Sets ${ }^{1}$

STA 256: Fall 2018

[^0]
Statistical Experiment

A statistical experiment is a procedure whose outcome is not known in advance with certainty.

Sample Space: set of outcomes $\omega \in \Omega$

- Sell 500 lottery tickets, pick the winning number.

$$
\Omega=\{1,2, \ldots, 500\}
$$

- Hold your breath as long as you can.
$\Omega=\{t: t \geq 0\}$
- Pick coin or die from jar, roll or toss.
$\Omega=\{H, T, 1,2,3,4,5,6\}$

Event: Set of outcomes, $A \subset \Omega$

- $A \cap B=\{\omega \in \Omega: \omega \in A$ and $\omega \in B\}$
- A and B are said to be disjoint if $A \cap B=\emptyset$
- $A \cup B=\{\omega \in \Omega: \omega \in A$ or $\omega \in B\}$
- $A^{c}=\{\omega \in \Omega: \omega \notin A\}$

Set Laws

No proofs, just Venn diagrams at most

- Commutative: $A \cup B=B \cup A, A \cap B=B \cap A$
- Associative
- $(A \cup B) \cup C=A \cup(B \cup C)$,
- $(A \cap B) \cap C=A \cap(B \cap C)$
- Distributive (like multiplication)
- $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
- $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$

De Morgan Laws

Not in the text

- $(A \cap B)^{c}=A^{c} \cup B^{c}$
- $(A \cup B)^{c}=A^{c} \cap B^{c}$
- Rule: complement and flip $\cup \cap$

Extend the notation to larger number of sets

Distributive laws

- $A \cap\left(\cup_{j=1}^{n} B_{j}\right)=\cup_{j=1}^{n}\left(A \cap B_{j}\right)$, or even
- $A \cap\left(\cup_{j=1}^{\infty} B_{j}\right)=\cup_{j=1}^{\infty}\left(A \cap B_{j}\right)$
and
- $A \cup\left(\cap_{j=1}^{n} B_{j}\right)=\cap_{j=1}^{n}\left(A \cup B_{j}\right)$
- $A \cup\left(\cap_{j=1}^{\infty} B_{j}\right)=\cap_{j=1}^{\infty}\left(A \cup B_{j}\right)$

De Morgan Laws (complement and flip)

- $\left(\cap_{j=1}^{\infty} A_{j}\right)^{c}=\cup_{j=1}^{\infty} A_{j}^{c}$
- $\left(\cup_{j=1}^{\infty} A_{j}\right)^{c}=\cap_{j=1}^{\infty} A_{j}^{c}$

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ source code is available from the course website:
http://www.utstat.toronto.edu/~ ${ }^{\text {brunner/oldclass/256f18 }}$

[^0]: ${ }^{1}$ This slide show is an open-source document. See last slide for copyright information.

