\qquad
Student Number \qquad
Tutorial Section

STA 256 f2018 Test 3

Question	Value	Score
1	15	
2	25	
3	30	
4	15	
5	15	
Total 100 Points		

15 points

1. Let X and Y be discrete random variables, so that to calculate expected values, you use summation. Show that if X and Y are independent, then $\operatorname{Cov}(X, Y)=0$. Be very clear about where you use independence. In your answer, draw an arrow to the place where you use independence, and write "This is where I use independence." If you need something that is not on the formula sheet, prove it.

25 points
2. Let X_{1} and X_{2} be independent continuous random variables with densities

$$
f_{x_{1}}\left(x_{1}\right)=\left\{\begin{array}{ll}
e^{-x_{1}} & \text { for } x_{1} \geq 0 \\
0 & \text { for } x_{1}<0
\end{array} \quad \text { and } \quad f_{x_{2}}\left(x_{2}\right)= \begin{cases}e^{-x_{2}} & \text { for } x_{2} \geq 0 \\
0 & \text { for } x_{2}<0\end{cases}\right.
$$

(a) Find the joint density of $Y_{1}=\frac{X_{1}}{X_{2}}$ and $Y_{2}=X_{2}$. Do not forget to indicate where the joint density is non-zero.
(b) Find the density of $Y_{1}=\frac{X_{1}}{X_{2}}$. Do not forget to indicate where the density of Y_{1} is non-zero.
3. Let X_{1}, \ldots, X_{n} be independent random variables with expected value μ and variance σ^{2}. Their distribution is unspecified, but it might not be normal. Let $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$, the sample mean.
(a) Find $E(\bar{X})$. Show your work. Circle your answer.
(b) Find $\operatorname{Var}(\bar{X})$. Show your work. Circle your answer.
(c) Suppose X_{1}, \ldots, X_{n} are normally distributed. Use moment-generating functions to find the distribution of \bar{X}, including the parameters. Show your work. At the end of your answer, write " $\bar{X} \sim$ "... and write the distribution.
4. The discrete random variables X and Y have joint distribution

	$x=1$	$x=2$	$x=3$	$x=4$	$x=5$
$y=1$	$1 / 14$	$1 / 14$	$1 / 14$	$1 / 14$	$1 / 14$
$y=2$	0	$1 / 14$	$1 / 14$	$1 / 14$	$1 / 14$
$y=3$	0	0	$1 / 14$	$1 / 14$	$1 / 14$
$y=4$	0	0	0	$1 / 14$	$1 / 14$

(a) What is $E(Y)$? The answer is a number. Show your work.
(b) What is $E(Y \mid X=3)$? The answer is a number.
(c) What is $E(X \mid Y=3)$? The answer is a number.
5. Let X have a Poisson distribution with parameter $\lambda>0$.
(a) For what values of λ does $E(X!)$ exist?
(b) For values of λ satisfying the condition you gave above, what is $E(X!)$? The answer is a formula involving λ. Show your work. Circle your answer.

QI) $X \xi Y$ are discrete variables.

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=\sum_{x} \sum_{y} x y P(X=x, Y=y)-E(X) G(Y)
$$

This is where I use independence $=\sum_{x} x \sum_{y} y P(X=x) P(Y=y)-Z(X) Z(Y)$

$$
\begin{aligned}
& =\sum_{x P(X=x) \sum_{y} y P(Y=y)-E(X) Z(Y)}=Z(X) Z(Y)-\tau(X) Z(Y)=0
\end{aligned}
$$

2) a) $Y_{1}=\frac{X_{1}}{X_{2}}, Y_{2}=X_{2} \Rightarrow X_{1}=Y_{1} X_{2}=Y_{1} Y_{2}$
since $y_{1}=\frac{x_{1}}{x_{2}}$ and $x_{1} \geq 0, x_{2} \geq 0, y_{1} \in[0, \infty) \geqslant$ where Since $y_{2}=x_{2}, y_{2} \in[0, \infty)$ $3 \mathrm{fryH}_{\mathrm{H}}>0$

$$
\left[\begin{array}{ll}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{1}}{\partial y_{2}} \\
\frac{\partial x_{2}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{2}}
\end{array}\right]=\left[\begin{array}{ll}
\frac{\partial\left(y_{1} y_{2}\right)}{\partial y_{1}} & \frac{\partial\left(y_{1} y_{2}\right)}{\partial y_{2}} \\
\frac{\partial y_{2}}{\partial y_{1}} & \frac{\partial y_{2}}{\partial y_{2}}
\end{array}\right]=\left[\begin{array}{cc}
y_{2} & y_{1} \\
0 & 1
\end{array}\right]=A
$$

