of primary importance. What would be the required sample sizes if the precision of alf
pairwise comparisons is to be £3.0. using the Tukey procedure with a 95 percent family
confidencc coellicient?

Reter to Rehabilitation therapy Problem 16.9. Suppose primary interest is in estimating the
two pairwise comparisons:

Ly =pr — 12 Ly= pz— >

What would be the required sample sizes il the precision of cach comparison is to be +3.0 days,
using the most etficient multiple comparison procedure with a 95 percent family confidence
coetlicient?

Refer to Filling machines Problem 16.11. Suppose primary interest is in estimating the
following comparisons:

Mt sty
2 2

Ly =y — 2 Ly=

mitretstia st
4 2
What would be the required sample sizes if the precision ol ench of these comparisons is not

to exceed %.08 ounce. using the best multiple comparison procedure with a 95 percent family
confidence coeflicient?

Ly =3 — 14 Ly=

Reter to Premium distribution Problem 16.12. Suppose primary interest is in estimating the
following comparisons:
Ly + fo
Li=p—p2 L= l~'7—l- ~ s

ot pa
2 2

Ly = — 1y Ly

I

What would be the required sample sizes if the precision of each of the estimated comparisons
is not to exceed % 1.0 day. using the most efficient multiple comparison procedure with a
90 percent family confidence coetlicient?

Refer to Rehabilitation therapy Problem |6.9. Suppose that primary interest is it comparing
the below-average and above-average physical fitness groups. respectively. with the average
physical fitness group. Thus. two comparisouns are of interest:

Ly =y — 2 L=z — 12

Assume that a rcasonable planning value for the error standard deviation is o = 4.5 days.

a, It has been decided to use equal sample sizes (1) lor the below-average and above-average
eroups. It twice this sample size (2n) wete to be used for the average physical litness group,
what would be the required sample sizes if the precision of each pairwise comparison istobe
+2.5 days. using the Bonterroni procedure and a 90 percent family confidence coefficient?

b. Repeat the calculations in part (a) if the sample size for the average physical fitness group
is to be: (1) 1 and (2) 3n. all other specifications remaining the same.

c. Compare your results in parts (a) and (b). Which design lcads 1o the smallest total sample
size here?
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17.28. Refer 1o Rehabilitation therapy Problem 16.9. A biometrician has developed a scale for
physical fitness status, as follows:

Physical Fitness Scale
Status Value
Below average 83
Average 100
Above avetage 121

a. Using this physical fitness status scale, fit first-order regression model (1.1) for regressing
number of days required for therapy (¥') on physical fitness status (X).

b. Obtain the residuals and plot them against X. Does a linear regression model appear to fit
the data?«

¢. Perform an F test to determine whether or not there is lack of fit of a linear regression
function; use o = .05. State the alternatives, decision rule, and conclusion.

d. Could you test for lack of fit of a quadraric regression function here? Explain.

%17.29. Refer to Filling machines Problem 16.11. A maintenance engineer has suggested that the
differences in mean fills for the six machines are largely related to the length of time since a
machine last received major servicing. Service records indicate these lengths of time to be as
follows (in months):

Filling Number of Filling Number of
Machine Months Machine Months
1 4 4 53
2 3.7 5 14
3 6.1 6 21

a. Fit second-order polynomial regression model (8.2) for regressing amount of fill (¥) on
number of months since major servicing (X).

b. Obtain the residuals and plot them against X. Does a quadratic regression function appear
to fit the data?

c¢. Perform an F test to determine whether or not there is lack of fit of a quadratic regression
function; use o = .01. State the alternatives, decision rule, and conclusion.

d. Test whether or not the quadratic term in the response function can be dropped from the
model; use o = .01. State the alternatives, decision rule, and conclusion.

Exercises

17.30. Show that when r = 2 and n; = n, ¢ defined in (17.35) is equivalent to /2|¢*|, where 1* is
defined in (A.65) in Appendix A.

17.31. Starting with (17.38), complete the derivation of (17.30).

17.32. Show that when r = 2, §? defined in (17.434) is equivalent to [ (1 — &/2; ny — r))%.

17.33. Show that the estimated variance of £; in (17.48) is given by (17.49),

17.34. (Calculus needed.) Refer to Rehabilitation therapy Problem 16.9. The sample sizes for the
below-average, average, and above-average physical fitness groups are to be n, kn, and n,
respectively. Assuming that ANOVA model (16.2) is appropriate, find the optimal yalue of
k to minimize the variances of [; = 17. - 1—’2 and iz = 17; - 172 for a given total sample
size ny.



774 Part Four

Desigu and Analvsis of Single-Facior Studies

Projects

17.35.

17.36.

17.37.

17.38.

x
Reter to the SENIC duta set in Appendix C. I and Project 16.42. Obtain confidence intervals f,
all pairwise comparisons between the four regions; use the Tukey procedure and a 90 percent
family confidence coctficient. Interpret your results and state your findings. Prepare a fine plot
ol the estimated factor level means and underline all nonsignificant comparisons.
Reter to the CDI data set in Appendix C.2 and Project 16.44. Obtain confidence intervzjg for
all pairwise comparisons between the four regions; use the Tukey procedure and a 90 percent
family contidence coetficient. Interpret your results and state your findings. Prepare a line plot
of the estimated factor level means and underline all nonsignificant comparisons.
Refer to the Market share data set in Appendix C.3 and Project 16.45. Obtain confidence
intervals for all pairwise comparisons among the four tactor levels: use the Tukey procedure
and a 93 percent family confidence coefficient. Interpret your results and state your find-
ings. Prepare a line plot of the estimated factor level means. underscoring all nonsignificant
comparisons.
Refer to Project 16.46e.

a. For each replication, construct confidence intervals for all pairwise comparisons among
the three ireatment means: use the Tukey procedure with a 95 percent family confidence
coetficient. Then determine whether all confidence intervals for the replication are correct,
given that p; = 80, p» = 60, and 3 = 160.

b. For what proportion of the 100 replications are all confidence intervals correct? Is this

proportion close to theoretical expectations? Discuss.

Case
Studies

17.39.

17.40.

17.41.

Refertothe Prostate cancer data setin Appendix C.5 and Case Study 16.49. Obtain confidence
intervals for all pairwise comparisons among the three Gleason score levels: use the Tukey
procedure and a 95 percent family confidence coefficient. Interpret your results and state your
findings. Prepare a line plot of the estimated tactor level means. underscoring all nonsignificant
comparisons.

Refer to the Real estate sales data set in Appendix C.7 and Case Study 16.50. Obtain confi-
dence intervals for all pairwise comparisons among the four number-of-bedroom categories;
use the Tukey procedure and a 90 percent family confidence coefficient. Interpret your results
and state your findings. Prepare a line plot of the estimated factor level means, underscoring
all nonsignificant comparisons.

Refer to the Ischemic heart disease data set in Appendix C.9 and Case Study 16.51. Ob-
tain confidence intervals for all pairwise comparisons among the six number-of-intervention
categoties; use the Tukey procedure and a 90 percent family confidence coefficient. Interpret
your results and state your findings. Prepare a line plot of the estimated factor level means,
underscoring all nonsignificant comparisons.



