Limit Theorems ${ }^{1}$ STA 256: Fall 2018

[^0]
Overview

(1) Law of Large Numbers
(2) Central Limit Theorem

Infinite Sequence of random variables

T_{1}, T_{2}, \ldots

- We are interested in what happens to T_{n} as $n \rightarrow \infty$.
- Why even think about this?
- For fun.
- And because T_{n} could be a sequence of statistics, numbers computed from sample data.
- For example, $T_{n}=\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$.
- n is the sample size.
- $n \rightarrow \infty$ is an approximation of what happens for large samples.
- Good things should happen when estimates are based on more information.

Convergence

- Convergence of T_{n} as $n \rightarrow \infty$ is not an ordinary limit, because probability is involved.
- There are several different types of convergence.
- In this class, we will work with convergence in probability and convergence in distribution.

Convergence in Probability

Definition: The sequence of random variables T_{1}, T_{2}, \ldots is said to converge in probability to the constant c if for all $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} P\left\{\left|T_{n}-c\right| \geq \epsilon\right\}=0
$$

Observe

$$
\begin{aligned}
\left|T_{n}-c\right|<\epsilon & \Leftrightarrow-\epsilon<T_{n}-c<\epsilon \\
& \Leftrightarrow c-\epsilon<T_{n}<c+\epsilon
\end{aligned}
$$

Example: $T_{n} \sim U\left(-\frac{1}{n}, \frac{1}{n}\right)$
Convergence in probability means $\lim _{n \rightarrow \infty} P\left\{\left|T_{n}-c\right| \geq \epsilon\right\}=0$

- T_{1} is uniform on $(-1,1)$. Height of the density is $\frac{1}{2}$.
- T_{2} is uniform on $\left(-\frac{1}{2}, \frac{1}{2}\right)$. Height of the density is 1 .
- T_{3} is uniform on $\left(-\frac{1}{3}, \frac{1}{3}\right)$. Height of the density is $\frac{3}{2}$.
- Eventually, $\frac{1}{n}<\epsilon$ and $P\left\{\left|T_{n}-0\right| \geq \epsilon\right\}=0$, forever.
- Eventually means for all $n>\frac{1}{\epsilon}$.

Example: X_{1}, \ldots, X_{n} are independent $U(0, \theta)$

Convergence in probability means $\lim _{n \rightarrow \infty} P\left\{\left|T_{n}-c\right| \geq \epsilon\right\}=0$
For $0<x<\theta$,

$$
\begin{aligned}
& F_{x_{i}}(x)=\int_{0}^{x} \frac{1}{\theta} d x=\frac{x}{\theta} . \\
& Y_{n}=\max _{i}\left(X_{i}\right) \\
& F_{y_{n}}(y)=\left(\frac{x}{\theta}\right)^{n}
\end{aligned}
$$

$$
\begin{aligned}
P\left\{\left|Y_{n}-\theta\right| \geq \epsilon\right\} & =F_{y_{n}}(\theta-\epsilon) \\
& =\left(\frac{\theta-\epsilon}{\theta}\right)^{n}
\end{aligned}
$$

$$
\rightarrow \quad 0 \quad \text { because } \frac{\theta-\epsilon}{\theta}<1
$$

So the observed maximum data value goes in probability to θ, the theoretical maximum data value.

The Law of Large Numbers

Theorem: Let X_{1}, \ldots, X_{n} be independent random variables with expected value μ and variance σ^{2}. Then $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ converges in probability to μ.

- This is not surprising, because $E\left(\bar{X}_{n}\right)=\mu$ and
- $\operatorname{Var}\left(\bar{X}_{n}\right)=\frac{\sigma^{2}}{n}$

$$
\begin{aligned}
\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right) & =\frac{1}{n^{2}} \operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) \\
& =\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right) \\
& =\frac{1}{n^{2}} \sum_{i=1}^{n} \sigma^{2}=\frac{1}{n^{2}} n \sigma^{2}=\frac{\sigma^{2}}{n} \downarrow 0 .
\end{aligned}
$$

- And the implications are huge.

Probability is long-run relative frequency

This follows from the Law of Large Numbers.
Repeat some process over and over a lot of times, and count how many times the event A occurs. Independently for $i=1, \ldots, n$,

- Let $X_{i}(\omega)=1$ if $\omega \in A$, and $X_{i}(\omega)=0$ if $\omega \notin A$.
- So X_{i} is an indicator for the event A.
- X_{i} is Bernoulli, with $P\left(X_{i}=1\right)=p=P(A)$.
- $E\left(X_{i}\right)=\sum_{x=0}^{1} x p(x)=0 \cdot(1-p)+1 \cdot p=p$.
- \bar{X}_{n} is the proportion of times the event occurs in n independent trials.
- The proportion of successes converges in probability to $P(A)$.