$|\operatorname{det}(A)|=\left|y_{2}-0^{\partial y_{1}}=\left|y_{2}\right|^{\partial y_{2}} y_{2}\right.$ since we said $y_{2} \in[0, \infty)$

$$
f x_{1} x_{2}\left(x_{1}, x_{2}\right) \stackrel{x_{1} \sharp x_{2}}{=} f x_{1}\left(x_{1}\right) f x_{2}\left(x_{2}\right)=\frac{e^{-x_{1}} e^{-x_{2}} \text { for }}{x_{1}, x_{2} \in[0, \infty)}
$$

Applying Jacobian Formula gives:

$$
\begin{align*}
& \text { Applying Jacobian Formula gives } \quad f_{1, r_{2}\left(y_{1}, y_{2}\right)=}^{e^{-y_{1} y_{2}} e^{-y_{2}} y_{2}=y_{2} e^{-y_{2}\left(y_{1}+1\right)} \text { for }} \begin{array}{ll}
y_{1} \in[0, \infty), y_{2} \in[0, \infty) \\
0 & \text { otherwise }
\end{array}
\end{align*}
$$

b) $f_{r_{1}}\left(y_{1}\right)=\int_{-\infty}^{\infty} f_{r_{1}, T_{2}}\left(y_{1} y_{2}\right) d y_{2}=\int_{0}^{\infty} y_{2} e^{-y_{2}\left(y_{1}+1\right)} d y_{2}$

Integration by parts $u=y_{2} \quad d v=e^{-y_{2}\left(y_{1}+1\right)}$
$\int u d v=u v-\int v d u \quad d u=d y_{2} \quad v=\frac{-1}{y_{1}+1} e^{-y_{2}\left(y_{1}+1\right)}$

$$
\begin{aligned}
\text { (1) } & =\left.\frac{-y_{2}}{y_{1}+1} e^{-y_{2}\left(y_{1}+1\right)}\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{1}{y_{1}+1} e^{-y_{2}\left(y_{1}+1\right)} d y_{2} \\
& =0+\left.\frac{1}{\left(y_{1}+1\right)^{2}} e^{-y_{2}\left(y_{1}+1\right)}\right|_{\infty} ^{0}=\frac{1}{\left(y_{1}+1\right)^{2}}
\end{aligned}
$$

$f_{r_{1}}\left(y_{1}\right)= \begin{cases}\frac{1}{\left.y_{1}+1\right)^{2}} & \text { for } y_{1} \in[0, \infty) \\ 0 & \text { otherwise }\end{cases}$
3)

$$
\text { a) } \begin{aligned}
E(\bar{x}) & =E\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)=E\left(\frac{x_{1}}{n}+\frac{x}{n}\right. \\
& \left.=\frac{E(x)}{n}+\frac{E\left(x_{2}\right)}{n}+\cdots+\frac{x_{n}}{n}\right) \\
\text { b) } \ln _{n}(\bar{x}) & \left.=\frac{\mu}{n}+\frac{\mu}{n}+\cdots+\frac{\mu}{n}=\frac{n u}{n}=\mu \bar{x}_{i}\right)-1 / n
\end{aligned}
$$

b) $\operatorname{Var} \cdot \bar{x})=\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} \hat{X}_{i}\right)=\operatorname{Var}\left(\frac{x_{1}}{n}+\frac{x_{n}}{n}+\cdots+\frac{x_{n}}{n}\right)$

Due to independence $=\frac{V_{o r}\left(X_{1}\right)}{n^{2}}+\frac{V_{a v}\left(X_{2}\right)}{n^{2}}+\cdots+\frac{V_{0 r}\left(X_{n}\right)}{n^{2}}$

$$
=\frac{n \sigma^{2}}{n=}=\sigma^{2} / n
$$

$$
\begin{aligned}
& \text { C) If } X_{i} \sim \text { Normal }\left(\mu, \sigma^{\frac{\sigma}{s}} \text { standard donation }, M_{x_{i}}(t)=e^{\mu t+\frac{1}{2}} \sigma \dot{x}^{2}\right. \\
& M_{\bar{x}}(t)=E\left(e^{\bar{x} t}\right)=E\left(e^{+\frac{1}{\lambda} x_{i t}}\right)=E\left(e^{x_{1} \cdot \frac{t}{n}+x_{2} \frac{z}{n}+\cdots+x_{n} \frac{x}{n}}\right) \\
& =E\left(e^{x_{1} \frac{t}{n}} e^{x_{2} \frac{t}{n}} e^{x_{3} \frac{t}{n}} \cdots e^{x_{n} \frac{t}{n}}\right)
\end{aligned}
$$

