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Thomas Bayes (1701-1761)
Image from the Wikipedia
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Bayes’ Theorem

Bayes’ Theorem is about conditional probability.

It has statistical applications.
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Bayes’ Theorem
The most elementary version

A B

A∩B

P (A|B) =
P (A ∩B)

P (B)

=
P (A ∩B)

P (A ∩B) + P (Ac ∩B)

=
P (B|A)P (A)

P (B|A)P (A) + P (B|Ac)P (Ac)
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There are many versions of Bayes’ Theorem

For discrete random variables,

P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)

=
P (Y = y|X = x)P (X = x)∑
t P (Y = y|X = t)P (X = t)
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For continuous random variables

f
X|Y (x|y) =

f
XY

(x, y)

f
Y

(y)

=
f
Y |X(y|x)f

X
(x)∫∞

−∞ fY |X(y|t)f
X

(t) dt
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For X Continuous and Y Discrete

f
X|Y (x|y) =

p
Y |X(y|x)f

X
(x)∫∞

−∞ pY |X(y|t)f
X

(t) dt
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Compare

P (A|B) =
P (B|A)P (A)

P (B|A)P (A) + P (B|Ac)P (Ac)

P (X = x|Y = y) =
P (Y = y|X = x)P (X = x)∑
t P (Y = y|X = t)P (X = t)

f
X|Y (x|y) =

f
Y |X (y|x)fX (x)∫∞

−∞ fY |X (y|t)fX (t) dt

f
X|Y (x|y) =

p
Y |X (y|x)fX (x)∫∞

−∞ pY |X (y|t)fX (t) dt
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Philosophy
Bayesian versus Frequentist

What is probability?

Probability is a formal axiomatic system (Thank you Mr.
Kolmogorov).

Of what is probability a model?
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Of what is probability a model?
Two answers

Frequentist: Probability is long-run relative frequency.

Bayesian: Probability is degree of subjective belief.

Maybe the Bayesian way is more natural.

Except for gambling games, is any experiment ever carried
out repeatedly and independently a large number of times?
What’s the probability of rain tomorrow?
What’s the probability I would like fried grasshoppers?
What’s the probability that these are not my real parents?
What is P (−1.1 < µ < 5.7)?

10 / 29



Probability Philosopy An Example

Statistical inference
How it works

Adopt a probability model for data X.

Distribution of X depends on a parameter θ.

Use observed value X = x to decide about θ.

Translate the decision into a statement about the process
that generated the data.

Bayesians and Frequentists agree so far, mostly.

The description above is limited to what frequentists can
do.

Bayesian methods can generate more specific
recommendations.
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What is a parameter?

To the frequentist, it is an unknown constant.

To the Bayesian since we don’t know the value of the
parameter, it’s a random variable.
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Unknown parameters are random variables
To the Bayesian

That’s because probability is subjective belief.

We model our uncertainty with a probability distribution,
π(θ).

π(θ) is called the prior distribution.

Prior because it represents the statistician’s belief about θ
before observing the data.

The distribution of θ after seeing the data is called the
posterior distribution.

The posterior is the conditional distribution of the
parameter given the data.

We base all decisions about the parameter (including
estimates) on the posterior distribution.
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Bayesian Inference

Model is p(x|θ) or f(x|θ).
Prior distribution π(θ) is based on the best available
information.

But yours might be different from mine. It’s subjective.

Use Bayes’ Theorem to obtain the posterior distribution
π(θ|x).

As the notation indicates, π(θ|x) might be the prior for the
next experiment.
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Subjectivity

Subjectivity is the most frequent objection to Bayesian
methods.

The prior distribution influences the conclusions.

Two scientists may arrive at different conclusions from the
same data, based on the same statistical analysis.

The influence of the prior goes to zero as the sample size
increases.

For all but the most bone-headed priors.
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Bayes’ Theorem
Continuous case

π(θ|x) =
f (x|θ)π(θ)∫∞

−∞ f (x|t)π(t) dt

∝ f (x|θ)π(θ)

Proportional because
∫∞
−∞ f(x|t)π(t) dt is a constant with

respect to θ.

It’s like those problems that say “The random variable X

has density f(x) = k e−
1

2σ2
(x−µ)2 . What is k?”

If you can recognize f(x|θ)π(θ), you don’t need to do the
integral in the denominator.
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Bayes’ Theorem
X discrete and θ continuous: Very common.

