Name _____

Student Number _____

STA 260s20 Test 2: Version B

Tutorial Section (Circle One)

TUT0101	TUT0102	TUT0103	TUT0104
Tues. 3-4	Tues. 4-5	Wed. 5-6	Wed. 5-6
IB 200	IB 200	IB 220	IB 200
Karan	Karan	Marie	Karan
TUT0105	TUT0106	TUT0107	TUT0108
Wed. 6-7	Fri. 3-4	Fri. 4-5	Fri. 5-6
DV 1148	IB 200	IB 200	IB 200
Dashvin	Michael	Michael	Marie

Question	Value	Score	
1	14		
2	14		
3	10		
4	10		
5	6		
6	24		
7	22		
Total = 100 Points			

- 1. (14 points) Let X_1, \ldots, X_n be a random sample from a distribution with density $f(x|\theta) = 5\theta x^{5\theta-1}I(0 < x < 1)$, where $\theta > 0$.
 - (a) Find the maximum likelihood estimator of θ . Show your work. Do not bother with the second derivative test. Your final answer is a formula. Circle your answer.

(b) Using your answer to Question 1a, give a maximum likelihood estimate for the following data: 0.903 0.857 0.769 0.297 0.999. Show a little work. Your answer is a number. Circle your answer.

- 2. (14 points) Let X_1, \ldots, X_n be a random sample from a distribution with density $f(x|\theta) = 5\theta x^{5\theta-1}I(0 < x < 1)$, where $\theta > 0$. This is a repeat of the density in Question 1.
 - (a) Find a method of moments estimator of θ . Show your work. Your final answer is a formula. Circle your answer.

(b) Using your answer to Question 2a, give a method of moments estimate for the following data: 0.903 0.857 0.769 0.297 0.999. This is a repeat of the data in Question 1. Show a little work. Your answer is a number. Circle your answer.

3. (10 points) Let Y_1 and Y_2 be independent random variables, and let $Y = Y_1 + Y_2$. Prove that if $Y \sim \chi^2(\nu_1 + \nu_2)$ and $Y_2 \sim \chi^2(\nu_2)$, then $Y_1 \sim \chi^2(\nu_1)$. You have more room than you need. 4. (10 points) Show that $\sum_{i=1}^{n} (X_i - \mu)^2 = \sum_{i=1}^{n} (X_i - \overline{X}_n)^2 + n (\overline{X}_n - \mu)^2$.

- 5. (6 points) Let X_1, \ldots, X_n be a random sample from a Normal (μ, σ^2) distribution. Write the answers in the spaces below. No proof is required.
 - (a) What is the distribution of \overline{X}_n ? Include the parameter(s).
 - (b) What is the distribution of $\frac{\overline{X}_n \mu}{\sigma/\sqrt{n}}$? Include the parameter(s).
 - (c) What is the distribution of $\left(\frac{\overline{X}_n \mu}{\sigma/\sqrt{n}}\right)^2$? Include the parameter(s).
 - (d) What is the distribution of $\frac{X_i \mu}{\sigma}$? Include the parameter(s).
 - (e) What is the distribution of $\left(\frac{X_i \mu}{\sigma}\right)^2$? Include the parameter(s).

(f) What is the distribution of
$$\sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma}\right)^2$$
? Include the parameter(s).

- 6. (24 points) Let X_1, \ldots, X_n be a random sample from a Normal (μ, σ^2) distribution. In this question, you are going to prove that $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$ by filling in the blanks. You may use the fact that \overline{X}_n and S^2 are independent, without proof.
 - (a) Using the results of Questions 3 and 4, what is Y in terms of the current problem? Show a little work.

(b) What is Y_1 ?

(c) What is Y_2 ?

- (d) What is the distribution of Y, including the parameter(s)? The symbols ν_1 and ν_2 do not appear in your answer.
- (e) Give the facts from Question 5 that prove your answer to Question 6d. Just write the letters.
- (f) What is the distribution of Y_2 , including the parameter(s)? The symbol ν_2 does not appear in your answer.
- (g) Give the facts from Question 5 that prove your answer to Question 6f. Just write the letters.
- (h) How do you know that Y_1 and Y_2 are independent?
- (i) Therefore, the distribution of Y_1 is ... What? Include the parameter(s).

- 7. (22 points) Let X_1, \ldots, X_n be a random sample from a Normal (μ, σ^2) distribution. We want to test $H_0: \sigma^2 = \sigma_0^2$ versus $H_1: \sigma^2 \neq \sigma_0^2$.
 - (a) Write down the formula for a good test statistic. No explanation is needed.
 - (b) What is the distribution of the test statistic under the null hypothesis? Include the parameter(s).
 - (c) What is the decision rule? That is, when is the null hypothesis to be rejected? Your answer uses the quantiles of the distribution you specified in Question 7b.
 - (d) A sample of size n = 51 yields a sample mean of $\overline{x}_n = 50.52$ and a sample variance of $S^2 = 61.45$. We want to test the null hypothesis $\sigma^2 = 100$ at the $\alpha = 0.05$ significance level.
 - i. What are the critical values? Your answer is a pair of numbers.
 - ii. What is the computed value of the test statistic? Show a little work. Your answer is a number. **Circle your final answer**.

- iii. Do you reject the null hypothesis? Answer Yes or No.
- iv. What do you conclude from the test? Circle one of the conclusions below.
 - $\sigma^2 > 100.$ $\sigma^2 < 100.$ $\sigma^2 = 100.$