Proof of the Law of Large Numbers

 Using $E\left(\bar{X}_{n}\right)=\mu$ and $\operatorname{Var}\left(\bar{X}_{n}\right)=\frac{\sigma^{2}}{n}$- Chebyshev's inequality says $P(|X-\mu| \geq k \sigma) \leq \frac{1}{k^{2}}$
- Here, X is replaced by \bar{X}_{n} and σ is replaced by $\frac{\sigma}{\sqrt{n}}$.
- So Chebyshev's inequality becomes

$$
P\left(\left|\bar{X}_{n}-\mu\right| \geq k \frac{\sigma}{\sqrt{n}}\right) \leq \frac{1}{k^{2}}
$$

- $k>0$ is arbitrary, so set $\frac{k \sigma}{\sqrt{n}}=\epsilon$.
- Then $k=\frac{\epsilon \sqrt{n}}{\sigma}$ and $\frac{1}{k^{2}}=\frac{\sigma^{2}}{\epsilon^{2} n}$.
- Thus,

$$
0 \leq P\left\{\left|\bar{X}_{n}-\mu\right| \geq \epsilon\right\} \leq \frac{\sigma^{2}}{\epsilon^{2} n} \downarrow 0
$$

Squeeze.

Theorem
 Proof omitted in 2018

Let $g(x)$ be a function that is continuous at $x=c$. If T_{n} converges in probability to c, then $g\left(T_{n}\right)$ converges in probability to $g(c)$.

Examples:

- A Geometric distribution has expected value $1 / p .1 / \bar{X}_{n}$ converges in probability to $1 / E\left(X_{i}\right)=p$.
- A Uniform $(0, \theta)$ distribution has expected value $\theta / 2.2 \bar{X}_{n}$ converges in probability to $2 E\left(X_{i}\right)=2 \frac{\theta}{2}=\theta$.

Convergence in distribution

Definition: Let the random variables $X_{1}, X_{2} \ldots$ have cumulative distribution functions $F_{1}(x), F_{2}(x) \ldots$, and let the random variable X have cumulative distribution function $F(x)$. The (sequence of) random variable X_{n} is said to converge in distribution to X if

$$
\lim _{n \rightarrow \infty} F_{n}(x)=F(x)
$$

at every point where $F(x)$ is continuous.

Example: Convergence to a Bernoulli with $p=\frac{1}{2}$ $\lim _{n \rightarrow \infty} F_{n}(x)=F(x)$ at all continuity points of $F(x)$

- For $x<0, \lim _{n \rightarrow \infty} F_{n}(x)=0$
- For $0<x<1, \lim _{n \rightarrow \infty} F_{n}(x)=\frac{1}{2}$
- For $x>1, \lim _{n \rightarrow \infty} F_{n}(x)=1$
- What happens at $x=0$ and $x=1$ does not matter.

Convergence to a constant

Consider a "degenerate" random variable X with $P(X=c)=1$.

Suppose X_{n} converges in probability to c.

- Then for any $x>c, F_{n}(x) \rightarrow 1$ for ϵ small enough.
- And for any $x<c, F_{n}(x) \rightarrow 0$ for ϵ small enough.
- So X_{n} converges in distribution to c.

Suppose X_{n} converges in distribution to c, so that $F_{n}(x) \rightarrow 1$ for $x>c$ and $F_{n}(x) \rightarrow 0$ for $x<c$. Let $\epsilon>0$ be given.

$$
\begin{aligned}
P\left\{\left|X_{n}-c\right|<\epsilon\right\} & =F_{n}(x+\epsilon)-F_{n}(x-\epsilon) \text { so } \\
\lim _{n \rightarrow \infty} P\left\{\left|X_{n}-c\right|<\epsilon\right\} & =\lim _{n \rightarrow \infty} F_{n}(x+\epsilon)-\lim _{n \rightarrow \infty} F_{n}(x-\epsilon) \\
& =1-0=1
\end{aligned}
$$

And X_{n} converges in distribution to c.