π(θ|x) =
p(x|θ)π(θ)∫∞

−∞ p(x|t)π(t) dt

∝ p(x|θ)π(θ)
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Bayes’ Theorem
Most General Case

E(g(θ|x)) =

∫
g(θ)f (x|θ)dπ(θ)∫
f (x|θ)dπ(θ)
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Example: Coffee taste test

A fast food chain is considering a change in the blend of coffee
beans they use to make their coffee. To determine whether their
customers prefer the new blend, the company plans to select a
random sample of n = 100 coffee-drinking customers and ask
them to taste coffee made with the new blend and with the old
blend, in cups marked “A” and “B.” Half the time the new
blend will be in cup A, and half the time it will be in cup B.
Management wants to know if there is a difference in preference
for the two blends.
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Model: The conditional distribution of X given θ

Letting θ denote the probability that a consumer will choose the
new blend, treat the data X1, . . . , Xn as a random sample from
a Bernoulli distribution. That is, independently for i = 1, . . . , n,

p(xi|θ) = θxi(1− θ)1−xi I(xi = 0, 1)

p(x|θ) =

n∏
i=1

θxi(1− θ)1−xi

= θ
∑n
i=1 xi(1− θ)n−

∑n
i=1 xi
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Prior: The Beta distribution

π(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1−θ)β−1 I(0 ≤ x ≤ 1)

Where α > 0 and β > 0.
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Beta prior: π(θ) = Γ(α+β)
Γ(α)Γ(β)θ

α−1(1− θ)β−1I(0 ≤ x ≤ 1)

Supported on [0, 1].

E(θ) = α
α+β

V ar(θ) = αβ
(α+β)2(α+β+1)

.

Can assume a variety of shapes depending on α and β.

When α = β = 1, it’s uniform.

Bayes used a Bernoulli model and a uniform prior in his
posthumous paper.
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Posterior distribution

π(θ|x) ∝ p(x|θ) π(θ)

= θ
∑n
i=1 xi(1− θ)n−

∑n
i=1 xi

Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1

∝ θ(α+
∑n
i=1 xi)−1(1− θ)(β+n−

∑n
i=1 xi)−1

Proportional to the density of a Beta(α′, β′), with

α′ = α+
∑n

i=1 xi

β′ = β + n−
∑n

i=1 xi

So that’s it!
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Conjugate Priors

Prior was Beta(α, β).

Posterior is Beta(α′, β′).

Prior and posterior are in the same family of distributions.

The Beta is a conjugate prior for the Bernoulli model.

Posterior was obtained by inspection.

Conjugate priors are very convenient.

There are conjugate priors for many models.

There are also important models for which conjugate priors
do not exist.
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Picture of the posterior

Suppose 60 out of 100 consumers picked the new blend of coffee beans.

Posterior is Beta, with α′ = α+
∑n
i=1 xi = 61 and

β′ = β + n−
∑n
i=1 xi = 41.
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Posterior Density
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More comments about the posterior distribution
Beta(α′, β′) with α′ = α+

∑n
i=1 xi and β′ = β + n−

∑n
i=1 xi

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

θ

π(
θ|
x)

Posterior Density

The prior was uniform, but the
posterior is much more concentrated.

Peak is close to x = 0.6.

Note

E(Θ|X) =
α′

α′ + β′

=
α+

∑n
i=1Xi

α+ β + n

=
α+ nXn

α+ β + n

=
α/n+Xn

α/n+ β/n+ 1
p→ θ

26 / 29



Probability Philosopy An Example

How should we estimate θ?
If we really insist on a point estimate
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Posterior Density

To some pure Bayesians, the estimate is
the posterior, period.

The posterior expected value is a
natural choice.

The posterior mode is also popular.

Because π(θ|x) ∝ p(x|θ) π(θ)
= L(θ, x) π(θ), the posterior mode is a
lot like the MLE.

Actually, because E(Θ|x)→ θ and
V ar(Θ|x)→ 0, a randomly chosen point
from the posterior is also a consistent
estimator.

More sophisticated answers are
available from Bayesian decision theory.
What’s the cost of being wrong? 27 / 29
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Test H0 : θ = 1
2
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Posterior Density

Because the prior probability of Θ = 1
2 = 0,

so is the posterior probability.

The frequentist null hypothesis H0 : θ = 1
2

is unbelievable.

How about comparing P (Θ < 1
2 |x) to

P (Θ > 1
2 |x)?

For this example, P (Θ < 1
2 |x) = 0.023

Again, more sophisticated answers are
available from Bayesian decision theory.

If being wrong either way is equally costly
and it doesn’t matter how much you’re
wrong, comparing the posterior
probabilities is the optimal decision rule.
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Mathematical and Computational Sciences, University of
Toronto Mississauga. It is licensed under a Creative Commons
Attribution - ShareAlike 3.0 Unported License. Use any part of
it as you like and share the result freely. The LATEX source code
is available from the course website:

http://www.utstat.toronto.edu/∼brunner/oldclass/260s20
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