Due to independence $=E\left(e^{x_{1} \frac{x}{n}}\right) E\left(e^{x_{2} \frac{t}{n}}\right) \cdots z\left(e^{x_{n} \frac{t}{n}}\right)$
of $X_{1} X_{2} \cdots, x_{n}$

$$
\begin{aligned}
& =M_{x}\left(\frac{t}{n}\right) M_{x=}\left(\frac{t}{n}\right) \ldots M_{x_{n}}\left(\frac{t}{n}\right)=\left(e^{\mu \frac{t}{n}+\frac{1}{2} \sigma^{2} \frac{t^{2}}{n^{2}}}\right)^{n} \\
& =e^{\mu t+\frac{1}{2} \frac{-r^{2}}{n} t^{2}} \Longleftarrow M_{\text {of }} \operatorname{Norrmal}^{\left(\mu, \frac{\sigma}{n}\right)}
\end{aligned}
$$

By uniqueness of $M G F, I$ claim that $\bar{x} \sim \operatorname{Normal}\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$
4. a)

$$
\begin{aligned}
& Z(Y)=\sum_{y} y P(Y=y) . \quad \begin{array}{l|l|l|l|l}
& y & 1 & 2 & 3 \\
\hline
\end{array} \\
& =1\left(\frac{5}{19}\right)+2\left(\frac{7}{19}\right)+3(3 / 14)+4\left(\frac{2}{14}\right) \\
& =\frac{5+8+9+8}{14}=\frac{30}{14}=\frac{15}{7}
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } E(Y \mid X=3)=\sum_{y} y P(Y=y \mid X=3)=\sum_{y} y \frac{P(Y=y, X=3)}{P(X=3)} \\
&= \frac{1 \cdot\left(\frac{1}{14}\right)+2 \cdot\left(\frac{1}{14}\right)+3 \cdot\left(\frac{1}{19}\right)+4 \cdot 0}{\frac{3}{14}}=\frac{\frac{6}{14}}{\frac{3}{14}}=2
\end{aligned}
$$

$$
\text { C) } \begin{aligned}
& E(X \mid Y=3)=\sum_{x} x P(X=x \mid Y=3)=\sum_{x} x \frac{P(X=x, Y=3)}{P(Y=3)} \\
&=\frac{1(0)+2(0)+3\left(\frac{1}{14}\right)+4\left(\frac{1}{14}\right)+5\left(\frac{1}{14}\right)}{3 / 14}=\frac{\frac{12}{14}}{3 / 14}=4
\end{aligned}
$$

5) a and b) $E(X!)=\sum_{x} x!P(X=x)=\sum_{x=0}^{\infty} x!\frac{e^{-\lambda} \lambda^{x}}{x!}$ where $\lambda>0$

$$
\begin{array}{ll}
=e^{-\lambda} \sum_{x=0}^{\infty} \lambda^{x}=e^{-\lambda} S & \text { poisson } \quad \text { parameter } \\
S=\sum_{x=0}^{\infty} \lambda^{x}=\lambda^{0}+\lambda^{1}+\cdots=1+\lambda+\lambda^{2}+\cdots & \begin{array}{l}
\text { Sum converges when } \\
\lambda S^{x=}=\lambda+\lambda^{2}+\lambda^{3}+\cdots \\
|\lambda|<1
\end{array}
\end{array}
$$

$$
\text { since } \lambda>0,|\lambda|=\lambda<1
$$

$$
5-75=1
$$

$$
\begin{aligned}
& S=\frac{1}{1-\lambda} \\
& \text { Finally, } E(X!)=e^{-\lambda} S=\frac{e^{-\lambda}}{1-\lambda} \text { where } 0<\lambda<1 \\
& \text { part a) }
\end{aligned}
$$

$$
\text { Finally, } E(X!)=e^{-\lambda} S=\frac{\frac{e^{\lambda}}{1-\lambda}}{\text { pant) }} \text { where } 0<\lambda<1
$$