Comment

- Convergence in probability might seem redundant, because it's just convergence in distribution to a constant.
- But that's only true when the convergence is to a constant.
- Convergence in probability to a non-degenerate random variable implies convergence in distribution.
- But convergence in distribution does not imply convergence in probability when the convergence is to a non-degenerate variable.

Big Theorem about convergence in distribution

 Book calls it the "Continuity Theorem"Let the random variables $X_{1}, X_{2} \ldots$ have cumulative distribution functions $F_{1}(x), F_{2}(x) \ldots$ and moment-generating functions $M_{1}(t), M_{2}(t) \ldots$. Let the random variable X have cumulative distribution function $F(x)$ and moment-generating function $M(t)$. If

$$
\lim _{n \rightarrow \infty} M_{n}(t)=M(t)
$$

for all t in an open interval containing $t=0$, then X_{n} converges in distribution to X.

The idea is that convergence of moment-generating functions implies convergence of distribution functions.

Example: Poisson approximation to the binomial

 We did this before with probability mass functions and it was a challenge.Let X_{n} be a binomial $\left(n, p_{n}\right)$ random variable with $p_{n}=\frac{\lambda}{n}$, so that $n \rightarrow \infty$ and $p \rightarrow 0$ in such a way that the value of $n p_{n}=\lambda$ remains fixed. Find the limiting distribution of X_{n}.
Recalling that the MGF of a Poisson is $e^{\lambda\left(e^{t}-1\right)}$ and $\left(1+\frac{x}{n}\right)^{n} \rightarrow e^{x}$,

$$
\begin{aligned}
M_{n}(t) & =\left(p e^{t}+1-p\right)^{n} \\
& =\left(\frac{\lambda}{n} e^{t}+1-\frac{\lambda}{n}\right)^{n} \\
& =\left(1+\frac{\lambda\left(e^{t}-1\right.}{n}\right)^{n} \\
& \rightarrow e^{\lambda\left(e^{t}-1\right)}
\end{aligned}
$$

The Central Limit Theorem

Let X_{1}, \ldots, X_{n} be independent random variables from a distribution with expected value μ and variance σ^{2}. Then

$$
Z_{n}=\frac{\sqrt{n}\left(\bar{X}_{n}-\mu\right)}{\sigma}
$$

converges in distribution to $Z \sim \operatorname{Normal}(0,1)$.

In practice, Z_{n} is often treated as standard normal for $n>25$, although the n required for an accurate approximation really depends on the distribution.

- This is justified by the Central Limit Theorem.
- But it does not mean that \bar{X}_{n} converges in distribution to a normal random variable.
- The Law of Large Numbers says that \bar{X}_{n} converges in probability to a constant, μ.
- So \bar{X}_{n} converges to μ in distribution as well.
- That is, \bar{X}_{n} converges in distribution to a degenerate random variable with all its probability at μ.

Why would we say that for large n, the sample mean is approximately $N\left(\mu, \frac{\sigma^{2}}{n}\right)$?

Have $Z_{n}=\frac{\sqrt{n}\left(\bar{X}_{n}-\mu\right)}{\sigma}$ converging to $Z \sim N(0,1)$.

$$
\begin{aligned}
\operatorname{Pr}\left\{\bar{X}_{n} \leq x\right\} & =\operatorname{Pr}\left\{\frac{\sqrt{n}\left(\bar{X}_{n}-\mu\right)}{\sigma} \leq \frac{\sqrt{n}(x-\mu)}{\sigma}\right\} \\
& =\operatorname{Pr}\left\{Z_{n} \leq \frac{\sqrt{n}(x-\mu)}{\sigma}\right\} \approx \Phi\left(\frac{\sqrt{n}(x-\mu)}{\sigma}\right)
\end{aligned}
$$

Suppose Y is exactly $N\left(\mu, \frac{\sigma^{2}}{n}\right)$:

$$
\begin{aligned}
\operatorname{Pr}\{Y \leq x\} & =\operatorname{Pr}\left\{\frac{\sqrt{n}(Y-\mu)}{\sigma} \leq \frac{x-\mu}{\sigma / \sqrt{n}}\right\} \\
& =\operatorname{Pr}\left\{Z_{n} \leq \frac{\sqrt{n}(x-\mu)}{\sigma}\right\}=\Phi\left(\frac{\sqrt{n}(x-\mu)}{\sigma}\right)
\end{aligned}
$$

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ source code is available from the course website:
http://www.utstat.toronto.edu/~brunner/oldclass/256f18

[^0]: ${ }^{1}$ This slide show is an open-source document. See last slide for copyright information.

